
mathematics

Article

Approximation of Finite Hilbert and Hadamard
Transforms by Using Equally Spaced Nodes

Frank Filbir 1,2, Donatella Occorsio 3,4,∗ and Woula Themistoclakis 4

1 Department of Scientific Computing, Helmholtz Zentrum München German Research Center for
Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany;
filbir@helmholtz-muenchen.de

2 Applied Numerical Analysis, Fakultät für Mathematik, Technische Universität München, Boltzmannstrasse
3 85748 Garching bei München. Research Center, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany

3 Department of Mathematics, Computer Science and Economics, University of Basilicata, viale dell’Ateneo
Lucano 10, 85100 Potenza, Italy

4 C.N.R. National Research Council of Italy, IAC Institute for Applied Computing “Mauro Picone”, via P.
Castellino, 111, 80131 Napoli, Italy; woula.themistoclakis@cnr.it

* Correspondence: donatella.occorsio@unibas.it

Received: 6 March 2020; Accepted: 1 April 2020; Published: 7 April 2020
����������
�������

Abstract: In the present paper, we propose a numerical method for the simultaneous approximation
of the finite Hilbert and Hadamard transforms of a given function f , supposing to know only the
samples of f at equidistant points. As reference interval we consider [−1, 1] and as approximation
tool we use iterated Boolean sums of Bernstein polynomials, also known as generalized Bernstein
polynomials. Pointwise estimates of the errors are proved, and some numerical tests are given to
show the performance of the procedures and the theoretical results.

Keywords: Hilbert transform; Hadamard transform; hypersingular integral; Bernstein polynomials;
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1. Introduction

The Hilbert transform in its original form is an integral transform given by

H( f , t) =
∫
−

∞

−∞

f (x)
x− t

dx, t ∈ R. (1)

Alongside this form there are different variants defining Hilbert transforms on a finite interval,
on the torus, or discrete groups. Objects of our studies are the finite Hilbert transform and its
derivative, namely the Hadamard transform, both defined on the finite (standard) interval [−1, 1].
They are given by

H( f , t) =
∫
−

1

−1

f (x)
x− t

dx, H1( f , t) =
∫
=

1

−1

f (x)
(x− t)2 dx, −1 < t < 1, (2)

where the single and double bar-integral notation indicate that the involved integrals have to be
understood as the Cauchy principal value and the Hadamard finite-part integrals, respectively.

The interest in integrals of this kind is due to their wide use to formulate boundary-value problems
in many areas of mathematical physics (potential theory, fracture mechanics, aerodynamics, elasticity,
etc...) in terms of singular integral equations in [−1, 1] involving such integrals (see e.g., [1–5] and the
references therein).
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In fact, the Hilbert transform in its aforementioned form (1) and all its relatives appear in various
fields in mathematical analysis, signal processing, physics and other fields in science. Among them are
partial differential equations, optics (X-ray crystallography, electron-atom scattering), electrodynamics
and quantum mechanics (Kramers–Kronig relation), signal processing (phase retrieval, transfer
functions of linear systems, spectral factorization). We will not go into details here but instead
refer to the comprehensive two volume treatise by F. King [6] on many aspects of the Hilbert transform
and its various variants. Due to its outstanding relevance it is of great importance to possess procedures
which allow computation of the Hilbert transform numerically with high degree of accuracy. This
problem was studied by many authors for all the different variants of the Hilbert transform and under
different assumptions. We limit the citation here to only a few interesting papers [7–9].

Our focus in the present paper lies on the numerical computation of the finite Hilbert and
Hadamard transforms (2). There is an extensive literature on numerical methods for these transforms.
We only mention here [5,10] and the references therein. Many of these methods produce a high degree
of approximation, especially when the smoothness of f increases (see e.g., [11–15]). Since they are
based on Gaussian quadrature rules and its modified versions or product rules, they require the
values of f to be given at the zeros of Jacobi polynomials which often is not the case. For example,
in many applications the measurements of f are produced by devices which sample the function
on equidistant knots. Other procedures which pay attention to this fact and which are frequently
used in applications involve composite quadrature rules on equally spaced points. However, this
type of quadrature rules suffers from a low degree of approximation or show saturation phenomena.
Hence there is a need to establish a new approach which combines the advantages of both the
aforementioned methods.

To move towards this goal, we propose some quadrature rules obtained by means of the sequence
{Bm,s f }m of the so-called generalized Bernstein polynomials, defined as iterated Boolean sums of the
classical Bernstein polynomials {Bm f }m ([16–18]). These types of formulas are based on equally spaced
knots in the interval [−1, 1] and their convergence order increases with increasing smoothness of the
function, in contrast to various popular rules based on piecewise polynomial approximation. Moreover,
there exists a numerical evidence showing that the speed of convergence of the formula increases for
higher values of the parameter s and for fixed m (see [19], Remark 4.1).

Concerning the numerical computation of the Hilbert transform H( f ), we revisit the method
introduced in [20] from both the theoretical and computational point of view. Indeed, here, according
to a more recent result obtained in [21], we estimate the quadrature error in terms of the more refined
kth ϕ-modulus of Ditzian and Totik, instead of the ordinary modulus of smoothness. As consequence,
we get error estimates in Sobolev and Hölder Zygmund spaces and we are able to state the maximum
rate of convergence for functions in such spaces. The second improvement of the method in [20]
regards the computation of the quadrature weights that is performed in a more stable way. It is based
on a recurrence relation which does not require the transformation to the canonical bases {1, x, . . . , xm},
but it preserves the fundamental Bernstein polynomials {pm,k(x)}m

k=0.
As regards the Hadamard transform H1( f , t), before introducing the numerical procedure for

its computation, we prove that H1( f , t) presents algebraic singularities at the endpoints of the
interval, when the density function f satisfies a Dini-type condition. Successively, we introduce
a quadrature rule for approximatingH1( f , t) always based on the polynomials Bm,s f and useful also
for the simultaneous approximation of H( f , t) and H1( f , t), since the samples of the function f at
the equidistant nodes employed in the computation of H( f , t) have been reused to approximate
H1( f , t) too. The convergence of such a quadrature rule is proved by using the simultaneous
approximation property of the generalized Bernstein polynomials, and similarly to the Hilbert
transform case, for the quadrature error we state weighted pointwise estimates.

It comes out that the additional integer parameter s introduced by the Bm,s f can be suitable chosen
to accelerate the convergence of the quadrature rules for both the transforms H and H1. Moreover,
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the coefficients of both the quadrature rules are given in a simple compact vectorial form and can be
efficiently computed by recurrence.

The outline of the paper is as follows. Section 2 contains some notation and preliminary
results concerning the generalized Bernstein polynomials and the Hilbert and Hadamard transforms.
The quadrature rules with the corresponding pointwise error estimates can be found in Section 3 where
details about the recurrence relations for their coefficients are also given. Section 4 contains additional
numerical details for computing the quadrature weights and some numerical tests which show the
performance of our procedures and confirm the theoretical estimates. Finally, in Section 5 the proofs
are given.

2. Notation and Preliminary Results

In the sequel C will denote a generic positive constant which may differ at different occurrences.
We will write C 6= C(a, b, ..) to indicate that C is independent of a, b, ... Moreover, if A, B > 0 depend on
some parameters the notation A ∼ B means that there are fixed constants C1, C2 > 0 (independent of
the parameters in A, B) such that C1 A ≤ B ≤ C2 A. For m ∈ N, we set Nm

0 = {0, 1, 2, . . . , m} and
denote by Pm the space of all algebraic polynomials of degree at most m. Cm will denote the space of
functions with m continuous derivatives on [−1, 1] and C0 is the space of the continuous functions on
[−1, 1] equipped with the uniform norm ‖ f ‖ := maxx∈[−1,1] | f (x)|. In C0, setting ϕ(x) :=

√
1− x2, it is

possible to define the following ϕ-modulus of smoothness by Ditzian and Totik ([22], Theorem 2.1.2)

ωr
ϕ( f , t) = sup

0<h≤t
‖∆r

hϕ f ‖, r ∈ N

where

∆r
hϕ(x) f (x) =

r

∑
k=0

(−1)k

(
r
k

)
f
(

x + (r− 2k)
h
2

ϕ(x)
)

.

We recall that ([22], Theorem 2.1.1)

ωr
ϕ( f , t) ∼ Kr,ϕ( f , tr) := inf{‖ f − g‖+ tr‖g(r)ϕr‖ : g(r−1) ∈ AC}, (3)

where AC denotes the space of the absolutely continuous functions on [−1, 1].
By means of this modulus of continuity, we define the subspace DT ⊂ C0 of all functions satisfying

a Dini-type condition, namely

DT =

{
f ∈ C0 :

∫ 1

0

ωϕ( f , u)
u

du < ∞
}

, (4)

where we set ωϕ( f , u) = ω1
ϕ( f , u).

Moreover, the Hölder–Zygmund space of order λ > 0 is defined by

Zλ =

{
f ∈ C0 : sup

t>0

ωr
ϕ( f , t)

tλ
< ∞, r > λ

}
, λ > 0, (5)

and equipped with the norm

‖ f ‖Zλ
= ‖ f ‖+ sup

t>0

ωr
ϕ( f , t)

tλ
, r > λ.

The space Zλ constitutes a particular case of the Besov-type spaces studied in [23] where it has
been proved that ([23], Theorem 2.1)

‖ f ‖Zλ
∼ sup

n≥0
(n + 1)λEn( f ), En( f ) := inf

P∈Pn
‖ f − P‖. (6)
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Such norms’ equivalence ensures that the previous definitions are indeed independent of the
integer r > λ we choose. Moreover, by (6) we get an interesting characterization of the continuous
functions f ∈ Zλ in terms of the rate of convergence to zero of the errors of best uniform polynomial
approximation of f , which in turn is closely related to the smoothness of f (see e.g., Corollary 8.2.2
and Theorem 6.2.2 of [22]). More precisely, for any continuous function f and any λ > 0 we have

f ∈ Zλ ⇐⇒ En( f ) = O(n−λ) ⇐⇒ ωr
ϕ( f , t) = O(tλ), ∀r > λ. (7)

Furthermore, by the previous definitions, for any r > λ > 0 we get

ωr
ϕ( f , t) ≤ Ctλ‖ f ‖Zλ

, ∀ f ∈ Zλ, C 6= C( f , t). (8)

In the case that λ = k ∈ N, by virtue of (3), we have that the space Zλ is equivalent to the
Sobolev space

Wk =
{

f (k−1) ∈ AC : ‖ f (k)ϕk‖ < ∞
}

, k ∈ N,

equipped with the norm ‖ f ‖Wk = ‖ f ‖+ ‖ f (k)ϕk‖, and we recall that ([22], Theorem 4.2.1)

ωr
ϕ( f , t) = O(tr) ⇐⇒ f ∈Wr, ∀r ∈ N, (9)

ωr
ϕ( f , t) = o(tr) =⇒ f ∈ Pr−1, ∀r ∈ N. (10)

Finally, since we are going to use a result of [24] based also on the ordinary moduli of smoothness
(cf. Theorem 2), we conclude the subsection by recalling their definition and some properties.

Set

∆h f (x) := f
(

x +
h
2

)
− f

(
x− h

2

)
, ∆r

h := ∆h(∆
r−1
h ), r > 1,

the ordinary r-th modulus of smoothness of f is defined as

ωr( f , t) := sup
0<h≤t

‖∆r
h f ‖, r ∈ N.

It is related with the ϕ modulus by

ωr
ϕ( f , t) ≤ Cωr( f , t), C 6= C( f , t).

Moreover, set
W̃k :=

{
f k−1 ∈ AC : ‖ f (k)‖ < ∞

}
, k ∈ N

we have the following analogues of (9) and (10) (see e.g., [22], p. 40)

ωr( f , t) = O(tr) ⇐⇒ f ∈ W̃r ⊆Wr, ∀r ∈ N (11)

ωr( f , t) = o(tr) =⇒ f ∈ Pr−1, ∀r ∈ N (12)

2.1. Generalized Bernstein Polynomials in [−1, 1]

For any f ∈ C0 the m-th Bernstein polynomial Bm f is defined as

Bm f (x) :=
m

∑
k=0

f (tk)pm,k(x), tk :=
2k
m
− 1, x ∈ [−1, 1], (13)

where

pm,k(x) :=
1

2m

(
m
k

)
(1 + x)k(1− x)m−k, k = 0, 1, . . . , m, (14)
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are the so-called fundamental Bernstein polynomials. They satisfy the following recurrence relation

pm,k(x) =
(1− x)

2
pm−1,k(x) +

(1 + x)
2

pm−1,k−1(x), m = 1, 2, . . . , (15)

with p0,0(x) = 1 and pm,k(x) = 0 if k < 0 or k > m.
The computation of Bm f (x) can be efficiently performed by the de Casteljau algorithm

(see e.g., [25]).
Based on the polynomial Bm f , the generalized Bernstein polynomial Bm,s f were introduced

separately in [16–18]. They are defined as the following Boolean sums

Bm,s f = f − ( f − Bm f )s, s ∈ N, Bm,1 f = Bm f .

Please note that Bm,s f ∈ Pm and it can be expressed as

Bm,s f (x) =
m

∑
j=0

p(s)m,j(x) f (tj), tj :=
2j
m
− 1, x ∈ [−1, 1], (16)

where

p(s)m,j(x) =
s

∑
i=1

(
s
i

)
(−1)i−1Bi−1

m pm,j(x) Bi
m = Bm(Bi−1

m ), i = 1, . . . , s. (17)

An estimate of the error Rm,s f := f − Bm,s f in uniform norm is given by the following theorem

Theorem 1. [21] Let s ∈ N be fixed. Then for all m ∈ N and any f ∈ C0 we have

‖ f − Bm,s f ‖ ≤ C
{

ω2s
ϕ

(
f ,

1√
m

)
+
‖ f ‖
ms

}
, C 6= C(m, f ).

Moreover, for any 0 < λ ≤ 2s we obtain

‖ f − Bm,s f ‖ = O(m−
λ
2 ), m→ ∞ ⇐⇒ ω2s

ϕ ( f , t) = O(tλ)

and the o-saturation class is characterized by

‖ f − Bm,s f ‖ = o(m−s) ⇐⇒ f is a linear function.

Remark 1. Please note that unlike the basic Bernstein operator Bm, the Boolean sums Bm,s may accelerate the
speed of convergence as the smoothness of f increases. In particular, taking into account (7)–(9), from Theorem 1
we deduce

‖ f − Bm,s f ‖ ≤ C
‖ f ‖Zλ√

mλ
, ∀ f ∈ Zλ with 0 < λ ≤ 2s, C 6= C(m, f ). (18)

About the simultaneous approximation of the derivatives of f by means of the sequence {Bm,s f }m,
the following estimate holds.

Theorem 2 ([24], Corollary 1.6). Let s ∈ N be fixed. Then for all m, k ∈ N and any f ∈ Ck we have

‖( f − Bm,s f )(k)‖ ≤ C


ω2s

ϕ

(
f ′,

1√
m

)
+ ωs

(
f ′,

1
m

)
+ ω

(
f ′,

1
ms

)
, k = 1,

ω2s
ϕ

(
f (k),

1√
m

)
+ ωs

(
f (k),

1
m

)
+
‖ f (k)‖

ms , k ≥ 2,

where ω := ω1 and C 6= C(m, f ).
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Remark 2. From Theorem 2 and (9), (11) we deduce the following maximum rate of convergence

‖ f (k) − (Bm,s f )(k)‖ = O
(

1
ms

)
(m→ ∞) ∀ f ∈ Ck ∩ W̃2s+k, k ∈ N. (19)

Finally, we give some details on the computation of Bm,s f and its first derivative.
Observe that a more convenient representation of the fundamental polynomials {p(s)m,i}

m
i=0 is given

by [26] (see also [27])
p(s)

m (x) = pm(x)Cm,s, ∀x ∈ [−1, 1], (20)

where we set

p(s)
m (x) := [p(s)m,0(x), p(s)m,1(x), . . . , p(s)m,m(x)],

pm(x) := [pm,0(x), . . . , pm,m(x)],

and Cm,s ∈ R(m+1)×(m+1) is the changing basis matrix given by

Cm,s = I + (I −A) + . . . + (I −A)s−1, Cm,1 = I , (21)

where I denotes the identity matrix and A is the matrix with entries

A := (Ai,j) Ai,j := pm,j(ti), i, j ∈ Nm
0 . (22)

Let c(m,s)
i,j be the entry (i, j) of Cm,s, then in view of (20) we get

p(s)m,j(x) =
m

∑
i=0

pm,i(x)c(m,s)
i,j , ∀x ∈ [−1, 1], (23)

and consequently

Bm,s f (x) =
m

∑
i=0

(
m

∑
j=0

c(m,s)
i,j f (tj)

)
pm,i(x). (24)

In matrix-vector notation this reads as

Bm,s f (x) = pm(x)Cm,sf, (25)

with
f := [ f (t0), f (t1), . . . , f (tm)]

T .

As regards the derivatives of the Bernstein polynomials Bm,s f , we obtain from (25) the following
useful representation

(Bm,s f )′ (x) = p1
m(x)Cm,sf, (26)

where
p1

m(x) := [p′m,0(x), . . . , p′m,m(x)],

Finally, concerning the entries of the vector p1
m(x), i.e., the derivatives of the fundamental

Bernstein polynomials at x ∈ [−1, 1], starting from the definition (14), easy computations yield
the expression

p′m,k(x) =
m
2
(pm−1,k−1(x)− pm−1,k(x)) , k = 0, . . . , m, (27)

with the usual convention pm,j(x) = 0 if j /∈ Nm
0 .
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2.2. Hilbert and Hadamard Transforms

First, we recall the finite Hilbert transformH( f , t) is defined by

H( f , t) =
∫
−

1

−1

f (x)
x− t

dx = lim
ε→0+

[∫ t−ε

−1

f (x)
x− t

dx +
∫ 1

t+ε

f (x)
x− t

dx
]

. (28)

The following theorem provides a sufficient condition for the existence of H( f , t) in (−1, 1)
when the density function f satisfies a Dini-type condition. It also shows the behavior ofH( f , t) as t
approaches the endpoints of the interval [−1, 1].

Theorem 3 ([28], Theorem 2.1). For any f ∈ DT and |t| < 1, we have

log−1
(

e
1− t2

)
|H( f , t)| ≤ C

(
‖ f ‖+

∫ 1

0

ωϕ( f , u)
u

du
)

, C 6= C( f , t).

Consider nowH1( f , t), which is the finite part of the divergent integral in the Hadamard sense
(see for instance [5,10,14]), i.e., defined for |t| < 1 as (cf. [5], Equation (1.3))

H1( f , t) =
∫
=

1

−1

f (x)
(x− t)2 dx = lim

ε→0+

[∫ t−ε

−1

f (x)
(x− t)2 dx +

∫ 1

t+ε

f (x)
(x− t)2 dx− 2 f (t)

ε

]
. (29)

An alternative definition interpretsH1( f , t) as the first derivative ofH( f ) at t, i.e.,

H1( f , t) =
d
dt

∫
−

1

−1

f (x)
x− t

dx, |t| < 1, (30)

being (30) and (29) equivalent when f ′ is an Hölder continuous function (see [5]).
By the following theorem, we are going to state that for all functions f with f ′ ∈ DT, we have

thatH1( f , t) exists finite for any |t| < 1, while it algebraically diverges at the endpoints of the interval
[−1, 1].

Theorem 4. Let the function f ∈ C1 be s.t. f ′ ∈ DT. Then, for any −1 < t < 1, we have

ϕ2(t)|H1( f , t)| ≤ C
(
‖ f ‖+

∫ 1

0

ωϕ( f ′, τ)

τ
dτ

)
, C 6= C( f , t). (31)

3. The Quadrature Rules

3.1. On the Computation ofH( f , t)

The numerical method for computingH( f , t) is based on the following proposition

Proposition 1. For any f ∈ DT and for any |t| < 1, we have

H( f , t) =
∫ 1

−1

f (x)− f (t)
x− t

dx + f (t) log
(

1− t
1 + t

)
, (32)

In view of (32), we mainly must approximate the function

F ( f , t) :=
∫ 1

−1

f (x)− f (t)
x− t

dx, −1 < t < 1. (33)

For any given s ∈ N, by means of the polynomial sequence {Bm,s f }m, we define the following
approximation of F ( f , t)

Fm,s( f , t) :=
∫ 1

−1

Bm,s f (x)− Bm,s f (t)
x− t

dx (34)
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and let
Φm,s( f , t) := F ( f , t)−Fm,s( f , t), −1 < t < 1. (35)

Please note that

Fm,s( f , t) =
m

∑
j=0

f (tj)
∫ 1

−1

p(s)m,j(x)− p(s)m,j(t)

x− t
dx =:

m

∑
j=0

f (tj)D(s)
m,j(t), (36)

and taking into account the relation in (20) between the bases {pm,i(x)}i∈Nm
0

and {p(s)m,i(x)}i∈Nm
0

, we have

D(s)
m,j(t) =

m

∑
i=0

c(m,s)
i,j

∫ 1

−1

pm,i(x)− pm,i(t)
x− t

dx =:
m

∑
i=0

c(m,s)
i,j qm,i(t). (37)

About the computation of {qm,i(t)}i∈Nm
0

we can prove the following

Proposition 2. For the sequence {qm,i(t)} the following recurrence relation holds

q0,0(t) = 0, q1,0(t) = −1, q1,1(t) = 1

qm,0(t) =
(1− t)

2
qm−1,0(t)−

1
m

qm,k(t) =
(1− t)

2
qm−1,k(t) +

(1 + t)
2

qm−1,k−1(t), 1 ≤ k ≤ m− 1

qm,m(t) =
(1 + t)

2
qm−1,m−1(t) +

1
m

.

Setting
qm(t) = [qm,0(t), qm,1(t), . . . , qm,m(t)], (38)

the quadrature rule (34) takes the form

Fm,s( f , t) = qm(t)Cm,s f. (39)

This formula can be directly applied to approximateH( f , t) in the form given in (32), i.e., supposed
to know f (t), we can approximate

H( f , t) = F ( f , t) + log
(1− t

1 + t

)
f (t) ≈ Fm,s( f , t) + log

(1− t
1 + t

)
f (t).

In the case only the samples f (tj) 6= f (t) are given, we propose to approximateH( f , t) by

Hm,s( f , t) := Fm,s( f , t) + log
(1− t

1 + t

)
Bm,s f (t). (40)

Using matrix-vector notation as in (39) and (25) we arrive at

Hm,s( f , t) =
[

qm(t) + log
(1− t

1 + t

)
pm(t)

]
Cm,sf. (41)

The quadrature error can then be expressed as

Em,s( f , t) := H( f , t)−Hm,s( f , t)

= Φm,s( f , t) + log
(1− t

1 + t

)[
f (t)− Bm,s f (t)

]
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About the convergence of both the previous quadrature rules Fm,s and Hm,s, the following
theorem estimates the associate errors, Φm,s and Em,s respectively.

Theorem 5. Let be −1 < t < 1. Then for any f ∈ DT, we have

log−1
(

e
1− t2

)
| Em,s( f , t)| ≤ C log m

[
ω2s

ϕ

(
f ,

1√
m

)
+
‖ f ‖
ms

]
+ C

∫ 1
m

0

ωr
ϕ( f , u)

u
du, (42)

with r < m and C 6= C(m, f , t).
The same estimate continues to hold for Φm,s( f , t), which satisfies also

|Φm,s( f , t)| ≤ C
[

ω2s
ϕ

(
f ′,

1√
m

)
+ ωs

(
f ′,

1
m

)
+ ω

(
f ′,

1
ms

)]
, ∀ f ∈ C1, (43)

with C 6= C(m, f , t).

In case of smoother functions, from the previous estimates and (7), (8), (9) and (11), we easily get

Corollary 1. Let be −1 < t < 1. Then for all f ∈ Zλ, with 0 < λ ≤ 2s, we have

|Em,s( f , t)| ≤ C log
( e

1− t2

)‖ f ‖Zλ

mλ/2 log m, C 6= C(m, f , t),

and the same holds for |Φm,s( f , t)|. Moreover, for all f ∈ Ck+1, with 1 ≤ k ≤ 2s, we have

|Φm,s( f , t)| ≤ C
mk/2 , C 6= C(m, t).

In conclusion, we remark that in proving Theorem 5 we also stated the following relations between
the quadrature errors and the approximation errors by generalized Bernstein polynomials

|Em,s( f , t)| ≤ C log
( e

1− t2

) [
log m ‖ f − Bm,s f ‖+

∫ 1
m

0

ωr
ϕ( f , u)

u
du

]
, ∀ f ∈ DT,

|Φm,s( f , t)| ≤ C‖( f − Bm,s f )′‖, ∀ f ∈ C1.

3.2. On the Computation ofH1( f , t)

We are going to use the following proposition

Proposition 3. For any f ∈ C1 s.t. f ′ ∈ DT and for all |t| < 1, we have

H1( f , t) =
∫ 1

−1

f (x)− f (t)− f ′(t)(x− t)
(x− t)2 dx + f ′(t) log

(
1− t
1 + t

)
− f (t)

[
2

1− t2

]
. (44)

Let

F 1( f , t) :=
∫ 1

−1

f (x)− f (t)− f ′(t)(x− t)
(x− t)2 dx, −1 < t < 1.

Supposed both f ′(t) and f (t) are known, then we can get the exact value of the non-integral part
at the right-hand side of (44). In this case, the numerical computation ofH1( f , t) can be performed by
the following quadrature rule

F 1( f , t) = F 1
m,s( f , t) + Φ1

m,s( f , t), (45)
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where

F 1
m,s( f , t) :=

∫ 1

−1

Bm,s f (x)− Bm,s f (t)− (Bm,s f )′ (t)(x− t)
(x− t)2 dx =

d
dt
Fm,s( f , t). (46)

Using (36), (37) and (46), we get

F 1
m,s( f , t) =

m

∑
j=0

f (tj)
m

∑
j=0

d
dt

D(s)
m,j(t),

d
dt

D(s)
m,j(t) =

m

∑
i=0

c(m,s)
i,j dm,i(t), dm,i(t) := q′m,i(t), (47)

where the polynomials dm,i(t), i = 0, . . . , m, can be computed recursively, according to

Proposition 4. The sequence dm,i(t), i = 0, . . . , m, satisfies the following recurrence relation

d1,0(t) = 0, d1,1(t) = 0,

dm,0(t) =
(1− t)

2
dm−1,0(t)−

1
2

qm−1,0(t),

dm,k(t) =
(1− t)

2
dm−1,k(t)−

1
2

qm−1,k(t) +
(1 + t)

2
dm−1,k−1(t) +

1
2

qm−1,k−1(t),

1 ≤ k ≤ m− 1,

dm,m(t) =
(1 + t)

2
dm−1,m−1(t) +

1
2

qm−1,m−1(t).

The previous recurrence relation can be easily deduced by Proposition 2.
Let

dm(t) = [dm,0(t), dm,1(t), . . . , dm,m(t)] , (48)

then the quadrature rule (46) takes the following form

F 1
m,s( f , t) = dm(t)Cm,s f. (49)

In the case that only the vector f is known, we have to approximate also the non-integral part in
(44) and we propose the following quadrature rule

H1( f , t) = H1
m,s( f , t) + E1

m,s( f , t), (50)

where E1
m,s( f , t) denotes the error and

H1
m,s( f , t) := F 1

m,s( f , t) + log
(1− t

1 + t

)
(Bm,s f )′ (t)− 2

1− t2 Bm,s f (t). (51)

By (49), (25) and (26), the rule in vector form is given by

H1
m,s( f , t) =

[
dm(t) + log

(1− t
1 + t

)
p1

m(t)−
2

1− t2 pm(t)
]

Cm,sf. (52)

We point out that both the rules (49) and (52) are based on the same data vector f used in the rules
(39) and (41). We see that our method allows simultaneous approximation of the Hilbert transform
H( f , t) and its first derivativeH1( f , t) for |t| < 1 by using the same samples of the function f .



Mathematics 2020, 8, 542 11 of 23

About the convergence of the quadrature rules F 1
m,s andH1

m,s, the following theorem estimates the
associate errors Φ1

m,s and E1
m,s by means of the error of approximation when f and f ′ are approximated

by generalized Bernstein polynomials.

Theorem 6. Let be −1 < t < 1. Then for any f ∈ C1 s.t. f ′ ∈ DT, we have

(1− t2)|E1
m,s( f , t)| ≤ C

[
‖ f − Bm,s f ‖+ log m‖( f − Bm,s f )′‖+

∫ 1
m

0

ωr
ϕ( f ′, u)

u
du

]
(53)

with r < m and C 6= C(m, f , t).
The same estimate can also be applied to Φ1

m,s( f , t), which in the case of continuously differentiable
functions in C2 satisfies also

|Φ1
m,s( f , t)| ≤ C‖( f − Bm,s f )′′‖, ∀ f ∈ C2, (54)

with C 6= C(m, f , t).

Thanks to this theorem, by Theorem 1 and Theorem 2 we can easily get estimates of the quadrature
errors E1

m,s and Φ1
m,s based on several moduli of smoothness of f and f ′. For brevity we omit the

details and only state the following result, which easily follows by using (9) and (11) in the estimates
of Theorems 1 and 2, which in turn are used in Theorem 6.

Corollary 2. Let −1 < t < 1 and s ∈ N. For all functions f ∈ Ck+1, with 1 ≤ k ≤ 2s, and for sufficiently
large m ∈ N, we have

(1− t2)|E1
m,s( f , t)| ≤ C

mk/2 log m, C 6= C(m, t).

The same estimate holds for Φ1
m,s( f , t), which also satisfies

|Φ1
m,s( f , t)| ≤ C

mk/2 , C 6= C(m, t), ∀ f ∈ Ck+2, 1 ≤ k ≤ 2s.

4. Numerical Details and Some Experiments

First, we recall some details given in [19] about the computation of the matrix Cm,s in (21). We start
from the matrix A defined in (22). It will be constructed by rows by making use of the triangular
scheme in (15) and thus for each row m2 long operations are required. On the other hand, since A is
centrosymmetric, i.e., A = JAJ , where J is the counter-identity matrix of order m + 1 (Ji,j = δi,m−j,

i, j ∈ Nm
0 , being δh,k the Kronecker delta), it will be enough to compute only the first

(
m+1

2

)
or(m+2

2
)

rows, according to m is odd or even, respectively. Therefore, the construction of A requires
about m3

2 long operations. Furthermore, since the product of two centrosymmetric matrices can be
performed in almost m3

4 long operations [29], the matrix Cm,s in (21) can be constructed in almost
(s− 2)m3/4 long operations, instead of (s− 2)m3 ones, i.e., with a saving of about the 75%. A more
significant reduction is achieved when the parameter s = 2p, p ∈ N, p ≥ 1. Indeed, by using ([30], (14))

Cm,2p = Cm,2p−1 + (I −A)2p−1
Cm,2p−1 , (55)

the matrix Cm,s can be determined by 2(log2 s− 1) products of centrosymmetric matrices and therefore
requiring almost m3

2 (log2 s− 1) long operations. For instance, for s = 256, if we use Equation (21),
255 products of centrosymmetric matrices require about 255 m3

4 ∼ 63.7m3 long operations. On the
contrary, if we use (55) then approximatively only 3.5m3 long operations are needed.
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Now we propose some numerical tests obtained by approximatingH( f , t) andH1( f , t) by means
of the quadrature rules {Fm,s( f , t)}m and {F 1

m,s( f , t)}m, respectively, namely for a given t ∈ (−1, 1),
we compute

H( f , t) ∼ Fm,s( f , t) + log
(1− t

1 + t

)
f (t),

H1( f , t) ∼ F 1
m,s( f , t) + log

(1− t
1 + t

)
f ′(t)− 2

1− t2 f (t).

For any choice of m we consider different values of s. In the tables we report the approximating
values of the integrals. All the computations have been performed in double-machine precision
(eps ∼ 2.22044e− 16).

Example 1.

H( f , t) =
∫
−

1

−1

sin x
x− t

dx, H1( f , t) =
∫
=

1

−1

sin x
(x− t)2 dx, t = 0.1.

Here f ∈ C∞ and as we can see the performance of the quadrature rules improves keeping m fixed and
increasing the values of s. An empty cell means that there is no improvement in the computation. In particular
as we can see in Tables 1–2, the machine precision is attained for m = 128 and s = 16 as well as for m = 64 and
s = 32.

Table 1. Example 1a:
∫
−1
−1

sin x
x−0.1 dx.

m s = 8 s = 16 s = 32 s = 64

8 1.868 1.8688 1.86885 1.86885
16 1.8688 1.868855 1.86885558 1.868855589
32 1.868855 1.868855589 1.868855589128 1.86885558912878
64 1.868855589 1.8688555891287 1.86885558912878
128 1.86885558912 1.86885558912878
256 1.8688555891287

Table 2. Example 1b:
∫
=

1
−1

sin x
(x−0.1)2 dx.

m s = 8 s = 16 s = 32 s = 64

8 −0.466 −0.4668 −0.4668 −0.46685
16 −0.4668 −0.46685 −0.466857 −0.466857
32 −0.46685 −0.466857 −0.46685700178 −0.46685700178498
64 −0.466857 −0.466857001784 −0.46685700178498
128 −0.4668570017 −0.4668570017849
256 −0.466857001784 −0.46685700178498

Example 2.

H( f , t) =
∫
−

1

−1

|x− 0.5| 15
2

x− t
dx, H1( f , t) =

∫
=

1

−1

|x− 0.5| 15
2

(x− t)2 dx, t = 0.3.

In this case, f ∈ Z 15
2

, and as the results in Tables 3–4 show, the numerical errors agree with the
theoretical estimates.
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Table 3. Example 2a:
∫
−1
−1
|x−0.5|

15
2

x−0.3 dx. Exact value −3.29987610310676.

m s = 8 s = 16 s = 32 s = 64

16 −3 −3.298 −3.299 −3.2998
32 −3.299 −3.29987 −3.29987 −3.299876
64 −3.299876 −3.299876 −3.299876 −3.299876

128 −3.29987610 −3.2998761 −3.29987610 −3.29987610
256 −3.29987610 −3.299876103 −3.299876103 −3.2998761031

e 512 −3.2998761031 −3.2998761031 −3.29987610310 −3.2998761031
1024 −3.299876103106 −3.299876103106 −3.2998761031066 −3.2998761031067

Table 4. Example 2b:
∫
=

1
−1
|x−0.5|

15
2

(x−0.3)2 dx.

m s = 8 s = 16 s = 32 s = 64

32 3.0 3.03 3.038 3.0383
64 3.038 3.03838 3.03838 3.038388
128 3.03838 3.038388 3.038388 3.0383888
256 3.0383888 3.0383888 3.03838883 3.03838883
512 3.03838883 3.03838883 3.038388835 3.03838883525

1024 3.038388835 3.03838883528 3.03838883525 3.03838883525

Example 3.

H( f , t) =
∫
−

1

−1

exp(x) sin(x)
1 + x2

dx
x− t

, t = −0.7.

Here f ∈ C∞. In this test (see Table 5), we want to show the performance of the quadrature rule when m
is fixed and s increases, highlighting how we get an improvement, but it seems till to a certain threshold. This
behavior will be the subject of future investigations.
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Table 5. Example 3:
∫
−1
−1

exp(x) sin(x)
1+x2

dx
x+0.7 .

m = 8 m = 16 m = 32 m = 64 m = 128 m = 516 m = 1024 m = 2048

s = 4 2.03 2.00 2.00 2.0067 2.00674 2.006741 2.006741 2.00674110
s = 8 2.023 2.006 2.006 2.0067 2.0067412 2.00674121 2.00674121192 2.0067412119231

s = 16 2.004 2.006 2.00674 2.006741 2.00674121 2.00674121192 2.0067412119231 2.00674121192318
s = 32 2.000 2.006 2.00674 2.006741 2.0067412119 2.006741211923 2.0067412119231 2.00674121192318
s = 64 2.002 2.006 2.00674 2.00674121 2.0067412119 2.006741211923 2.0067412119231 2.0067412119231

s = 128 2.006 2.006 2.00674 2.00674121 2.006741211923 2.006741211923 2.0067412119231 2.0067412119231
s = 256 2.008 2.0067 2.00674 2.006741211 2.006741211923 2.006741211923 2.006741211923 2.00674121192318
s = 512 2.010 2.0067 2.0067412 2.006741211 2.006741211923 2.006741211923 2.006741211923 2.006741211923
s = 1024 2.010 2.0067 2.0067412 2.0067412119 2.006741211923 2.006741211923 2.006741211923 2.006741211923
s = 2048 2.011 2.0067 2.0067412 2.0067412119 2.006741211923 2.006741211923 2.006741211923 2.006741211923
s = 4096 2.011 2.0067 2.0067412 2.0067412119 2.006741211923 2.006741211923 2.006741211923 2.0067412119231
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5. Proofs

The following three lemmas will be useful in the sequel.

Lemma 1. Let f ∈ DT and Pm ∈ Pm, m ≥ 2. Then

∫ 1
m

0

ωϕ( f − Pm, t)
t

dt ≤ C
(
‖( f − Pm)‖∞ +

∫ 1
m

0

ωr
ϕ( f , t)

t
dt

)
,

where r ∈ N with r < m and 0 < C 6= C(m, f ).

Proof. Taking into account that ωϕ( f , t) is a non-decreasing function of t, we have

∫ 1
m

0

ωϕ( f − Pm, t)
t

dt =
∞

∑
j=m

∫ 1
j

1
j+1

ωϕ( f − Pm, t)
t

dt ≤ C
∞

∑
j=m

ωϕ

(
f − Pm, 1

j

)
j

.

Then, by applying the following Stechkin type inequality ([22], Theorem 7.2.4)

ωϕ( f , t) ≤ Ct
b 1

t c

∑
i=0

Ei( f ), 0 < C 6= C( f , t),

we get

∫ 1
m

0

ωϕ( f − Pm, t)
t

dt ≤ C
∞

∑
j=m

1
j2

j

∑
i=0

Ei( f − Pm)

= C
∞

∑
j=m

1
j2

[
m−1

∑
i=0

Ei( f − Pm) +
j

∑
i=m

Ei( f − Pm)

]

≤ C‖( f − Pm)‖∞

 ∞

∑
j=m

m
j2

+ C
∞

∑
j=m

1
j2

j

∑
i=m

Ei( f ),

and taking into account that ∑∞
j=n

1
j2 ≤ Cn holds for all n ∈ N, with C 6= C(n), we obtain

∫ 1
m

0

ωϕ( f − Pm, t)
t

dt ≤ C‖( f − Pm)‖∞ + C
∞

∑
i=m

Ei( f )
∞

∑
j=i

1
j2

≤ C‖( f − Pm)‖∞ + C
∞

∑
i=m

Ei( f )
i

.

Finally, by applying the Jackson type inequality ([22], Theorem 7.2.1) (see also [31], Section 2.5.2),

Em( f ) ≤ Cωr
ϕ

(
f ,

1
m

)
, r < m, C 6= C(m, f ),

and recalling that ([22], (4.1.3))

ωϕ(g, αt) ≤ Cαωϕ(g, t), ∀α ≥ 1, C 6= C(g, t, α), (56)

we deduce

∞

∑
i=m

Ei( f )
i

≤ C
∞

∑
i=m

ωr
ϕ

(
f , 1

i

)
i

=
∞

∑
i=m

ωr
ϕ

(
f ,

1
i

)
(i− 1)

∫ 1
i−1

1
i

du

≤ C
∞

∑
i=m

∫ 1
i−1

1
i

ωr
ϕ ( f , u)

u
du = C

∫ 1
m−1

0

ωr
ϕ( f , u)

u
du

= C
∫ 1

m

0

ωr
ϕ

(
f , m

m−1 t
)

t
dt ≤ C

∫ 1
m

0

ωr
ϕ( f , t)

t
dt,
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which completes the proof.

Lemma 2. For any −1 < t ≤ − 1
2 , and for any f s.t. f ′ ∈ DT, we have

∫
=

2t+1

−1

f (x)
(x− t)2 dx ≤ C

(∫ 1

0

ωϕ( f ′, σ)

σ
dσ +

‖ f ‖
1 + t

)
,

where C 6= C( f , t).

Proof. Since
∫
−2t+1
−1

dx
x−t = 0, we write

∫
=

2t+1

−1

f (x)
(x− t)2 dx =

∫
=

2t+1

−1

f (x)− f (t)− f ′(t)(x− t)
(x− t)2 dx + f (t)

∫
=

2t+1

−1

dx
(x− t)2

=: A1(t) + A2(t). (57)

Concerning A1, by reasoning as done in proving Proposition 3 we have that f ′ ∈ DT implies

A1(t) =
∫ 2t+1

−1

f (x)− f (t)− f ′(t)(x− t)
(x− t)2 dx

and using

f (x)− f (t)− f ′(t)(x− t) =
∫ x

t
[ f ′(τ)− f ′(t)]dτ, (58)

we obtain the form

A1(t) =
∫ t

−1

[∫ t

x
[ f ′(t)− f ′(τ)]dτ

]
dx

(x− t)2 +
∫ 2t+1

t

[∫ x

t
[ f ′(τ)− f ′(t)]dτ

]
dx

(x− t)2 .

Hence, changing the variables x = t − σ
2

√
1− t2, τ = t − h

2

√
1− t2 in the first addendum and x = t +

σ
2

√
1− t2, τ = t + h

2

√
1− t2 in the second one, we get

A1(t) =
∫ 2

√
1+t
1−t

0

[∫ σ

0

[
f ′
(

t +
h
2

√
1− t2

)
− f ′

(
t− h

2

√
1− t2

)]
dh
]

dσ

σ2

=
∫ 2

√
1+t
1−t

0

(∫ σ

0
∆hϕ(t) f ′(t)dh

)
dσ

σ2 .

Consequently, for any −1 < t ≤ − 1
2 we obtain

|A1(t)| ≤
∫ 2

√
1+t
1−t

0

(∫ σ

0
‖∆hϕ f ′‖dh

)
dσ

σ2 ≤
∫ 2

√
1+t
1−t

0
sup
h≤σ

‖∆hϕ f ′‖ dσ

σ

=
∫ 2

√
1+t
1−t

0

ωϕ( f ′, σ)

σ
dσ ≤

∫ 2√
3

0

ωϕ( f ′, σ)

σ
dσ,

and using (56), we conclude that

|A1(t)| ≤
∫ 2√

3

0

ωϕ( f ′, σ)

σ
dσ =

∫ 1

0
ωϕ

(
f ′,

2√
3

u
)

du
u
≤ C

∫ 1

0

ωϕ( f ′, u)
u

du. (59)

Finally, since

∫
=

2t+1

−1

dx
(x− t)2 = lim

ε→0+

[∫ t−ε

−1

1
(x− t)2 dx +

∫ 2t+1

t+ε

1
(x− t)2 dx− 2

ε

]
= − 2

1 + t
,

we have
|A2(t)| =

2
1 + t

| f (t)| ≤ 2
‖ f ‖
1 + t

,

and the statement follows by collecting this last inequality, (59) and (57).

Similarly, we can prove the following
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Lemma 3. For any 1
2 ≤ t < 1, and for any f s.t. f ′ ∈ DT, we have

∫
=

1

2t−1

f (x)
(x− t)2 dx ≤ C

(∫ 1

0

ωϕ( f ′, σ)

σ
dσ +

‖ f ‖
1− t

)
,

where C 6= C( f , t).

Proof of Theorem 4. Assume first that −1 < t ≤ − 1
2 . In this case, ϕ2(t) ∼ (1 + t) and we have

ϕ2(t)
∣∣∣H1( f , t)

∣∣∣ ∼ (1 + t)
∣∣∣∣∫=2t+1

−1

f (x)
(x− t)2 dx +

∫ 1

2t+1

f (x)
(x− t)2 dx

∣∣∣∣ . (60)

Since

(1 + t)
∣∣∣∣∫ 1

2t+1

f (x)
(x− t)2 dx

∣∣∣∣ ≤ C‖ f ‖,

the statement follows from Lemma 2 for any −1 < t ≤ − 1
2 .

Assume now 1
2 ≤ t < 1, so that ϕ2(t) ∼ (1− t). By using the decomposition

ϕ2(t)
∣∣∣H1( f , t)

∣∣∣ ∼ (1− t)
∣∣∣∣∫ 2t−1

−1

f (x)
(x− t)2 dx +

∫
=

1

2t−1

f (x)
(x− t)2 dx

∣∣∣∣ , (61)

and taking into account that

(1− t)
∣∣∣∣∫ 2t−1

−1

f (x)
(x− t)2 dx

∣∣∣∣ ≤ C‖ f ‖,

the statement follows from Lemma 3 for any 1
2 ≤ t < 1.

Finally, suppose |t| < 1
2 and fix 1

4 < a < 1
2 . In this case, ϕ(t) ∼ 1 and we consider the

following decomposition

ϕ2(t)
∣∣∣H1( f , t)

∣∣∣ ∼ ∣∣∣∣∫|x−t|≥a

f (x)
(x− t)2 dx +

∫
=

t+a

t−a

f (x)− f (t)− f ′(t)(x− t)
(x− t)2 dx+

+ f (t)
∫
=

t+a

t−a

dx
(x− t)2

∣∣∣∣ .

(62)

For the first term at the right-hand side of (62) we get∣∣∣∣∫|x−t|≥a

f (x)
(x− t)2 dx

∣∣∣∣ ≤ C‖ f ‖.

Concerning the second addendum of (62), we proceed analogously to the estimate of A1(t) in Lemma 2.
More precisely, by using f ′ ∈ DT and (58) we obtain

∫
=

t+a

t−a

f (x)− f (t)− f ′(t)(x− t)
(x− t)2 dx =

∫ t+a

t−a

f (x)− f (t)− f ′(t)(x− t)
(x− t)2 dx

=

(∫ t

t−a
+
∫ t+a

t

)(∫ x

t

[
f ′(τ)− f ′(t)

]
dτ

)
dx

(x− t)2 ,

and by changing the variables x = t± σ
2 ϕ(t) and τ = t± h

2 ϕ(t), we get∣∣∣∣∫=t+a

t−a

f (x)− f (t)− f ′(t)(x− t)
(x− t)2 dx

∣∣∣∣ ≤ ∫ 2a
ϕ(t)

0

∫ σ

0

∣∣∣∆hϕ(t) f ′(t)
∣∣∣ dh

dσ

σ2 ≤ C
∫ 1

0

ωϕ( f ′, u)
u

du.

Finally, as regards the third term at the right-hand side of (62), since
∫
=

t+a
t−a

dx
(x−t)2 = − 2

a , we have∣∣∣∣ f (t)∫=t+a

t−a

dx
(x− t)2

∣∣∣∣ ≤ 2
a
‖ f ‖,

and the theorem is completely proven.
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Proof of Proposition 1. Start from the standard decomposition

H( f , t) =
∫
−

1

−1

f (x)− f (t)
x− t

dx + f (t)H(1, t), (63)

and taking into account

H(1, t) :=
∫
−

1

−1

dx
x− t

= log
(

1− t
1 + t

)
,

we must prove that the principal value integral in (63) is indeed an improper integral. To this aim, let us first
prove that ∫ 1

t

f (x)− f (t)
x− t

dx = lim
ε→0+

∫ 1

t+ε

f (x)− f (t)
x− t

dx < ∞. (64)

Please note that for any ε > 0,

∫ 1

t+ε

f (x)− f (t)
x− t

dx =
∫ 1−t

ε

f (u + t)− f (t)
u

du.

Moreover, for any g ∈ AC, we note that

f (u + t)− f (t) = f (u + t)− g(u + t)− f (t) + g(t) + g(u + t)− g(t)

≤ 2‖ f − g‖+
∫ u+t

t
g′(σ)dσ

≤ 2‖ f − g‖+ ‖g′ϕ‖
∫ u+t

t

dσ

ϕ(σ)

= 2‖ f − g‖+ u‖g′ϕ‖
[

arcsin(u + t)− arcsin(t)
u

]
.

On the other hand, recalling that

arcsin y = y +
y3

6
+

3
40

y5 +
5

112
y7 +

35
1152

y9 + . . . , |y| < 1,

we easily get
arcsin(u + t)− arcsin(t)

u
≤ C 6= C(t, u), |t| < 1, 0 < u ≤ 2,

and therefore, the previous estimate and (3) yield

f (u + t)− f (t) ≤ C
(

inf
g∈AC

{‖ f − g‖+ u‖g′ϕ‖
)
= CK1,ϕ( f , u) ∼ ωϕ( f , u).

Hence, for all |t| < 1 it follows

lim
ε→0+

∫ 1−t

ε

f (u + t)− f (t)
u

du ≤ C lim
ε→0+

∫ 2

ε

ωϕ( f , u)
u

du, C 6= C(t),

i.e., under the assumption f ∈ DT, (64) holds.

Similarly proceeding, we can prove that

∫ t

−1

f (x)− f (t)
x− t

dx = lim
ε→0+

∫ 1+t

ε

f (t)− f (t− u)
u

du < ∞

and the statement follows.
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Proof of Proposition 2. For 1 ≤ k ≤ m− 1, by using the recurrence relation (15) and taking into account that∫ 1
−1 pm,h(x)dx = 2

m+1 holds ∀h ∈ Nm
0 , we get

qm,k(t) =
1
2

∫ 1

−1

(1− x)pm−1,k(x)− (1− t)pm−1,k(t)
x− t

dx

+
1
2

∫ 1

−1

(1 + x)pm−1,k−1(x)− (1 + t)pm−1,k−1(t)
x− t

dx

=
1
2

(
qm−1,k(t)−

∫ 1

−1

xpm−1,k(x)− tpm−1,k(t)
x− t

dx
)

+
1
2

(
qm−1,k−1(t) +

∫ 1

−1

xpm−1,k−1(x)− tpm−1,k−1(t)
x− t

dx
)

=
1
2

(
qm−1,k(t)−

2
m
− tqm−1,k(t)

)
+

1
2

(
qm−1,k−1(t) +

2
m

+ tqm−1,k−1(t)
)

=
(1− t)

2
qm−1,k(t) +

(1 + t)
2

qm−1,k−1(t).

For k = 0, we have

qm,0(t) =
1
2

∫ 1

−1

(1− x)pm−1,0(x)− (1− t)pm−1,0(t)
x− t

dx =
1
2

(
qm−1,k(t)−

2
m
− tqm−1,k(t)

)
=

(1− t)
2

qm−1,k(t)−
1
m

.

For k = m we proceed analogously.

Proof of Theorem 5. Set Rm,s f = f − Bm,s f , we have

Em,s( f , t) = H(Rm,s f , t), and Φm,s( f , t) = F (Rm,s f , t).

Applying Theorem 3, Em,s( f , t) can be estimated as follows

|Em,s( f , t)| ≤ C log
( e

1− t2

) [
‖Rm,s f ‖+

∫ 1

0

ωϕ(Rm,s f , u)
u

du
]

, C 6= C(m, f , t), (65)

and by Theorem 1 we further obtain

‖Rm,s f ‖ ≤ C
[

ω2s
ϕ

(
f ,

1√
m

)
+
‖ f ‖
ms

]
, C 6= C(m, f ). (66)

Moreover, by Lemma 1 we get

∫ 1

0

ωϕ(Rm,s f , u)
u

du =
∫ 1

m

0

ωϕ(Rm,s f , u)
u

du +
∫ 1

1
m

ωϕ(Rm,s f , u)
u

du

≤ C
(∫ 1

m

0

ωr
ϕ( f , u)

u
du + ‖Rm,s f ‖ log m

)
,

and (42) follows from this last estimate, (65) and (66).
Regarding the quadrature error Φm,s( f , t), we observe that

Φm,s( f , t) = F (Rm,s f , t) = H(Rm,s f , t)− log
(

1− t
1 + t

)
Rm,s f (t),

which leads to

log−1
(

e
1− t2

)
|Φm,s( f , t)| ≤ log−1

(
e

1− t2

)
|H(Rm,s f , t)|+ C|Rm,s f (t)|

≤ C log−1
(

e
1− t2

)
|Em,s( f , t)|+ C‖Rm,s f ‖.
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Hence, in the case that f ∈ DT, the estimate (42) holds for Φm,s( f , t) as well.
Finally, if f ∈ C1 then, by applying the mean value theorem, we get

|Φm,s( f , t)| =
∣∣∣∣∫ 1

−1

Rm,s f (x)− Rm,s f (t)
x− t

dx
∣∣∣∣ ≤ C‖( f − Bm,s f )′‖

and (43) follows from Theorem 2.

Proof of Proposition 3. We start from the standard decomposition

H1( f , t) =
∫
=

1

−1

f (x)− f (t)− f ′(t)(x− t)
(x− t)2 dx +

∫
=

1

−1

f (t) + f ′(t)(x− t)
(x− t)2 dx, (67)

and recalling the definitions

∫
=

1

−1

g(x)
(x− t)2 dx = lim

ε→0+

[∫ t−ε

−1

g(x)
(x− t)2 dx +

∫ 1

t+ε

g(x)
(x− t)2 dx− 2g(t)

ε

]
,∫

−
1

−1

g(x)
x− t

dx = lim
ε→0+

[∫ t−ε

−1

g(x)
x− t

dx +
∫ 1

t+ε

g(x)
x− t

dx
]

,

we note that ∫
=

1

−1

dx
(x− t)2 = − 2

1− t2 ,
∫
=

1

−1

(x− t)
(x− t)2 dx =

∫
−

1

−1

dx
(x− t)

= log
(

1− t
1 + t

)
.

Moreover, taking into account that

f (x)− f (t) = f ′(ξx,t)(x− t), min{x, t} < ξx,t < max{x, t},

we have ∫
=

1

−1

f (x)− f (t)− f ′(t)(x− t)
(x− t)2 dx =

∫
−

1

−1

f ′(ξx,t)− f ′(t)
(x− t)

dx.

Hence to complete the proof, we have to prove that this last principal value integral is indeed an improper
integral if f ′ ∈ DT.

We are going to prove that

∫ 1

t

f ′(ξx,t)− f ′(t)
(x− t)

dx = lim
ε→0+

∫ 1

t+ε

f ′(ξx,t)− f ′(t)
(x− t)

dx < ∞, (68)

being the proof of ∫ t

−1

f ′(ξx,t)− f ′(t)
(x− t)

dx = lim
ε→0+

∫ t−ε

−1

f ′(ξx,t)− f ′(t)
(x− t)

dx < ∞

analogous.
Set ξx,t = (x− t)θ + t, with 0 < θ < 1, for any ε > 0, we have

∫ 1

t+ε

f ′(ξx,t)− f ′(t)
(x− t)

dx =
∫ 1

t+ε

f ′((x− t)θ + t)− f ′(t)
(x− t)

dx =
∫ 1−t

ε

f ′(uθ + t)− f ′(t)
u

du.

On the other hand, for any g ∈ AC, |t| < 1, 0 < θ < 1 and 0 < u ≤ 2, similarly to the proof of Proposition 1,
we have

f ′(uθ + t)− f ′(t) = f ′(uθ + t)− g(uθ + t)− f ′(t) + g(t) + g(uθ + t)− g(t)

≤ 2‖ f ′ − g‖+
∫ uθ+t

t
g′(σ)dσ

≤ 2‖ f ′ − g‖+ u‖g′ϕ‖
[

arcsin(uθ + t)− arcsin(t)
u

]
≤ C

(
‖ f ′ − g‖+ u‖g′ϕ‖

)
, C 6= C(g, u, θ, t).
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Hence, by means of (3), we get

lim
ε→0+

∫ 1−t

ε

f ′(uθ + t)− f ′(t)
u

du ≤ C lim
ε→0+

∫ 2

ε

ωϕ( f ′, u)
u

du

and under the assumption f ′ ∈ DT, (68) follows.

Proof of Theorem 6. We start from

E1
m,s( f , t) = H1(Rm,s f , t), Rm,s f (t) = f (t)− Bm,s f (t).

By Theorem 4, we have

(1− t2)|H1(Rm,s f , t)| ≤ C
(
‖Rm,s f ‖+

∫ 1

0

ωϕ((Rm,s f )′, τ)

τ
dτ

)
.

Since ∫ 1

0

ωϕ((Rm,s f )′, τ)

τ
dτ =

{∫ 1
m

0
+
∫ 1

1
m

}
ωϕ((Rm,s f )′, τ)

τ
dτ

≤
∫ 1

m

0

ωϕ((Rm,s f )′, τ)

τ
dτ + 2‖(Rm,s f )′‖

∫ 1

1
m

dτ

τ

=
∫ 1

m

0

ωϕ((Rm,s f )′, τ)

τ
dτ + 2‖(Rm,s f )′‖ log m,

by Lemma 1 we get

(1− t2)|H1(Rm,s f , t)| ≤ C
(
‖Rm,s f ‖+ ‖(Rm,s f )′‖ log m +

∫ 1
m

0

ωr
ϕ( f ′, τ)

τ
dτ

)
,

i.e., (53) holds.
The same estimate (53) also holds for Φ1

m,s, since by (44) we have

Φ1
m,s( f , t) = H1(Rm,s f , t)− log

(1− t
1 + t

)
(Rm,s f )′(t) +

2
1− t2 Rm,s f (t),

and we note that

(1− t2)

∣∣∣∣log
(1− t

1 + t

)
(Rm,s f )′(t)

∣∣∣∣ ≤ C‖(Rm,s f )′‖, C 6= C(t, f , m),

(1− t2)

∣∣∣∣ 2
1− t2 Rm,s f (t)

∣∣∣∣ ≤ 2‖Rm,s f ‖.

Finally, (54) follows from the Peano form of the Taylor’s remainder term, namely

g(x) = g(t) + g′(t)(x− t) + g′′(ξ)
(x− t)2

2
, min{x, t} ≤ ξ ≤ max{x, t},

which for g = Rm,s f , yields

|Φ1
m,s( f , t)| = |F1(Rm,s f , t)|

≤
∫ 1

−1

|Rm,s f (x)− Rm,s f (t)− (Rm,s f )′ (t)(x− t)|
(x− t)2 dx

≤ ‖ (Rm,s f )′′ ‖.
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