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Abstract: We review several results in the theory of weighted Bergman kernels. Weighted Bergman
kernels generalize ordinary Bergman kernels of domains Ω ⊂ Cn but also appear locally in the
attempt to quantize classical states of mechanical systems whose classical phase space is a complex
manifold, and turn out to be an efficient computational tool that is useful for the calculation of
transition probability amplitudes from a classical state (identified to a coherent state) to another.
We review the weighted version (for weights of the form γ =

∣∣ϕ∣∣m on strictly pseudoconvex domains
Ω = {ϕ < 0} ⊂ Cn) of Fefferman’s asymptotic expansion of the Bergman kernel and discuss its
possible extensions (to more general classes of weights) and implications, e.g., such as related to the
construction and use of Fefferman’s metric (a Lorentzian metric on ∂Ω× S1 ). Several open problems
are indicated throughout the survey.

Keywords: admissible weight; reproducing kernel Hilbert space; weighted Bergman kernel;
weighted Ramadanov theorem; suspended domain; quantum phase space; Bergman metric;
Segal–Bargmann–Fock space; Segal–Bargmann transform; canonical Hermitian connection; Liouville
measure; transition probability amplitude; complex orbifold; epsilon function; Djrbashian kernel;
Forelli–Rudin–Ligocka–Peloso asymptotic expansion formula; Fefferman metric; Cartan connection

1. Introduction

The present paper is a survey of known results on the mathematical analysis of weighted Bergman
kernels and their applications to mathematical physics, such as the theory of quantization of states
of mechanical systems, and also back to complex analysis where some of the matters regarding
weighted Bergman kernels arise. There is an ample mathematics literature devoted to both sides—as
suggested by the title of the survey—of the subject matter, and only a small part of that was reported
on: Authors’ choice was based on their personal taste and area of expertise, on the limits of their
scientific understanding, and of course on the huge amount of material that was to be reviewed
sine qua non. The second named author learned about weighted Bergman kernels many years ago
from Z. Pasternak-Winiarski’s work [1], followed by [2] where the author introduces the reader to
A. Odzijewicz’s fundamental work [3], and implicitly to the cultural universe of works authored by
Anatol Odzijewicz and his collaborators (cf. M. Horowski and A. Odzijewicz, [4,5], G. Jakimowicz
and A. Odzijewicz, [6], W. Lisiecki and A. Odzijewicz, [7], A. Odzijewicz, [3,8–10], A. Odzijewicz and
A. Ryzko, [11], as well as A. Odzijewicz and M. Swietochowski, [12]). Over the years both the first
and second author were interested in the boundary behavior of the (ordinary, unweighted) Bergman
kernel, starting from the pioneering work by N. Kerzman (cf. [13]) and L. Hörmander (cf. [14])
and from the differential geometric consequences (e.g., the occurrence of the Fefferman metric—a
Lorentzian metric on ∂Ω× S1, associated to any smoothly bounded strictly pseudoconvex domain
Ω ⊂ Cn) of C. Fefferman’s work [15]. The construction of the Fefferman metric relies on results in C.
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Fefferman’s work [16] (i.e., on the asymptotic expansion of the Bergman kernel there), and any attempt
to discover similar differential geometric objects within the realm of weighted Bergman kernels should
be preceded by producing an analog to said asymptotic expansion for a γ-Bergman kernel Kγ(z, ζ)

corresponding to an admissible weight γ ∈W(Ω). Such an analog to said asymptotic expansion was
obtained by M.M. Peloso (cf. [17,18]) yet confined to the class of weights which are integer powers
of the defining function—that is,

∣∣ϕ∣∣m ∈ AW(Ω), where m ∈ Z+ and Ω = {ϕ < 0}. M.M. Peloso
claims his asymptotic expansion formula for K|ϕ|m

(
z, ζ
)

is implicit in the work by E. Ligocka (cf. [19]),
who in turn relies on older ideas by F. Forelli and W. Rudin (cf. [20]). To settle matters regarding
credit for authorship we refer to the mentioned result as the Forelli–Rudin–Ligocka–Peloso asymptotic
expansion formula. The problem of extending the asymptotic expansion to the (more general class
of) weights of the form γ =

∣∣ϕ∣∣α exp(g), α > −1, was taken up by E. Barletta et al. (cf. [21]) when
α = m ∈ Z+ and by M. Englis (cf. [22]) for arbitrary α > −1. Although of course less general,
the case of K|ϕ|m(z, ζ) appears as particularly appealing, for

∣∣ϕ∣∣m-Bergman kernels can be related
to ordinary Bergman kernels by using the “suspended domains” of F. Forelli and W. Rudin (cf. op.
cit.). We remind the reader that the first use of the asymptotic expansion for the Bergman kernel
was in the proof of C. Fefferman’s celebrated result (cf. [16]) that biholomorphisms F : Ω1 → Ω2

of smoothly bounded strictly pseudoconvex domains Ωj ⊂ Cn, j ∈ {1, 2}, extend smoothly up to
the boundary (and give CR isomorphisms f : ∂Ω1 → ∂Ω2 of the boundaries). On the other hand,
I. Naruki (cf. [23]) gave an alternative—more geometric, as we shall emphasize shortly—proof to
what is now called Fefferman’s theorem, prior to that of Fefferman. There were some gaps in the
original version of Naruki’s proof, and only a short version was published in the end (as the paper
[23]). It reduces Fefferman’s theorem to a result about extensions of Cartan connections and makes
a creative use of suspended domains. As manifest in [15], C. Fefferman learned about suspended
domains from [23], and that was the key ingredient in the construction of the Lorentzian metric that
bears his name. There is a fascinating formal resemblance between Naruki’s G-admissible metrics
and B.G. Schmidt’s bundle boundary constructions (cf. [24]) suggesting a connection that ought to
be discovered among the mathematical analysis of weighted Bergman kernels and the physics of
space-time singularities (cf. e.g., C.J.S. Clarke [25]). This is but one of the many open questions raised
through the present survey.

The exposition is organized as follows. The main mathematical analysis results about weighted
Bergman kernels are presented in Sections 1–3. Authors’ choice of mathematical physics results as
related to the theory of weighted Bergman kernels occupies Section 4 and relies mainly on the scientific
creation of K. Gawdezki (cf. [26]), B. Kostant (cf. [27]), and of course A. Odzijewicz (cf. [3]). Section 5 is
devoted to the discussion of some of Authors’ own work (cf. [28]). The Forelli–Rudin–Ligocka–Peloso
expansion is discussed in Section 6 which also emphasizes the authors’ work [21] (itself relying on
the treatment in [2] of weighted Bergman kernels as functions K : AW(Ω)→ HA(Ω) on the Banach
manifold of admissible weights) vis-a-vis to that by M. Englis (cf. [22]), although no actual parallel is
drawn among the two. The computability of weighted and unweighted Bergman kernels is addressed
in Section 7. Naruki’s (Cartan-connection-based) proof of Fefferman’s theorem is given in Section 8.

2. Admissible Weights and Reproducing Kernels

Let Ω ⊂ Cn be an open set. Let W(Ω) denote the set of all Lebesgue measurable functions
γ : Ω → (0,+∞). An element γ ∈ W(Ω) is a weight on Ω. Two weights coinciding a.e. in Ω are
identified. Let L2(Ω, γ) be the space of all Lebesgue measurable functions f : Ω→ C such that∫

Ω

∣∣ f (ζ)∣∣2 γ(ζ) dµ(ζ) < ∞
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where dµ is the Lebesgue measure on R2n. Then L2(Ω , γ
)

is a separable Hilbert space with the L2

inner product (
f , g
)

γ
=
∫

Ω
f (ζ) g(ζ) γ(ζ) dµ(ζ). (1)

We also set ‖ f ‖γ =
(

f , f
)1/2

γ
. The map f 7−→ √γ f is an isometry of L2(Ω, γ) onto the ordinary

Lebesgue space L2(Ω). Let L2H(Ω, γ) = L2(Ω, γ) ∩O(Ω) be the space of all holomorphic functions
in L2(Ω, γ). Then L2H(Ω, γ) is referred to as the γ-Bergman space over Ω.

A weight γ ∈W(Ω) is admissible if (i) the evaluation functional δz : L2H(Ω)→ C, δz( f ) = f (z),
is continuous for any z ∈ Ω, and ii) L2H(Ω, γ) is a closed subspace of L2(Ω, γ). Let AW(Ω) denote
the set of admissible weights on Ω. As we shall see later on in this paper, W(Ω) may be organized
as an infinite dimensional Banach manifold modelled on L∞(Ω) and then AW(Ω) is an open subset
in W(Ω).

If γ ∈ AW(Ω) then (by axiom (ii) above) L2H(Ω, γ) is a Hilbert space, with the inner product (1).
On the other hand for every z ∈ Ω the evaluation functional δz is continuous (by axiom (i) above)
hence the Riesz representation theorem applies, so that there is kz, γ ∈ L2H(Ω, γ) such that δz( f ) =(

f , kz, γ

)
γ

or

f (z) =
∫

Ω
f (ζ) kz, γ(ζ) γ(ζ) dµ(ζ) (2)

for any f ∈ L2H(Ω). The function

Kγ : Ω×Ω→ C, Kγ

(
z, ζ
)
= kz, γ(ζ) , z, ζ ∈ Ω,

is the γ-Bergman kernel of Ω. Formula (2) becomes

f (z) =
∫

Ω
Kγ

(
z, ζ
)

f (ζ) γ(ζ) dµ(ζ) (3)

for any f ∈ L2H(Ω) and any z ∈ Ω. As an immediate consequence (by applying (3) for f ≡ 1)∫
Ω

Kγ(ζ, ζ) γ(ζ) d µ(ζ) = 1.

If γ(ζ) ≡ 1, then K(z, ζ) = K1(z, ζ) is the ordinary Bergman kernel of Ω, as discovered by S.
Bergman [29].

Let E be a set and let F (E) be the set of all complex-valued functions f : E → C. A complex
Hilbert space H is a reproducing kernel Hilbert space (a RKH space) if H ⊂ F (E) for some E 6= ∅ and
for every x ∈ E the evaluation functional δx : E→ C, δx( f ) = f (x), is continuous. Once again, by the
Riesz representation theorem, for every x ∈ E there is a unique kx ∈ H such that δx( f ) =

(
f , kx

)
H for

any f ∈ H, and the function k : E× E → C, k(x, y) = kx(y), is the reproducing kernel of H. Hence
L2H(Ω, γ) is a RKH space and Kγ is its reproducing kernel. See N. Aronszajn [30] for a general theory
of RKH spaces. However, the notion of a reproducing kernel is much older and appears to have been
first introduced by the famous Polish mathematician S. Zaremba in connection with his work (cf. [31])
on boundary value problems for harmonic and biharmonic functions.

By a result of Z. Pasternak-Winiarski (cf. [1]) weighted Bergman kernels Kγ enjoy most of the
properties of ordinary Bergman kernels. Let γ ∈ AW(Ω). Then,

(i) For any complete orthonormal system {φν}ν≥0 ⊂ L2H(Ω, γ) the series ∑ν≥0 φν(z) φν(ζ)

converges uniformly on any compact subset of Ω×Ω and its sum is

∞

∑
ν=0

φν(z) φν(ζ) = Kγ

(
z, ζ
)
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for any z, ζ ∈ Ω.
(ii) For any z, ζ ∈ Ω

Kγ

(
ζ, z
)
= Kγ

(
z, ζ
)

.

(iii) Kγ

(
z, ζ
)

is holomorphic in z and anti-holomorphic in ζ.
(iv) Kγ is real analytic.
(v) If Pγ : L2(Ω, γ)→ L2H(Ω, γ) is the L2 orthogonal projection then

(
Pγ f

)
(z) =

∫
Ω

Kγ(z, ζ) f (ζ) dµ(ζ)

for any f ∈ L2(Ω, γ) and any z ∈ Ω.

Cf. Theorem 2.1 in [1], p. 3. Given a weight γ ∈W(Ω), the following statements are equivalent
(providing several characterizations of admissibility)

(a) γ ∈ AW(Ω).
(b) For every compact subset A ⊂ Ω there is a constant CA > 0 such that∣∣ f (z)∣∣ ≤ CA

∥∥ f
∥∥

γ
(4)

for any f ∈ L2H(Ω) and any z ∈ A.
(c) For every z ∈ Ω there is a compact subset B ⊂ Ω such that z ∈ B, and for any w ∈ ∂B there is an

open neighborhood V ⊂ Ω of w and a constant C > 0 such that
∣∣ f (ζ)∣∣ ≤ C

∥∥ f
∥∥

γ
for any ζ ∈ V

and any f ∈ L2H(Ω, γ). (d) For every z ∈ Ω there is an open neighborhood V ⊂ Ω of z and a
constant C > 0 such that

∣∣ f (ζ)∣∣ ≤ C
∥∥ f
∥∥

γ
for any ζ ∈ V and any f ∈ L2H(Ω, γ).

Cf. Theorem 2.2 in [1], p. 4. Following [1] we give a few sufficient conditions for the admissibility
of a weight γ ∈W(Ω), which are in mathematical practice easier to check than any of the conditions
(b)–(d) above. Precisely, let γ ∈W(Ω) and let us assume that there is an open set U ⊂ Ω and a positive
number a > 0 such that γ−a ∈ L1(U). Then, for every z ∈ U there is an open neighborhood V ⊂ Ω of
z and a constant C > 0 such that

∣∣ f (ζ)∣∣ ≤ C
∥∥ f
∥∥

γ
for all ζ ∈ V and all f ∈ L2H(Ω). Cf. Theorem 3.1

in [1], p. 5.
The proof relies on the relationship between holomorphic functions and subharmonic functions,

and is quantitatively relevant enough—at least for the more physics-oriented reader—to be reproduced
in this survey. Toward this end, for every z ∈ U let r > 0 such that B2r(z) ⊂ U. Next let us set
V = Br(z) so that Br(ζ) ⊂ U for any ζ ∈ V. Indeed, for every w ∈ Br(ζ)∣∣w− z

∣∣ ≤ ∣∣w− ζ
∣∣+ ∣∣ζ − z

∣∣ < 2r =⇒ w ∈ B2r(z) ⊂ U.

By a classical result in complex analysis (cf. e.g., Corollary 2.1.15 in [32], p. 75) if f ∈ O(Ω) then
| f |P is subharmonic for every P > 0. Let p = (1 + a)/a > 1 and P = 2/p. Then, for every f ∈ L2H(Ω)

and every ζ ∈ V ∣∣ f (ζ)|2/p ≤ 1
Vol
[
Br(ζ)

] ∫
Br(ζ)

∣∣ f (w)
∣∣2/p dµ(w) =

=
1

Vol
[
Br(ζ)

] ∫
Br(ζ)

∣∣ f (w)
∣∣2/p

γ(w)1/p γ(w)−1/p dµ(w) ≤

(by Hölder’s inequality with 1/p + 1/q = 1, and hence with q = 1 + a)

≤ 1
Vol
[
Br(ζ)

] (∫
Br(ζ)

∣∣ f ∣∣2 γ dµ

)1/p (∫
Br(ζ)

γ−q/p dµ

)1/q
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hence ∣∣ f (ζ)| ≤ 1

Vol
[
Br(ζ)

]p/2

(∫
Br(ζ)

∣∣ f ∣∣2 γ dµ

)1/2 (∫
Br(ζ)

γ−q/p dµ

)p/(2q)
≤

≤ C
∥∥ f
∥∥

γ
,

C =
1

Vol
[
Br(ζ)

](1+a)/(2a)

(∫
U

γ−a dµ

)1/(2a)
.

Q.e.d.

Theorem 1 (Cf. [1], p. 6). Let γ ∈W(Ω). Let us assume that for every ζ ∈ Ω there is a compact set A ⊂ Ω
such that ζ ∈ A and for every w ∈ ∂A there is an open neighbourhood Uw ⊂ Ω of w and a number aw > 0 such
that γ−aw ∈ L1(Uw

)
. Then γ ∈ AW(Ω). In particular, if γ−a ∈ L1

loc(Ω) for some a > 0, then γ ∈ AW(Ω).

Example 1 (Admissible weights on B1). Let Ω = B1 = {z ∈ C : |z| < 1} be the unit disc and let us set

ft(z) =
∣∣Im(z)

∣∣t , t ∈ (0,+∞),

g(z) =
∣∣Im(z)

∣∣1/[1−|z|] , h(z) =

{
exp

[
|z|−1/2] for z 6= 0,

0 for z = 0,

for every z ∈ B1. Then (cf. [1], p. 7)

ft , g, h ∈ AW
(
B1), t ∈ (0,+∞).

Here one may decide on admissibility by using Corollary 1.

For further use, let us observe that given an admissible weight γ ∈ AW(Ω) and the corresponding
reproducing kernel Kγ, for any compact set A ⊂ Ω there is a constant CA > 0 such that for any ζ ∈ A∥∥δζ

∥∥
γ
≤ CA , (5)∥∥Kγ

(
ζ , ·

)∥∥
γ
≤ CA . (6)

The norm of δζ in (5) is meant as an element of the topological dual L2H(Ω)∗, that is,

∥∥δζ

∥∥
γ
= sup

{∣∣δζ( f )
∣∣ : f ∈ L2H(Ω, γ),

∥∥ f
∥∥

γ
= 1

}
and for any compact set A ⊂ Ω with ζ ∈ A there is CA > 0 such that

∣∣δζ( f )
∣∣ = ∣∣ f (ζ)∣∣ ≤ CA

∥∥ f
∥∥

γ

for any f ∈ L2H(Ω , γ), thus yielding (5). As to (6), let us recall that Kγ

(
ζ , z

)
= kζ , γ(z) for some

kζ , γ ∈ L2H(Ω, γ), hence (by estimate (4) for f = kζ , γ)∣∣kζ , γ(z)
∣∣ ≤ CA

∥∥kζ , γ

∥∥
γ

(7)

for any z ∈ A. On the other hand

∥∥kζ , γ

∥∥2
γ
=
∫

Ω

∣∣kζ , γ(w)
∣∣2 γ(w) dµ(w) =

=
∫

Ω
Kγ

(
ζ, w

)
Kγ

(
ζ, w

)
γ(w) dµ(w) =

=
∫

Ω
Kγ

(
ζ, w

)
Kγ

(
w, ζ

)
γ(w) dµ(w) =
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(by (3) for f = Kγ

(
· , ζ
)
)

= Kγ

(
ζ, ζ

)
hence (7) yields ∣∣Kγ

(
ζ, z
)∣∣ ≤ CA Kγ

(
ζ, ζ

)1/2 . (8)

Finally we may estimate
∥∥Kγ

(
ζ , ·

)∥∥
γ

as follows:

∥∥Kγ

(
ζ , ·

)∥∥2
γ
=
∫

Ω

∣∣Kγ

(
ζ, z
)∣∣2 γ(z) d µ(z) ≤

(by interchanging ζ and z in (8))

≤ C2
A

∫
Ω

Kγ(z, z) γ(z) d µ(z) = C2
A .

Q.e.d.
In his pioneering paper [33], G. Cimmino studied the Dirichlet problem for the ordinary Laplacian

on domains in R2 with L2 boundary data. We restate Cimmino’s approach (accredited by him to R.
Caccioppoli [34]) in a slightly generalized form, on domains Ω ⊂ Cn.

Example 2 (Cimmino’s admissible weights). Let γ ∈W(Ω) and f ∈ L2(∂Ω
)
, and let F be a foliation by

real hypersurfaces of Cn, of a one sided neighbourhood V ⊂ Ω of the boundary ∂Ω. Moreover, let {ΦL}L∈V/F
be a family of C∞ diffeomorphisms ΦL : ∂Ω \ F → L, for some subset F ⊂ ∂Ω of “surface” measure zero.
Given a function u : Ω→ C we say that u = f on ∂Ω if

lim
ε→0+

∫
∂Ω

∣∣u ◦ΦLε − f
∣∣2 (γ ◦ΦLε

)
dσ = 0

for any generalized sequence of leaves {Lε}ε>0 ⊂ V/F tending to ∂Ω in the Gromov–Hausdorff distance as
ε→ 0+.

As emphasized by G. Cimmino (cf. op. cit., p. 10, or [35], p. 266) the choice of data(
γ, f , F , {ΦL}L∈V/F

)
is eventually responsible for the loss of uniqueness in the Dirichlet problem ∆u = 0 in

Ω, u = f on ∂Ω. For instance, let Ω = Bn be the unit ball in Cn (with n = 1 in [33]) and ζ0 ∈ ∂Bn and let
us set

γ(ζ) =
∣∣ζ − ζ0

∣∣2, ζ ∈ Ω.

If A ⊂ Ω is a compact subset and d = dist
(
ζ0 , A

)
> 0 then

∫
A γ−1 d µ ≤ d2 µ(A) < ∞, hence γ−1 ∈

L1
loc(Ω) so that (by Corollary 1 with a = 1) γ ∈ AW

(
Bn). Let F be the foliation of V = Bn \ {0} whose leaf

space is
V/F =

{
S2n−1(0, 1− t

)
: 0 < t < 1

}
.

Here S2n−1(z, r
)
= ∂ Br

(
z
)

is the sphere of radius r > 0 and center z ∈ Cn. If Lε = S2n−1(0, 1− ε
)
,

0 < ε < 1, then
Φε : ∂Bn → Lε , Φε(ζ) = (1− ε) ζ,

is a C∞ diffeomorphism. Let us consider the function

u(ζ) =
1−

∣∣ζ∣∣2∣∣ζ − ζ0
∣∣2 , ζ ∈ Bn .

Then
lim

ε→0+

∫
∂Bn

∣∣u(Φε(z)
)∣∣2 γ

(
Φε(z)

)
d σ(z) = 0
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so u = 0 on ∂Bn with respect to the data
(
γ, F ,

{
Φε

}
ε>0

)
chosen above. On the other hand, if n = 1 and

ζ0 = 1 then u = Re(h) with h(ζ) = (1 + ζ)/(1− ζ). Here h is holomorphic, hence u is a nonzero harmonic
function on B1 having zero boundary data in the L2 sense adopted by C. Cimmino, accounting for non-uniqueness
in the Dirichlet problem. We emphasize, together with C. Cimmino (cf. op. cit.), that non-uniqueness is
produced by the vanishing of the weight on a portion of the boundary (a point, in the present example). To be
entirely fair to the reader, the phenomenon is not governed by the weight alone. Indeed, let γ ≡ 1 and let F be
the foliation of Bn whose leaf space is

Bn/F =
{

Lt : 0 < t < 1
}

, Lt = S2n−1(tζ0 , 1− t
)
,

and let Φt : ∂Bn \ {ζ0} → Lt be defined by{
Φt(ζ)

}
= `ζ ∩ Lt , ζ ∈ ∂Bn \ {ζ0} ,

`ζ =
{
(1− s) ζ0 + s ζ : 0 < s < 1

}
.

The intersection point Φt(ζ) corresponds to the value of the parameter s = (1− t)/|ζ − ζ0|. Once again,
limt→0+

∫
∂Bn

∣∣u ◦Φt
∣∣2 d σ = 0 (and if n = 1 and ζ0 = 1 then u is a nonzero harmonic function on B1).

Next we give an example due to F. Forelli and W. Rudin (cf. [20]). The fact that their construction
fits into the the theory of weighted Bergman kernels was observed by E. Ligocka (cf. [19]).

Example 3 (Forelli and Rudin’s admissible weight). Let s = σ+ i t ∈ C be a complex number with σ > −1
and t ∈ R.

Let us set
γs(ζ) =

(
1−

∣∣ζ∣∣2)s , ζ ∈ Bn . (9)

Then γs ∈ AW
(
Bn) and the corresponding γs-Bergman kernel is

Kγs

(
ζ, z
)
=

(
n + s

n

)
(
1− ζ · z

)n+1+s , ζ, z ∈ Bn , (10)

(
n + s

n

)
=

Γ
(
n + s + 1

)
Γ
(
n + 1

)
Γ
(
s + 1

) .

The complex powers in (9) and (10) are understood as the ordinary principal branches. L2H
(
Bn , γs

)
is a

RKH space with the inner product

(
f , g

)
γs

=
∫
Bn

f (ζ) g(ζ)
(
1− |ζ|2

)s d µ(ζ).

We close the section with an example building on the work by M.M. Djrbashian and A.H.
Karapetyan (cf. [36]), and due to E. Barletta et al. [28].

Example 4 (Djrbashian kernels). Let Ωn =
{

ζ ∈ Cn : Im
(
ζ1
)
>
∣∣ζ ′∣∣} be the Siegel domain. Here we set

ζ ′ =
(
ζ2 , · · · , ζn

)
for every ζ =

(
ζ1 , · · · , ζn

)
∈ Cn. For every α > −1 let γα ∈ W

(
Ωn
)

be the weights
given by

γα

(
ζ
)
=
[
Im
(
ζ1
)
−
∣∣ζ ′∣∣2]α , ζ ∈ Ωn .
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The spaces L2H
(
Ωn , γα

)
coincide with the function spaces H2

α

(
Ωn
)

introduced in [36]. By a result
in [28] γα ∈ AW

(
Ωn
)

and the corresponding γα-Bergman kernel is

Kγα

(
ζ, z
)
=

2n−1+αcn,α[
i
(
z1 − ζ1

)
− 2 〈ζ ′ , z′〉

]n+1+α
,

cn,α = π−n (α + 1
)
· · ·
(
α + n

)
.

3. Mathematical Analysis of the Function γ 7→ Kγ

3.1. Banach Manifold of Weights

Let HA(Ω) denote the space of all functions F : Ω×Ω → C such that F is holomorphic in the
first n variables, and anti-holomorphic in the last n-variables. Then HA(Ω) is a Fréchet space with the
locally convex topology determined by the family of semi-norms{∥∥ · ∥∥A : A ⊂ Ω, A compact

}
,∥∥F

∥∥
A = sup

(ζ,z)∈A×A

∣∣F(ζ, z
)∣∣ , F ∈ HA(Ω).

The regularity properties (continuity, differentiability, analyticity) of the map

γ ∈ AW(Ω) 7−→ Kγ ∈ HA(Ω)

were studied by Z. Pasternak-Winiarski, cf. [2]. To make sense of those regularity properties one needs
to organize W(Ω) as a manifold of sorts. We shall also need the following concept of the analyticity of
functions F : U ⊂ X→ Y, where X, Y are respectively a normed space, with the norm ‖ · ‖X, and an
arbitrary topological vector space, and U ⊂ X is an open subset. A function F : U → Y is analytic on
U if for any x ∈ U there is a ball B ⊂ X of center ζ with x + B ⊂ U, and there is a sequence

{
am
}

m∈N
of continuous multi-linear (m-linear) maps am : Xm → Y such that

F(x + h) = F(x) +
∞

∑
m=1

am
(
h, · · · , h

)
and the series ∑m≥1 am

(
h, · · · , h

)
converges uniformly on B. Cf. e.g., [37], p. 14 (where however

X = Rn and Y = Rm).
Let L∞(Ω) be the Banach algebra of all real-valued essentially bounded functions g : Ω→ R with

the norm ∥∥g
∥∥

∞ = ess supx∈Ω

∣∣g(z)∣∣ =
= inf

{
K > 0 :

∣∣g(z)∣∣ ≤ K for a.e. z ∈ Ω
}

, g ∈ L∞(Ω).

We also set
ess infz∈Ω g(z) = sup

{
L ∈ R : L ≤ g(z) for a.e. z ∈ Ω

}
,

U(Ω) =
{

g ∈ L∞(Ω) : ess infz∈Ω g(z) > 0
}

,

so that U(Ω) is an open subset of L∞(Ω). For every γ ∈W(Ω) let us consider the map

Φγ : U(Ω)→W(Ω),[
Φγ(g)

]
(z) = g(z) γ(z), g ∈ U(Ω), z ∈ Ω.

Let us set U(Ω, γ) = Φγ

[
U(Ω)

]
. The maps Φγ enjoy the following properties (cf. [2], p. 116):

(i) Φγ : U(Ω)→W(Ω) is injective.
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(ii) For every ϕ ∈W(Ω)

U(Ω, ϕ) ∩U(Ω, γ) 6= ∅ =⇒ U(Ω, ϕ) = U(Ω, γ).

(iii) There is a topology τ on W(Ω) such that the family B =
{

Φγ(X) : γ ∈W(Ω), X ⊂ U(Ω), X open
}

is a base for τ.
(iv) Let Φ−1

γ : U(Ω, γ) → U(Ω) be the inverse of Φγ : U(Ω) → U(Ω, γ). Then
{

Φ−1
γ : γ ∈ W(Ω)

}
is an analytic atlas on

(
W(Ω), τ

)
, organizing it as a Banach manifold.

(v) If ϕ1 , ϕ2 ∈ U(Ω, γ) then L2(Ω, ϕ1) and L2(Ω, ϕ2) coincide as vector spaces and the norms
∥∥ · ∥∥

ϕ1

and
∥∥ · ∥∥

ϕ2
are equivalent.

(vi) If γ ∈ AW(Ω) then U(Ω, γ) ⊂ AW(Ω). In particular AW(Ω) is an open subset of
(
W(Ω), τ

)
.

3.2. Analyticity of the Vector Valued Function γ 7−→ Kγ

Let γ ∈ AW(Ω) and g ∈ U(Ω) and h1 , · · · , hk ∈ L∞(Ω). Let Kgγ

(
ζ, z
)

be the gγ-Bergman
kernel and let us consider the function[

K(k)
g , γ

(
h1 , · · · , hk

)](
ζ, z
)
=

=
∫

Ω
Kgγ

(
w1 , z

)
h1
(
w1
)

γ
(
w1
)

d µ(w1)·

·
∫

Ω
Kgγ

(
w2 , w1

)
h2
(
w2
)

γ
(
w2
)

d µ(w2)·
...∫

Ω
Kgγ

(
wk , wk−1

)
hk
(
wk
)

Kgγ

(
ζ , wk

)
γ
(
wk
)

d µ(wk)

for any ζ, z ∈ Ω. Additionally, we set

K(k)
g , γ h(k) = K(k)

g , γ

(
h1 , · · · , hk

)
, h1 = · · · = hk = h.

By a result of Z. Pasternak-Winiarski (cf. Lemma 5.1 in [2], p. 129–130)

K(k)
g , γ

(
h1 , · · · , hk

)
∈ HA(Ω),

[
K(k)

g , γ h(k)
](

z, ζ
)
=
[
K(k)

g , γ h(k)
](

ζ, z
)

for all ζ, z ∈ Ω. Clearly
K(k)

g , γ : L∞(Ω)k → HA(Ω) (11)

is a k-linear map. Let A ⊂ Ω be a compact subset. Again by a result in [2], p. 131, there is a constant
CA > 0 such that ∣∣[K(k)

g , γ

(
h1 , · · · , hk

)](
ζ, z
)∣∣ ≤ C2

A
i(g)k

∥∥h1
∥∥

∞ · · ·
∥∥hk
∥∥

∞ ,

i(g) = ess infz∈Ω g(z),

that is, K(k)
g , γ is bounded with respect to the semi-norm

∥∥ · ∥∥A on HA(Ω). This means that (11) is
bounded for any γ ∈ AW(Ω) and g ∈ U(Ω) and k ∈ N. Moreover, the map AW(Ω) 3 γ 7−→ Kγ ∈
HA(Ω) is analytic. These are the contents of Theorem 5.1 in [2], p. 131, where the explicit development

K(g+h)γ = Kgγ +
∞

∑
k=1

(−1)k K(k)
g , γ h(k) , (12)
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γ ∈ AW(Ω), g ∈ U(Ω), h ∈ Bg ,

Bg = Bi(g)/2
(
0
)
=

{
h ∈ L∞(Ω) : ‖h‖∞ <

i(g)
2

}
,

is also provided. The series on the right hand side of (12) converges uniformly on Bg with respect to
the semi-norm

∥∥ · ∥∥A on HA(Ω), for any compact subset A ⊂ Ω. Consequently, the k-th derivative of
the map U(Ω) 3 g 7−→ Kgγ ∈ HA(Ω) is

D(k)
g Kgγ

(
h1 , · · · , hk

)
= (−1)k ∑

σ∈Σk

K(k)
g , γ

(
hσ(1) , · · · , hσ(k)

)
where Σk is the permutation group of order k!. Cf. Corollary 5.1 in [2], p. 134.

By a result of N. Kerzman (cf. [13]), if Ω ⊂ Cn is a smoothly bounded strictly pseudoconvex
domain then its (ordinary) Bergman kernel K1

(
ζ, z
)

is smooth up to the boundary, that is, K1 ∈ C∞(Ω×
Ω \ ∆

)
where ∆ ⊂ ∂Ω× ∂Ω is the diagonal of the boundary. We conjecture that Kγ ∈ C∞(Ω×Ω \ ∆

)
for any weight γ ∈ AW(Ω) for which the solution to the ∂-Neumann problem with weights is available,
cf. J.J. Kohn [38] and T-V. Khanh [39].

3.3. Weighted Ramadanov Theorem

Let Ω ⊂ Cn be a bounded domain. By a classical result due to I. Ramadanov (cf. [40]), for any
increasing sequence of domains

Ων ⊂ Ω, Ων ⊂⊂ Ων+1 , ν ≥ 1, Ω =
∞⋃

ν=1

Ων ,

one has KΩν
→ KΩ as ν → ∞, uniformly on compact subsets of Ω×Ω. Cf. also S. Krantz [32] for a

qualitatively new proof of Ramadanov’s theorem and further generalizations.
The extension of Ramadanov’s theorem to weighted Bergman kernels was obtained by

Z. Pasternak-Winiarski and P.M. Wójcicki [41]. Precisely, let γ ∈ AW(Ω) and γν ∈ AW(Ων),
where each γν is thought of as extended by γ to the whole of Ω. We also assume that

(i) ∀ ν ∈ N, ∃ N = N(ν) ∈ N, ∀ µ ≥ N(ν), ∀ z ∈ Ων :

Ων ⊂ Ωµ , γν(z) ≤ γµ(z) ≤ γ(z),

(ii) γν(z)→ γ(z) as ν→ ∞, for a.e. z ∈ Ω.

Under these assumptions, the result in [42] is that

lim
ν→∞

Kγν = Kγ (13)

locally uniformly on Ω ×Ω. Cf. Theorem 4 in [43], pp. 4–5. A direct proof of (13), dissimilar to
that in [32], is provided in [43]. It should be observed that (13) may also be proved by applying
(under an appropriate monotonicity assumption on the sequence of weights) the classical (unweighted)
Ramadanov theorem to the Bergman kernel KΩm of the domain

Ωm =
{(

z, ξ
)
∈ Ω×Cm : |ξ|2m < γ(z)

}
(14)

merely because Kγ and KΩm are quantitively related by

Kγ

(
z, w

)
=

πm

m!
KΩm

(
(z, 0), (w, 0)

)
(15)
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for any z, w ∈ Ω. The domain Ωm is referred to by us as a suspension of Ω, by following the
terminology introduced by I. Naruki (cf. [23]). The construction (14) and the result (15) are due to
F. Forelli and W. Rudin (cf. [20]) and E. Ligocka (cf. [19]). The paper [20] was published in 1974,
while I. Naruki’s work [23] saw the light of print in 1976. Nevertheless, C. Fefferman acknowledges
(in his work [15], introducing the celebrated Fefferman metric) [23] as a source of inspiration for his
construction of the potential

U(ζ, z) =
∣∣ζ∣∣2/(n+1) K(z, z)−1/(n+1)

determining a semi-Kählerian metric

G =
n+1

∑
A,B=1

∂2U
∂zA ∂zB

dzA � dzB

on Ω×
(
C \ {0}

)
. If j : Ω× S1 → Ω×

(
C \ {0}

)
is the inclusion then j∗G is a degenerate (0, 2)-tensor

field on Ω× S1, yet there is a Lorentzian metric F on ∂Ω× S1 (the Fefferman metric of Ω) such that(
j∗G

)
(z,ζ) tends to F(z0 ,ζ0)

as Ω× S1 3 (z, ζ)→ (z0 , ζ0) ∈ ∂Ω× S1. The construction only works for
smoothly bounded strictly pseudoconvex domains Ω ⊂ Cn (cf. again [15]). Successively the Fefferman
metric F ∈ Lor

(
∂Ω× S1) was intensely studied (cf. [44], p. 109–156, for its main properties as known

up to the year 2006) and appeared to be a tool of first magnitude (e.g., L. Koch used (cf. [45]) the
description of Chern–Moser chains on ∂Ω as projections by ∂Ω× S1 → ∂Ω of null geodesics of F to give
a much simplified proof of the result by H. Jacobowitz (cf. [46]) that two close-by points on ∂Ω may be
joined by a chain). Therefore the “suspension” of a variable (leading to the potential U(ζ, z) and then
to F) turned out to be yet another brilliant idea of C. Fefferman, an eminent scholar of twentieth century
mathematics, that he claims to have taken from [23], as mentioned above. “Suspended” domains of
the sort in (14) will be encountered again in Section 5 of the present survey (and used to relate the∣∣ϕ∣∣m-Bergman kernel of Ω = {ϕ < 0} to the ordinary Bergman kernel of Ωm).

We close this section by reporting briefly on a generalization of the Forelli–Rudin–Ligocka–Naruki
suspension of a variable method, due to M. Englis and G. Zhang (cf. [47]) which looks very promising
in terms of further (Fefferman-like) differential geometric applications. Let Ω ⊂ Cn be a domain
and γ ∈ W(Ω) such that γν ∈ AW(Ω) for every ν ∈ N. Let F = G/H be an irreducible bounded
symmetric domain and let us set

ΩF =

{
(z, ξ) ∈ Ω×Cd :

1√
γ(z)

ξ ∈ F

}
.

The space P of holomorphic polynomials on F decomposes multiplicity-free with respect to the
H-action as

P =
⊕

m=partition
Pm .

Let Km be the reproducing kernel of the subspace Pm with respect to the Fischer inner product.
Then the Bergman kernel of the domain ΩF is given by the series

KΩF(
z, ξ, ζ, η

)
=

1
vol(F) ∑

m

(
p
)

m Km
(
ξ, η

)
Kγd+|m|

(
z, ζ). (16)

The formula (16) may be used to recover the results by F. Forelli and W. Rudin [20], E. Ligocka [19],
and G. Roos [48] (the last quoted paper extends at its turn a method by H.P. Boas and S. Fu and
E.J. Straube [49], which will be met again in this survey in connection with the work by Z. Huo [50]).
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4. Reproducing Kernels and Quantization of States

4.1. Hilbert Spaces of L2 Holomorphic Sections

Let M be a complex n-dimensional manifold. Let E be a holomorphic line bundle over M,
with projection π : E→ M. Let us fix a local trivialization atlas

{(
Uα , Φα

)}
α∈J of E

Φα : π−1(Uα)→ Uα ×C, α ∈ J,

such that each Uα is the domain of a local complex coordinate system
(
Uα , z1

α , · · · , zn
α

)
on M. Let ∂E :

C∞(E) → C∞(Λ0,1(M) ⊗ E) be the first-order differential operator associated to the holomorphic
structure of E. If z ∈ M and α ∈ J is an index such that z ∈ Uα, then(

∂Es
)

z
=
(
∂ fα ⊗ sα

)
z ,

s|Uα
= fα sα , fα ∈ C∞(Uα , C

)
, sα(ζ) = Φ−1

α

(
ζ , 1

)
, ζ ∈ Uα .

In particular sα is a local holomorphic section in E—that is, ∂Esα = 0. Next, Λn,0(M)⊗ E→ M is
a holomorphic line bundle. Let H be a Hermitian bundle metric on E, and given ω ∈ O

(
Λn,0(M)⊗ E

)
let H∗

(
ω, ω

)
be the (globally defined) complex-valued differential form of type (n, n)

H∗
(
ω, ω

)∣∣
Uα

=
∣∣Ψα

∣∣2 γα dz1
α ∧ · · · ∧ dzn

α ∧ dz1
α ∧ · · · ∧ dzn

α ,

ω|Uα
= Ψα sα ⊗ dz1

α ∧ · · · ∧ dzn
α ,

Ψα ∈ O
(
Uα

)
, γα = H

(
sα , sα

)
.

LetM be the space

M =

{
ω ∈ O

(
Λn,0(M)⊗ E

)
:
∫

M
H∗
(
ω, ω

)
< ∞

}
.

From a physical viewpoint, one thinks of M as the classical phase space (the phase space of a
classical physical system). The complex projective space CP

(
M
)

is then the quantum phase space and
the quantization of classical states amounts to building an embedding K : M→ CP

(
M
)
. By a result

of K. Gawȩdzki (cf. [26]),M is a complex Hilbert space with the inner product

〈ω, ϕ〉 = in2
∫

M
H∗
(
ω, ϕ

)
,

H∗
(
ω, ϕ

)∣∣
Uα

= Ψα uα γα dz1
α ∧ · · · ∧ dzn

α ∧ dz1
α ∧ · · · ∧ dzn

α ,

ϕ|Uα
= uα sα ⊗ dz1

α ∧ · · · ∧ dzn
α , uα ∈ O

(
Uα

)
.

To show how reproducing kernels occur in ordinary quantum mechanics we follow the work by
A. Odzijewicz (cf. [3]), where one works under the following additional requirement:

∀ z, ζ ∈ M, ∃ ω, ϕ ∈ M : det

[
Ψα(z) Ψβ(ζ)

uα(z) uβ(ζ)

]
6= 0 (17)

whenever α, β ∈ J are chosen such that z ∈ Uα and ζ ∈ Uβ. According to [3], pp. 579–580,
requirement (17) guarantees thatM is “sufficiently ample”. Certainly (17) is a global requirement (it
does not depend upon the local representation of the E-valued (n, 0)-forms ω and ϕ about the points z
and ζ).
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Let z ∈ M and let α ∈ J such that z ∈ Uα. We may then consider the evaluation functional

δα
z :M→ C, δα

z
(
ω
)
= Ψα(z), (18)

for any ω ∈ M locally represented as ω|Uα
= Ψα sα dζ1

α ∧ · · · ∧ dζn
α . One has:

Lemma 1 (K. Gawȩdzki, [26]).
∣∣Ψα(z)

∣∣ ≤ Cα

∥∥ω
∥∥.

Lemma 1 yields the continuity of the map (18), so Riesz theorem applies. Hence, there is kz, α ∈ M
such that

δα
z
(
ω
)
= 〈ω , kz, α〉 = in2

∫
M

H∗
(
ω , kz, α

)
(19)

and
kz, α|Uβ

= Kαβ

(
z, ·
)

sβ ⊗ dζ1
β ∧ · · · ∧ dζn

β , (20)

H∗
(
ω , kz, α

)∣∣
Uβ

= Kαβ

(
z, ·
)

Ψβ γβ dζ1
β ∧ · · · ∧ dζn

β ∧ dζ
1
β ∧ · · · ∧ dζ

n
β .

As we shall see in a moment, the functions Kαβ

(
z, ζ
)

defined by (20) are reproducing kernels and
their properties will be investigated shortly. Note first that:

(i) For every z ∈ M and every α ∈ J such that z ∈ Uα, the holomorphic section kz, α is not the
zero section. Indeed, if kz, α = 0 then (by (19)) ω(z) = 0 for every ω ∈ M. Moreover, according to
Odzijewicz’s ampleness assumption (17), for every ζ ∈ M we may consider ω, ϕ ∈ M such that

det

[
Ψα(z) Ψβ(ζ)

uα(z) uβ(ζ)

]
6= 0

provided that ζ ∈ Uβ, in contradiction with Ψα(z) = 0 and uα(z) = 0.
As another important property of kz, α, leading to quantization of classical states, one has (ii)

kz, β = gαβ(z)
∂ζα

∂ζβ
(z) kz, α (21)

for every z ∈ Uα ∩Uβ, where

∂ζα

∂ζβ
(z) = det

[
∂ζ

j
α

∂ζk
β

(z)

]
.

Indeed, (21) follows from (19) and

Ψβ = gαβ
∂ζα

∂ζβ
Ψα .

At this point one may consider the map

K : M→ CP
(
M
)
, K

(
z
)
=
[
kz, α

]
, z ∈ M,

provided that z ∈ Uα. Here
[
ω
]
=
{

λ ω : λ ∈ C \ {0}
}
∈ CP

(
M
)

is the (projective) ray represented
by ω ∈ M\ {0}. The physical meaning of CP

(
M
)

is that in quantum theory the wave functions ω ∈
M and λ ω ∈ M (or Ψα and λ Ψα with respect to the local description ω|Uα

= Ψα sα ⊗ dz1
α ∧ · · · ∧ dzn

α)
represent the same physical state for any λ ∈ C \ {0}. A normalized wave function, that is, ω ∈ M
with 〈ω , ω〉 = 1, may be chosen in a ray, yet the normalization procedure determines ω only up to a
factor λ = eiφ ∈ U(1). Here φ is referred to as the global phase. The phase of a ray is not observable.

As a consequence of (21), the definition of K(z) does not depend upon the choice of α ∈ J with
z ∈ Uα.
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Formula (19) for ω = kz, α yields
∥∥kz, α

∥∥2
= Kαα(z, z) hence (iii)

Kαα(z, z) > 0. (22)

Property (22) is referred to as positivity (of the kernel Kαα(z, ζ)). Again, by (19) for ω = kζ, β yields

〈kζ, β , kz, α〉 = Kβα

(
ζ, z
)

,

kζ, β

∣∣∣
Uα

= Kβα

(
ζ, ·
)

sα ⊗ dζ1
α ∧ · · · ∧ dζn

α ,

or (iv)
Kβα

(
ζ, z
)
= 〈kz, α , kζ, β〉 (23)

for all z ∈ Uα and ζ ∈ Uβ. One refers to (23) as the reproducing property. Next let us start by restricting

kz, β = gαβ(z)
∂ζα

∂ζβ
(z) kz, α , z ∈ Uα ∩Uβ ,

to Uγ ∩Uδ. One obtains
Kβγ

(
z, ·
)

sγ ⊗ dζ1
γ ∧ · · · ∧ dζn

γ =

= gαβ(z)
∂ζα

∂ζβ
(z) Kαδ

(
z, ·
)

sδ ⊗ dζ1
δ ∧ · · · ∧ dζn

δ

or (v)

Kβγ

(
z, ζ
)
= gαβ(z)

∂ζα

∂ζβ
(z) gδγ(ζ)

∂ζδ

∂ζγ
(ζ) Kαδ

(
z, ζ
)

(24)

for any ζ ∈ Uγ ∩Uδ. Formula (24) is referred to as the transformation law (of the kernel Kαβ

(
z, ζ
)
).

Moreover, (vi) there is a globally defined (0, 2) tensor field g on M such that

g|Uα
=

n

∑
j,k=1

∂2 log Kαα(z, z)

∂zj
α ∂zk

α

dzj
α � dzk

α (25)

for every α ∈ J. By a result of A. Odzijewicz (cf. Proposition 2 in [9], p. 582) the following statements
are equivalent:

(a) K : M→ CP
(
M
)

is one-to-one.
(b) For all z1 , z2 ∈ M there are ζ1 , ζ2 ∈ M such that

det

 Kγα

(
ζ1 , z1

)
Kγβ

(
ζ1 , z2

)
Kδα

(
ζ2 , z1

)
Kδβ

(
ζ2 , z2

)
 6= 0 (26)

provided that ζ1 ∈ Uγ, ζ2 ∈ Uδ, z1 ∈ Uα and z2 ∈ Uβ.
(c) The ampleness condition (18) is fulfilled.

The fundamental result obtained in [9] is as follows.

Theorem 2. The following statements are equivalent:

(1) The map K : M→ CP
(
M
)

is a holomorphic embedding.
(2) The condition (26) is fulfilled and the (0, 2)-tensor field g given by (25) is positive definite.
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Cf. Proposition 3 in [9], p. 583. By Theorem 2 if K : M→ CP
(
M
)

is a holomorphic embedding
then g is a Riemannian metric on M, referred to as the Bergman metric. Of course, metrics derived
from a potential, such as the metric g locally given by (25), are Kählerian. The proof of Theorem 2
is an easy adaptation of the proof in [51]. At the time when S. Kobayashi’s paper [51] was written,
locally conformal Kähler (l.c.K.) metrics were unknown to the community devoted to the study
of complex analysis and geometry. To set matters into a correct historical perspective, we should
mention that l.c.K. metrics were introduced by P. Libermann (cf. [52]) in 1954–1955 (while [51] was
published in 1959). Additionally, the first example of a Hermitian metric (on a compact complex
manifold) which is l.c.K. but not Kähler was discovered in 1954 by W.M. Boothby (cf. [53]) yet
the example was not recognized as such until 1976, with the publication of I. Vaisman’s work [54].
The main obstacle for the development of a theory of l.c.K. manifolds was perhaps T. Aubin’s “result”
(cf. [55]) that any compact l.c.K. manifold should be Kählerian. T. Aubin’s statement was eventually
proven wrong (cf. [54]) by exhibiting Boothby’s example (cf. [53]): the complex Hopf manifold
Hn(λ) =

(
Cn \ {0}

)/
∆λ ≈ S2n−1× S1, 0 <

∣∣λ∣∣ < 1 (cf. e.g., [56], Vol. II, p. 137) carries the l.c.K. metric∣∣z∣∣−2
∑n

j=1 dzj � dzj yet admits no globally defined Kähler metric for topological reasons (its first
Betti number is b1

[
Hn(λ)

]
= 1, while the odd-order Betti numbers b2p+1(M) of a compact complex

manifold M should be even—cf. e.g., [57], p. 178). Therefore, the quantization procedure devised
by A. Odzijewicz (cf. [9]) will not work when M is a complex manifold admitting no Kählerian
metric. Are there any mechanical systems whose classical phase space is a complex manifold of that
sort (i.e., not satisfying the topological constraints of a Kählerian manifold)? The problem of the
quantization of classical states when the phase space is a non-Kähler l.c.K. manifold is open.

Example 5 (Classical phase space is a domain Ω ⊂ Cn). Let M = Ω be a domain in Cn and let E→ Ω be
the trivial complex line bundle, that is, E = Ω×C, endowed with the Hermitian bundle metric H. Let s ∈ O(E)
be given by s(z) =

(
z, 1
)

for any z ∈ Ω, and let us set γ = H
(
s, s
)

so that γ ∈W(Ω). Then, each ω ∈ M
may be represented as ω = Ψ s⊗ dζ1 ∧ · · · dζn for some Ψ ∈ O(Ω) and

dζ j ∧ dζ
j
= −2i dxj ∧ dyj , ζ j = xj + i yj ,

〈ω, ω〉 = in2
∫

Ω
H∗(ω, ω) =

= in2
∫

Ω

∣∣Ψ∣∣2 γ dζ1 ∧ · · · ∧ dζn ∧ dζ
1 ∧ · · · ∧ dζ

n
= 2n ∥∥Ψ

∥∥2
γ

so that Ψ ∈ L2H(Ω, γ) and the map

M→ L2H(Ω, γ), ω 7→ 2−n/2 Ψ ,

is an isometry. Next (by K. Gawȩdzki’s Lemma 1) the weight γ = H(s, s) is admissible, that is, γ ∈ AW(Ω) and

Kαα

(
z, ζ
)
= 2−n Kγ

(
z, ζ
)

for any z, ζ ∈ Ω. Here, to establish a connection with the previously adopted notation, we let J = {α} be the
index set consisting of but one symbol α and Φα = 1E.

Example 6 (Segal–Bargmann space). Let α > 0 and let γα ∈ W
(
Cn) be given by γα(z) = exp

(
−

α |z|2
)

for any z ∈ Cn. Then, L2H
(
Cn , γα

)
is the Segal–Bargmann–Fock space of quantum mechanics

(with parameter α), cf. G.B. Folland [58]. This is an RKH space so γα ∈ AW
(
Cn) and the corresponding

γα-Bergman kernel is shown to be

Kγα

(
z, ζ
)
=
( α

π

)n
exp

(
z · ζ

)
, z, ζ ∈ Cn .
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Cf. also V. Bargmann [59]. A unit vector in L2H(Cn , γα) is thought of as the wave function of a quantum
particle moving in configuration space Rn (while Cn is the classical phase space).

If 1 ≤ p < ∞, let Lp(Cn, γα

)
consist of all measurable functions such that | f |p ∈ L1(Cn, γα dµ

)
,

and let us set
Lp H(Cn, γα

)
= O

(
Cn) ∩ Lp(Cn, γα

)
.

Lp(Cn, γα

)
and Lp H(Cn, γα

)
are Banach spaces when equipped with norm ‖ f ‖p, γα =[ ∫

Cn

∣∣ f (ζ)∣∣p γα(ζ) dµ(ζ)
]1/p. The orthogonal projection

Pγα f (z) =
∫
Cn

f (ζ)Kγα(z, ζ) γα(ζ) d µ(ζ)

is (by construction) a bounded operator from L2(Cn, γα

)
, yet may be unbounded as an operator from Lp(Cn, γα

)
with p 6= 2.

By a result of S. Janson and J. Peetre and R. Rochberg (cf. [60]) if α ∈ R, β > 0, and 1 ≤ p < ∞
satisfy β p > α, then Pγβ

is bounded as an operator from Lp(Cn, γα

)
into Lp(Cn, γσ

)
where 1/σ = 4

(
βp−

α
)/(

p2β2).
H. Bommier-Hato, M. Englis, and El-H. Youssfi considered (cf. [61]) the family of weights γα, m ∈W(Cn),

α > 0, m > 0, given by γα, m(z) = exp
(
− α |z|2m) and described the relationship among α > 0, β > 0, σ > 0,

and 1 ≤ p, q < ∞ such that the projection Pγβ,m be a bounded operator from L2(Cn, γα,m) into Lq(Cn, γσ,m)

(thus generalizing the result by S. Janson et al., cf. op. cit.).
Going back to the (now) classical situation contemplated by I.E. Segal (cf. [62–64]) and V. Bargmann

(cf. [59,65,66]) we recall the Segal–Bargmann transform (the coherent state transform) A from L2(Rn)
into O

(
Cn)

(A f )(z) =
∫
Rn

A(z, x) f (x) d x,

A(z, x) =
ρ1(z− x)√

ρ1(x)
, f ∈ L2(Rn) , z ∈ Cn ,

where

ρt(x) = (2πt)−n/2 exp
(
−|x|

2

2t

)
is the standard heat kernel on Rn and ρt(z) denotes the analytic continuation of ρt to Cn. The main result by
I.E. Segal and V. Bargmann is (cf. op. cit.) that A is an isometric isomorphism of L2(Rn) onto the Hilbert space
L2H

(
Cn, π−n γ1

)
. A generalization of this situation was taken up by B.C. Hall (cf. [67]), who replaced Rn by

a compact, connected Lie group K and Cn by the complexification G of K. By a result in [67] the heat kernel ρt

has a unique analytic continuation from K to G, and one may set

At
(

g, x
)
=

ρt
(
x−1 g

)
ρt(x)

, x ∈ K, g ∈ G,

(At f )(g) =
∫

K
At(g, x) f (x) d x, f ∈ L2(K), g ∈ G.

As ρt
(

x−1 g
)

is (by construction) a holomorphic function of g, At maps L2(K) into O(G) and actually
(by Theorem 1 in [67], p. 105) for each t > 0 the coherent state transform At is an isometric isomorphism of
L2(K) onto L2H

(
G, µt

)
, where µt (the analog to the Gaussian measure on Cn) is the fundamental solution at

the identity of the following equation on G
du
dt

=
1
4

∆Gu .

Additionally, if {Xi , JXi : 1 ≤ i ≤ n} is a basis of the Lie algebra g of G, then ∆G ≡ ∑n
i=1
(
X2

i + (JXi)
2)

(the Laplace–Beltrami operator associated to the left invariant Riemannian metric on G determined by {Xi , JXi}).
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Cf. E. Nelson [68] for the construction and basic properties of µt. By Theorem 5 in [67], p. 127, the µt-Bergman
kernel Kµt(g, h) is given by the beautiful formula

Kµt(g, h) =
∫

K

ρt
(
x−1 g

)
ρt
(

x−1 h
)

ρt(x)
d x, g, h ∈ G.

Cf. also S. van Leeuwen [69], S. Barbier [70], and A. Yamamori [71].

4.2. Hermitian Geometry of Complex Line Bundles

Given v, w ∈ Ez with z ∈ M and v 6= 0 let λ = w/v ∈ C be the complex number uniquely
determined by w = λ v. Additionally, if s : M → E and r : M → E are sections with s(z) 6= 0 for
any z ∈ M, then r/s : M → C is the function given by (r/s)(z) = r(z)/s(z). Let ∇ : C∞(E) →
Ω1(E) = C∞(T∗(M)⊗ E

)
be a connection in E as a vector bundle. To every nowhere zero local section

s ∈ C∞(U, E) one associates a map

X(M)→ C∞(U, C), X 7−→ 1
2πi
∇Xs

s
,

that is a vector bundle valued differential 1-form α = α(s) ∈ Ω1(U) such that

∇Xs = 2πi α(X) s

for any X ∈ X(M) and any s ∈ C∞(U, E). If s, r ∈ C∞(U, E) are two nowhere vanishing sections then

α(r) = α(s) +
1

2πi
1
f

d f , f =
r
s
∈ C∞(U,C). (27)

Formula (27) is useful in relating the connection 1-forms αβ = α
(
sβ

)
∈ Ω1(Uβ), β ∈ J, by means

of the transition functions gβγ : Uβ ∩Uγ → C \ {0}, that is,

αγ = αβ +
1

2πi
1

gβγ
d gβγ . (28)

While the holomorphic line bundle E may be reconstructed from the transition functions gβγ ∈
O
(
Uβ ∩Uγ

)
, the connection ∇ may be recovered from the connection 1-forms αβ—that is, given a

family of local 1-forms αβ ∈ Ω1(Uβ), β ∈ J, obeying (28) there is a unique connection ∇ in E such that
α
(
sβ

)
= αβ for any β ∈ J. Profiting from the particular situation at hand (that of complex line bundles)

a beautiful explicit construction of ∇Xs is available; that is,

(
∇Xs

)∣∣
Uα

=

{
X

(
s

sβ

)
+ 2πi αβ(X)

s
sβ

}
sβ .

Let us set E0 =
⋃

z∈M
(
Ez \ {0z}

)
so that E0 is an open subset of E and the total space of a principal

bundle GL
(
1, C

)
→ E0 → M with structure group GL

(
1, C

)
= C \ {0} (the multiplicative nonzero

complex numbers). Clearly E and the associated bundle of standard fibre C

E0 ×GL(1,C) C =
(

E0 ×C
) /

GL(1,C)

are isomorphic vector bundles. Let us consider the holomorphic (1, 0)-form

1
2πi

1
z

d z ∈ O
(
C \ {0}

)
. (29)
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Then, (29) is a left invariant differential 1-form on the Lie group GL(1,C). That is,

L∗a

(
1
z

d z
)
=

1
z

d z, a ∈ GL(1,C),

La : GL(1,C)→ GL(1,C), La(λ) = aλ, λ ∈ GL(1,C).

For each v ∈ E0
z let

τv : GL(1,C)→ E0 , τv(λ) = λv, λ ∈ GL(1,C),

be the natural injection, so that τv : GL(1,C)→ E0
z is a C∞ diffeomorphism. Let then βz ∈ Ω1(E0

z
)

be
the 1-form determined by

τ∗v
(

βz
)
=

1
2πi

1
z

dz.

The definition of βz does not depend upon the choice of v ∈ E0
z . To check the statement we

give βz the temporary name βv
z . If w ∈ E0

z is another vector then w = µv for some µ ∈ C \ {0} and
βw

z ∈ Ω1(E0
z
)

is determined by

τ∗w
(

βw
z
)
=

1
2πi

1
z

dz.

Note that τw = τv ◦ Lµ and then for every ζ ∈ C \ {0}(
τ∗w βw

z
)

ζ
=
(

βw
z
)

ζw ◦ (dζ τw) =
(

βw
z
)

ζw ◦ (dµζτv) ◦ (dζ Lµ)

hence (
βw

z
)

ζw ◦ (dµζτv) =

(
1

2πi
1
z

d z
)

ζ

◦ (dµζ L1/µ) =

=

(
1

2πi
1
z

d z
)

µζ

=
(
τ∗v βv

z
)

µζ
=
(

βv
z
)

µζv ◦ (dµζ τv)

and τw(ζ) = ζw = (ζµ)v = τv(µζ) hence βw
z = βv

z . Q.e.d.

Let α ∈ C∞(T∗(E0) ⊗ gl(1,C)
)

= Ω1(E0) be a connection 1-form in the principal bundle
GL(1,C) → E0 → M (where gl(1,C) ≈ C is the Lie algebra of GL(1,C) = C \ {0}). That is,
(i) R∗a α = ad

(
g−1) α for any a ∈ GL(1,R) and (ii) α

(
A∗
)
= A for any left invariant vector field

A ∈ gl(1,C). Cf. e.g., [56], Vol. I. It may be easily shown that axiom (ii) is equivalent to

j∗z α = βz , z ∈ M,

where jz : E0
x ↪→ E0 is the canonical inclusion.

Connection 1-forms may be associated to connections∇ in E as follows. Let E→ M be a complex
line bundle. For every connection ∇ in E there is a unique connection 1-form α ∈ Ω1(E0) such that for
any nowhere zero local section s : U → E0 in the vector bundle E

α(s) = s∗ α . (30)

Vice versa, if α ∈ Ω1(E0) is a connection 1-form then there is a unique connection ∇ in E such
that (30) holds for any section s : U → E0 and any open set U ⊂ M. This accounts for the pingpong
between the theory of connections in vector bundles and the theory of connections in principal bundles
that is so well-described in the classical monograph [56]. However, our presentation here follows [27]
(and the result we just quoted is Proposition 1.5.1 in [27], p. 101). To our knowledge, B. Kostant never
wrote the second part of [27] (despite his promise in the introduction to [27]).



Axioms 2020, 9, 48 19 of 42

Let (E, ∇) be a complex line bundle with connection and let α ∈ Ω1(E0) be the corresponding
connection 1-form. There is a unique closed 2-form Ω ∈ Ω2(M) such that

dα = π∗0 Ω (31)

where π0 : E0 → M is the projection (i.e., π0 = π|E0 ). Cf. Proposition 1.6.1 in [27], p. 103. The 2-form
in (31) is the curvature of (E, α), and we adopt the notation

Ω = curv
(
E, ∇

)
.

We give a few details of the proof in order to give the reader a quantitative glimpse of what Ω
looks like. Toward this end we adopt the following notations. Let N be a C∞ manifold and let

Π1 :
(
C \ {0}

)
× N → C \ {0} , Π2 :

(
C \ {0}

)
× N → N

be the canonical projections of the product manifold
(
C \ {0}

)
× N. To any given C∞ map f : N → E0

we associate the map
σf :

(
C \ {0}

)
× N → E0 , σf

(
λ , x

)
= λ f

(
x
)
,

λ ∈ C \ {0} , x ∈ N.

If α ∈ Ω1(E0) is a connection 1-form then

σ∗f α = Π∗1

(
1

2πi
1
z

d z
)
+ Π∗2 ( f ∗ α) . (32)

Cf. Lemma 1.5.1 in [27], p. 100. Moreover let g : N → E0 be another C∞ map such that
π0 ◦ f = π0 ◦ g (where π0 : E0 → M is the projection). Then, for every x ∈ N the vectors f (x) and
g(x) lie in the same fibre of E0, hence the function

φ =
g
f

: N → C, φ(x) =
g(x)
f (x)

, x ∈ N,

is well defined. By a result in [27] (cf. (1.5.3) in [27], p. 101)

g∗ α = f ∗ α +
1

2πi
1
φ

d φ . (33)

To build Ω ∈ Ω2(M) as in (31) let s : U → E0 be a nowhere zero local section in E and let us
apply Formula (32) with N = U and f = s. That is, the map σs :

(
C \ {0}

)
×U → E0 pulls back the

connection 1-form α ∈ Ω1(E0) to the 1-form

σ∗s α = Π∗1

(
1

2πi
1
z

d z
)
+ Π∗2 (s

∗ α) = (by (30))

= Π∗1

(
1

2πi
1
z

d z
)
+ Π∗2 α(s)

hence (as exterior differentiation commutes with pullback by a C1 map)

σ∗s
(
d α
)
= Π∗2 d α(s). (34)

Moreover, if r : U → E0 is another nonzero section then (by (33) with g = r and f = s and
φ = r/s)

r∗ α = s∗ α +
1

2πi
1
φ

d φ
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or
α(r) = α(s) +

1
2πi

1
φ

d φ

hence (by d
(
φ−1 dφ

)
= 0)

d α(r) = d α(s).

In particular, if sβ(z) = Φ−1
β

(
z, 1
)

for any z ∈ Uβ and any β ∈ J then

d α(sβ) = d α(sγ) on Uβ ∩Uγ.

Hence, there is a unique 2-form Ω ∈ Ω2(M) such that

j∗β Ω = d α(sβ) on Uβ , β ∈ J, (35)

where jβ : Uβ ↪→ M is the inclusion. On the other hand, let us observe that the diagram

(
C \ {0}

)
×Uβ

σsβ−→ E0

Π2 ↓ ↓ π0

Uβ

jβ−→ M

is commutative. Then (by (34))

σ∗sβ

(
d α
)
= Π∗2 d α(sβ) = Π∗2 j∗β Ω =

=
(

jβ ◦Π2
)∗Ω =

(
π0 ◦ σsβ

)∗Ω = σ∗sβ
π∗0 Ω

and σsβ
is injective, hence d α = π∗0 Ω on π−1

0 (Uβ) for every β ∈ J, thus yielding (31). Of course, it is
Formula (35) (giving an explicit local representation of Ω), rather than (31), that sheds light on how Ω
is really built.

4.3. Canonical Hermitian Connection

Let ∇ be a connection in E and α ∈ Ω1(E0) its connection 1-form. A Hermitian bundle metric H
on E is α-invariant if X(H(s, r)) = H(∇Xs, r) + H(s, ∇Xr) for any X ∈ X(M) and any s, r ∈ Ω0(E).
For every pair (E,∇) the following statements are equivalent:

(i) There is an α-invariant Hermitian bundle metric H on E.

(ii) The real differential 1-form 2πi
(
α− α

)
∈ Ω1(E0) is exact.

Cf. Proposition 1.9.1 in [27], p. 109. If this is the case, then H is uniquely determined up to a
positive constant and

2πi
(
α− α

)
= d log

∣∣H∣∣2 (36)

where
∣∣H∣∣2 : E0 → (0,+∞) is the C∞ function given by

∣∣H∣∣2(v) = H(v, v) for any v ∈ E0. Cf. (1.9.2)
in [27], p. 110. Additionally, if H is an α-invariant Hermitian bundle metric on E, then (again by a
result in [27], p. 111) Ω = curv

(
E, ∇

)
∈ Ω2(M) is a real 2-form.

Given a connection ∇ in E and s ∈ Ω0(E) let ∇0,1s denote the restriction of ∇s to C∞(T0,1(M)
)
,

where T1,0(M) → M is the holomorphic tangent bundle (i.e., the portion of T1,0(M) over Uβ is the

span of {∂/∂zj
β : 1 ≤ j ≤ n} for any β ∈ J) and T0,1(M) = T1,0(M). Given a holomorphic line bundle

E with a Hermitian bundle metric H there is a unique connection ∇ in E such that (1) ∇0,1 = ∂E
and (2) H is α-invariant. The result is due to S. Nakano (cf. [72]) and said ∇ is the canonical Hermitian
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connection of (E, H). Cf. also [56], Vol. II, p. 183. For any fixed β ∈ J, one has ∂Esβ = 0, and hence the
canonical Hermitian connection of (E, H) is locally represented as (by (30) and (36))

∇Zsβ =
1

2πi
Z
(

log Hββ

)
sβ , ∇Zsβ = 0,

for any Z ∈ C∞(T1,0(M)
)
, where Hββ = H

(
sβ , sβ

)
= γβ (or Hββ =

∣∣H∣∣2(sβ

)
).

4.4. Liouville Measure

Following A. Odzijewicz’s work [9], we endow (E, H) with the canonical Hermitian connection∇
and assume that Ω = curv(E, ∇) is nondegenerate, so that (M, Ω) is a symplectic manifold. With that
assumption in mind, let us set

Ωα
jk = Ω

(
∂/∂zk

α , ∂/∂zk
α

)
, Ωαα = det

[
Ωα

jk

]
,

so that

Ωββ =

∣∣∣∣∂zβ

∂zα

∣∣∣∣2 Ωαα (37)

on Uα ∩Uβ. The Liouville form is the 2n-form Ωn = Ω ∧ · · · ∧Ω (n terms). Locally on Uα

Ωn = 2n in(n−1) Ωαα dz1
α ∧ · · · ∧ dzn

α ∧ dz1
α ∧ · · · ∧ dzn

α .

There is yet another Hermitian metric H̃ of customary use on E, locally given by

H̃
(
sα , sα

)
z =

(
− i
)n Ωαα(z)

Kαα(z, z)
(38)

for any z ∈ Uα. Here (by the previous nondegeneracy assumption) Ωαα 6= 0 everywhere in Uα and one
tacitly assumes that the right hand side of (38) is > 0 (otherwise one replaces H̃ by −H̃). By (24) for
γ = β, δ = α and ζ = z

Kββ(z, z) =

∣∣∣∣∣ ∂ζα

∂ζβ
(z)

∣∣∣∣∣
2 ∣∣gαβ(z)

∣∣2 Kαα(z, z)

yielding (together with (37))
Kββ(z, z)

Ωαα(z)
=
∣∣gαβ(z)

∣∣2 Kαα(z, z)
Ωαα(z)

so that H̃ is globally defined. Geometric quantization theory commonly takesM to be the space of
square integrable holomorphic sections in E, with respect to the Liouville measure (locally given by)

dµL = (−i)n Ωαα dζ1
α ∧ · · · ∧ dζn

α ∧ dζ
1
α ∧ · · · ∧ dζ

n
α

on Uα. The two approaches may be made to merge by a clever choice of (local) weights of
integration—that is, let us assume (together with A. Odzijewicz, [9], p. 584) that

H̃ = C H (39)

for some constant C > 0, so that the local expression of the Liouville measure becomes

dµL(ζ) = C Kαα(ζ, ζ) γα(ζ) dζ1
α ∧ · · · ∧ dζn

α ∧ dζ
1
α ∧ · · · ∧ dζ

n
α .
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Next, starting from

αβ

(
Z
)
=

1
2πi

Z
(

log γβ

)
, αβ

(
Z
)
= 0, Z ∈ T1,0(M),

j∗β Ω = d sβ , β ∈ J,

one has

Ωβ

jk
= Ω

 ∂

∂zj
β

,
∂

∂zk
β

 =
(
d sβ

) ∂

∂zj
β

,
∂

∂zk
β

 =

= −1
2

∂

∂zk
β

αβ

 ∂

∂zj
β

 = − 1
4πi

∂2 log γβ

∂zj
β ∂z k

β

and Odzijewicz’s structural assumption (39) becomes

det

∂2 log γβ

∂zj
β ∂z k

β

(z)

 = C (4π)n Kββ(z, z) γβ(z) (40)

for any z ∈ Uβ.

4.5. Transition Probability Amplitudes

Let z ∈ M be a classical state and let K(z) =
[
kz, α

]
∈ CP

(
M
)

be the corresponding coherent
state. Given the classical states z ∈ Uα and ζ ∈ Uβ, thought of as identified with the coherent states
K(z) and K(ζ), the transition probability amplitude from z to ζ is

aβα

(
ζ, z
)
=

〈
kz, α∥∥kz, α

∥∥ ,
kζ, β∥∥kζ, β

∥∥
〉

and
∣∣aβα

(
ζ, z
)∣∣2 is the transition probability density. Then

aβα

(
ζ, z
)
=

Kβα

(
ζ, z
)

Kαα(z, z)1/2 Kββ

(
ζ, ζ
)1/2

so that

aδγ

(
ζ, z
)
=

gµδ(ζ)∣∣gµδ(ζ)
∣∣

∂ζµ

∂ζδ
(ζ)∣∣∣∣∂ζµ

∂ζδ
(ζ)

∣∣∣∣
gσγ(z)∣∣gσγ(z)

∣∣
∂ζσ

∂ζγ
(z)∣∣∣∣ ∂ζσ

∂ζγ
(z)
∣∣∣∣ aµσ

(
ζ, z
)
.

That is, under a transformation of local frames aβα

(
ζ, z
)

changes by a phase factor eiφ of
global phase

φ = arg
[

gµδ(ζ) gσγ(z)
∂ζµ

∂ζδ
(ζ)

∂ζσ

∂ζγ
(z)
]

.

In particular
∣∣aδγ

(
ζ, z
)∣∣ = ∣∣aβα

(
ζ, z
)∣∣ so the transition probability density does not depend upon

the choice of local frames, both on E and T1,0(M). Of course, it depends on the states z ∈ Uα

and ζ ∈ Uβ.
The transition probability amplitude from z to ζ with simultaneous transition through w ∈ Uγ is

aγα

(
w, z

)
aβγ

(
ζ, w

)
.
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It does not depend upon the choice of γ ∈ J such that w ∈ Uγ. Let {χα}α∈J be a C∞ partition
of unity subordinated to the open cover {Uα}α∈J , so that Supp

(
χα

)
⊂ Uα and ∑α∈I χα = 1 on M.

We start from (23)

Kβα

(
ζ, z
)
= in2

∑
γ∈J

∫
Uγ

χγ H∗
(
kz, α , kζ, β

)
=

= in2
∑
γ∈J

∫
Uγ

χγ Kγα

(
w, z

)
Kβγ

(
ζ, w

)
Hγγ(w) d w1···n

γ ∧ d w1···n
γ

where we have set
d w1···n

γ = dw1
γ ∧ · · · ∧ dwn

γ , d w1···n
γ = d w1···n

γ .

Then, multiplication by 1/
[
Kαα(z, z)1/2 Kββ(ζ, ζ)1/2] leads to

aβα

(
ζ, z
)
= in2

∑
γ∈J

∫
Uγ

aγα

(
w, z

)
aβγ

(
ζ, w

)
×

× χγ(w) Kγγ

(
w, w

)
Hγγ(w) d w1···n

γ ∧ d w1···n
γ

or (by (39))

aβα

(
ζ, z
)
= in2

∑
γ∈J

∫
Uγ

χγ(w) aγα

(
w, z

)
aβγ

(
ζ, w

)
d µL(w). (41)

4.6. Parallel Translation and Transition Probability Amplitudes

Let (E, ∇) be a complex line bundle with connection. Let I ⊂ R be an interval and let Γ : I → U
be a C1 curve lying in the open set U ⊂ M such that C∞ sections s : U → E0 exist. A map r : I → E is
a section along Γ if r(t) ∈ EΓ(t) for every t ∈ I. If s : U → E0 is an arbitrary nowhere vanishing section
then the function r/(s ◦ Γ) : I → C is well defined—that is,( r

s ◦ Γ

)
(t) =

r(t)
s(Γ(t))

for any t ∈ I. The covariant derivative of r : I → E is the section ∇r : I → E along Γ such that(
∇r

s ◦ Γ

)
(t) =

( r
s ◦ Γ

)′
(t) +

1
2πi

( r
s ◦ Γ

)
(t) α(s)Γ(t) Γ̇(t)

for every section s : U → E0 and any t ∈ I. Here Γ̇(t) = (dΓ/dt)(t). Additionally, if ϕ : I → C is a
smooth function then ϕ′ = dϕ/dt. If r = s ◦ Γ then

(
∇r
)
(t) =

(
∇Γ̇s

)
Γ(t). We exploit these notions to

discuss parallel displacement along a curve in M with respect to the canonical Hermitian connection
∇K on the holomorphic line bundle Λn,0(M)⊗ E→ M endowed with the Hermitian bundle metric

HK(sγ ⊗ dz1···n
γ , sγ ⊗ dz1···n

γ

)
z =

1
Fγγ

,

dz1···n
γ = dz1

γ ∧ · · · ∧ dzn
γ , Fγγ(z) = Kγγ(z, z), z ∈ Uγ , γ ∈ J.

We shall work with the unitary frame σγ = F1/2
γγ sγ⊗ dz1···n

γ so that HK(σγ , σγ

)
= 1. As Λn,0(M)⊗

E is holomorphic, it possesses a ∂ operator

∂Λn,0⊗E : Ωn,0(E)→ C∞(T0,1(M)∗ ⊗Λn,0(M)⊗ E
)



Axioms 2020, 9, 48 24 of 42

such that ∂Λn,0⊗E
(
sγ ⊗ dz1···n

γ

)
= 0. Let αK(σ) ∈ Ω1(U) be defined by

αK(σ)X =
1

2πi
∇K

Xσ

σ
,

X ∈ X(M), σ ∈ Ω0(Λn,0(M)⊗ E
)
.

Then (
∇K)0,1

= ∂Λn,0⊗E (42)

together with that αK(σγ)-invariance of HK yield

αK(σγ

)
Z = − 1

4πi
Z
(
log Fγγ

)
, Z ∈ T1,0(M).

Let Γ : [0, 1] → M be a piecewise C1 curve joining z ∈ Uα and ζ ∈ Uβ, that is, Γ
(
0
)
= z and

Γ
(
1
)
= ζ. We may choose γj ∈ J, 1 ≤ j ≤ N, and a partition τ1 = 0 < τ2 < · · · < τN−1 < 1 = τN

such that
γ1 = α , γN = β , Γj(t) ∈ Uγj ,

Γj(t) = Γ(t), τj ≤ t ≤ τj+1 , 1 ≤ j ≤ N − 1.

To build the parallel displacement operator

PΓ :
(

Λn,0(M)⊗
)

Γ(0)
→
(

Λn,0(M)⊗
)

Γ(1)

one solves the ODE
f ′j (t) + 2πi f j(t) αK(σγj

)
Γ(t) Γ̇(t) = 0, (43)

f j =
rj

σγj ◦ Γ
, rj :

[
τj , τj+1

]
→ Λn,0(M)⊗ E,

with the initial condition

r1(0) = ω0 ∈
(

Λn,0(M)⊗ E
)

z
, rj

(
τj
)
= rj−1

(
τj
)
, 2 ≤ j ≤ N − 1.

The solution to (43) is

f j(t) = Cj exp

{
−2πi

∫ t

τj

αK(σγj

)
Γ(τ) Γ̇(τ) dτ

}

where Cj ∈ C is a constant of integration. Additionally,

α
(
σγj

)
Γ(t)Γ̇(t) =

1
2π

Im
(
∂ log Fγj γj

)
Γ(t)

and of course PΓ
(
ω0
)
= rω0(1) where rω0(t) = rj(t) for any τj ≤ t < τj+1. Next, let us set zj = Γ

(
τj
)
,

1 ≤ j ≤ N. The transition probability amplitude from state z to state ζ with simultaneous transition
through the states z2 , · · · , zN−1 is ∏N−1

j=1 aαj+1 αj

(
zj+1 , zj

)
. If τj = (j− 1)/N, 1 ≤ j ≤ N, then

aβα

(
Γ; ζ, z

)
= lim

N→∞
exp

N−1

∑
j=1

log aγj+1γj

(
zj+1 , zj

)
is the transition probability amplitude along Γ. By a result in [9], p. 585, aβα

(
Γ; ζ, z

)
is the parallel

displacement with respect to ∇K, from z to ζ along Γ.
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Following the scheme proposed in [10], M. Horowski and A. Odzijewicz (cf. [4]) study the Kepler
problem in full detail. According to I.M. Mladenov (cf. [73]) this confirms the power of the theory
developed by A. Odzijewicz over the years (cf. [3,8–10]) and calls for further developments and
applications. Another such application (of the matters in [8], described by us at a certain length in the
present survey) is due to A. Odzijewicz and M. Swietochowski (cf. [12]) and is devoted to the study
of the MIC-Kepler problem, viewed as a reduction of the harmonic oscillator system defined on the
twistor space.

Cf. also D. Beltiţă and J.E. Galé [74], R. Coquereaux and A. Jadczyk [75], M. Englis [76],
V.V. Kisil [77], M.I. Monastyrskii and A.M. Perelomov [78].

4.7. Complex Orbifolds

The problem of building a quantization theory for mechanical systems whose phase space is a
complex orbifold is open. Cf. J. Masamune et al. [79] for the main properties of complex and CR
orbifolds (cf. also E. Barletta et al. [80], p. 201–219). Space-time orbifolds do occur in general relativity
and gravitation theory (cf. V. Balasubramanian et al. [81]). For example, orbifolds O whose local
geometry is that of an anti-de Sitter space-time have been demonstrated by a number of authors
(cf. K. Berndt and D. Lust [82], J. Son [83], E.J. Martinec and W. McElgin [84]) and the (total space of
the) cotangent bundle M = T∗(O) is an orbifold (cf. I. Satake [85]). The development of orbifold theory
has known a period of stagnation due to the lack of an appropriate notion of a “map of orbifolds”,
yet the difficulty seems to have been overcome (cf. Y. Takeuchi [86], M. Yamasaki [87], I. Moderduk and
D.A. Pronk [88], W-M. Chen [89]). Several leading quantized classical systems have complex manifolds
as phase spaces; for example, the space of orbits of the n-dimensional harmonic isotropic oscillator
is CPn−1 (cf. N. Hurt [90]), the phase space of a spin system is CP1, and CP1 × CP1 is the phase
space of orbits corresponding to the negative energy level in the Kepler problem (cf. D.J. Simms [91]).
The role of weighted projective spaces as (compact) orbifolds is exhibited by A.B. Aazami, A.O. Petters,
and J.M. Rabin [92] (cf. also A.B. Azami, C.R. Keeton, and A.O. Peters [93], as well as A.O. Peters and
M.C. Werner [94]).

4.8. Regular Quantization

In the present section we briefly report on works by A. Loi (cf. [95]) and C. Arezzo and A. Loi
(cf. [96,97]) within Kähler geometry, as related to quantization of dynamical systems whose phase
space is a complex manifold.

The story starts with G. Tian’s solution (cf. [98]) to Yau’s conjecture that polarized Kähler
metrics on a compact complex manifold M can be obtained as the limit of (a sequence of) Bergmann
metrics. A remarkable ingredient in Tian’s work (cf. op. cit.) is the so-called Epsilon function
εm : M→ [0,+∞) (with m ∈ Z+) appearing independently in M. Cahen, S. Gutt, and J.H. Rawnsley’s
geometric interpretation (cf. [99]) of F.A. Berezin’s (cf. [100]) quantization procedure (itself including
the familiar Wick and Weyl quantizations, cf. [101]). An asymptotic expansion (now known as the
Tian–Yau–Zelditch expansion) in the variable m of εm(x) was produced by S. Zelditch (cf. [102]) and
subsequently Z. Lu computed (cf. [103]) the first three terms of the expansion.

The first to have observed that Tian’s function and the Chen–Gutt–Rawnsley Epsilon function
εm(x) coincide (up to a multiplicative factor mn, where n is the complex dimension of M) appear
to be C. Arezzo and A. Loi (cf. [96]). Arezzo–Loi’s general purposes go towards classifying Kähler
manifolds admitting a regular quantization (i.e., one for which εm(x) is constant for every m ∈ Z+)
and understanding when finite Tian–Yau–Zelditch expansions might occur.
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5. Djrbashian Kernels on Siegel Domains

5.1. Djrbashian–Karapetyan Projection

Let us start with
α ∈ R, α > −1, β ∈ C, Re(β) >

α− 1
2

,

and consider the linear operator

(
Tβ f

)
(w) = 2n−1+β cn,β

∫
Ωn

f (ζ)
(
Im(ζ1)− |ζ ′|2

)β dµ(ζ)[
i(ζ1 − w1)− 2〈w′ , ζ ′〉

]n+1+β
,

f ∈ L2
α(Ωn) = L2(Ωn , γα

)
, w ∈ Ωn ,

cn,β = π−n(β + 1
)
· · ·
(

β + n
)
.

Cf. (2.15) in [36], p. 98. By Theorems 2.1 and 3.1 in [36], Tβ is a continuous linear operator from
L2

α

(
Ωn
)

to H2
α

(
Ωn
)
= L2H(Ωn , γα), referred to in [28] as the Djrbashian–Karapeyan projection. If

hz(ζ) = 2n−1+β
cn,β

[
Im(ζ1)− |ζ ′|2

]β−α[
i(z1 − ζ1)− 2〈ζ ′ , z′〉

]n+1+β
, z, ζ ∈ Ωn , (44)

then
hz ∈ L2(Ωn , γα), z ∈ Ωn . (45)

This is Lemma 1 in [28], p. 49, and the proof relies on a result by R.R. Coifman and R. Rochberg
(cf. Lemma 2.2 in [104]).

5.2. Saitoh’s Construction and Djrbashian Kernels

S. Saitoh has devised (cf. [105]) a very general method for organizing the range of a linear operator
(induced by a Hilbert space valued function) as an RKH space. We recall the essentials of Saitoh’s
result and apply it to the Djrbashian–Karapetyan projection. Given a set E 6= ∅, a Hilbert space H,
and a function h : E→ H, let us consider the linear map

L : H → F (E),
(

LF
)
(p) =

(
F, h(p)

)
H , F ∈ H, p ∈ E.

By a result of S. Saitoh (cf. Theorem 2.1 in [105], p. 75) the rangeR(L) of L may be organized as
an RKH space with the inner product(

f , g
)
R(L) =

(
PF, PG

)
H ,

f , g ∈ R(L), F ∈ L−1( f ), G ∈ L−1(g),

where P : H → H	N (L) is the natural projection and N (L) is the null space of L. Then

‖ f ‖R(L) = inf
{
‖F‖H : F ∈ L−1( f )

}
and

K(p, q) =
(
h(p), h(q)

)
H , p, q ∈ E,

is a reproducing kernel forR(L). Additionally, L is an isometry ofH ontoR(L) if and only if the system
{h(p) : p ∈ E} is complete in H. Cf. also [106], p. 51. Going back to the Djrbashian–Karapetyan
projection, let us set

Kβ

(
ζ, z
)
=
(
hz , hζ

)
γα

, ζ, z ∈ Ωn .
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Then, Kβ is well-defined as a consequence of (45). Let

Pβ : L2
α

(
Ωn
)
→ L2

α

(
Ωn
)
	N (Tβ)

be the orthogonal projection and note that Pβ hz = hz for any z ∈ Ωn. As(
Tβ f

)
(ζ) =

(
f , hζ

)
γα

, f ∈ L2
α

(
Ωn
)
, ζ ∈ Ωn ,

it follows that

(i) Kβ

(
· , ζ
)
∈ R

(
Tβ

)
,

(ii) F(ζ) =
(

F, Kβ( · , ζ)
)
R(Tβ)

for any F ∈ R(Tβ).

Then, R(Tβ) = H2
α(Ωn) (thought of as an RKH space with the reproducing kernel Kβ) will

be denoted by H(Kβ). On the other hand, by a result of M.M. Djrbashian and A.H. Karapetyan
(cf. Proposition 4.3 in [36], p. 107)

N (Tα) = L2
α(Ωn)	 H2

α(Ωn),

hence H2
α(Ωn) is a closed subspace of L2

α(Ωn). Next, note that

H(Kβ) = L2H(Ωn , γα) (46)

(the identity is an isometry) if and only if N (Tβ) = N (Tα).
Let F ∈ H2

α

(
Ωn
)
. Then, ‖F‖H(Kβ)

≤ ‖ f ‖γα for every f ∈ L2(Ωn , γα) with Tβ f = F. Next (by
Theorem 2.1 in [36]) TβF = F. Yet (in view of (46)) in general F is not the element of minimum ‖ · ‖γα

norm in the fibre of Tβ over F.
By (45), we may define hβ : Ωn ×Ωn → C by setting hβ(ζ, z) = hz(ζ) where hz is given by (44).

Then hβ(ζ, z) is referred to as the Djrbashian kernel of Ωn.
Let C : Bn → Ωn be the Cayley transform, that is,

C
(
z
)
=

(
i

1 + z1

1− z1
,

i
1− z1

z′
)

, 1− z1 6= 0,

and let us set Ωn,r = C
(
Bn

r
)

where Bn
r = Br(0). By a result in [28] (cf. Theorem 1, p. 51) H2

α(Ωn) is the
RKH space H(Kβ) with the reproducing kernel

Kβ(ζ, z) =
∣∣∣2n−1+β cn,β

∣∣∣2 × (47)

×
∫

Ωn

[
Im
(
ω1
)
−
∣∣ω′∣∣2]2 Re(β)−α

d µ(ω)[
i
(
ω1 − ζ1

)
− 2 〈ζ ′ , ω′〉

]n+1+β
.

Moreover, let {rN}N≥1 be a sequence of positive numbers such that rN ↑ 1 as N → ∞ and let
us set DN = Ωn, rN . Then (again cf. Theorem 1 in [28], p. 51) for every F ∈ H2

α(Ωn) the unique
f ∗ ∈ L2

α

(
Ωn
)

such that Tβ f ∗ = F and ‖F‖H(Kβ)
= ‖ f ∗‖γα is given by

f ∗(ζ) = lim
N→∞

∫
DN

F(z) hβ(ζ, z)
(

Im(z1)− |z′|2
)α

d µ(z) (48)

in the sense of L2
α(Ωn) convergence.
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We recall that H2
α(Ωn) is closed in L2

α(Ωn). Besides, from that∣∣δz(F)
∣∣ = ∣∣(TβF)(z)

∣∣ = ∣∣(F, hz
)

γα

∣∣ ≤ ‖F‖γα ‖hz‖γα

so that δz : H2
α(Ωn) → C is continuous. Thus γα ∈ AW(Ωn) (as already stated in Example 4) and in

view of
(Tβ f )(z) =

∫
Ωn

f (ζ) hβ(ζ , z) d µα(ζ),

dµα(ζ) =
[
Im
(
ζ1
)
−
∣∣ζ ′∣∣2]α

dµ(ζ),

together with Theorem 2.1 in [36], p. 101, the γα-Bergman kernel of Ωn may be identified among the
Djrbashian kernels

hβ

(
ζ, z
)
, Re(β) >

α− 1
2

,

as the one corresponding to β = α. Indeed

hα(ζ, z) =
2n−1+α cn,α[

i
(
z1 − ζ1

)
− 2 〈ζ ′ , z′〉

]n+1+α

is holomorphic in ζ, and hence by the uniqueness statement in the Riesz representation theorem,
hα(ζ, z) is the γα-Bergman kernel of Ωn. Moreover, by the reproducing property of Kα

(
ζ, z
)

one
actually has Kα(ζ, z) = hα(ζ, z) for every α > −1.

5.3. Djrbashian Kernels and Quantum States

Let us think of Ωn as the classical phase space of some mechanical system, and let E = Ωn ×C
be the trivial complex line bundle over Ωn, with the Hermitian metric Hα

(
s0 , s0) = ρα where ρ(ζ) =

Im(ζ1)− |ζ ′|2 and the holomorphic frame s0 : Ωn → E is s0(ζ) =
(
ζ , 1

)
. By a result in [28] H2

α(Ωn)

is the space of quantum states of Ωn and, by a result in [9], there is an anti-holomorphic embedding
Kα : Ωn → CP

(
H2

α(Ωn)
)
. Moreover, if the pair (n, α) satisfies one of the following conditions:

(i) n =M4 and α ∈ (−1, 0) ∪ (0, +∞),

(ii) n =M4 + 1 and α ∈ (0,+∞),

(iii) n =M4 + 3 and α ∈ (−1, 0),

(whereM4 = 4k for some k ∈ N) then the transition probability amplitude aα(ζ, z) = 〈Kα(ζ) , Kα(z)〉
satisfies the rule ∫

Ωn
aα

(
ζ, w

)
aα

(
z, ζ
)

c d µL(ζ) = aα(z, w)

for some constant c > 0 depending only on n and α. Cf. Theorem 3 in [28], p. 57. The proof consists
essentially of the following three steps.

Step 1. If Kα

(
ζ , z

)
is the γα-Bergman kernel of Ωn then the map

Kα : Ωn → CP
(

H2
α(Ωn)

)
, Kα(z) =

[
Kα

(
· , z
)]

, z ∈ Ωn ,

is an anti-holomorphic embedding.
Step 2. The identity

aα(z, w) =
∫

Ωn
aα(ζ, w) aα(ζ, z)Kα(ζ, ζ) γα(ζ) dµ(ζ)

holds for any z, w ∈ Ωn.
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Step 3. If (n, α) satisfies one of the assumptions (i)–(iii) above, then there is a constant C > 0
depending only on n and α such that the weight γα(ζ) =

[
Im(ζ1) − |ζ ′|2

]α satisfies the complex
Monge–Ampère equation

det

[
∂2 log γ(ζ)

∂ζ j ∂ζk

]
= (−1)n(n+1)/2 C

1
n!

γ(ζ)Kγ(ζ, ζ).

Cf. also E. Barletta and S. Dragomir [107], V. Faber and J. Mycielski [108], J. Mycielski and
Świerczkowski [109],

6. Forelli–Rudin–Ligocka–Peloso Asymptotic Expansion Formula

Let Ω = {z ∈ Cn : ϕ(z) < 0} be a smoothly bounded strictly pseudoconvex domain where ϕ is
such that the Levi form Lϕ satisfies

Lϕ(w)ξ ≥ C1 |ξ|2 , ξ ∈ Cn ,

for ϕ(w) < δ0, δ0 > 0, and C1 depending only on Ω. Let us set

Ψ(ζ, z) =
[
F(ζ, z)− ϕ(z)

]
χ
(
|ζ − z|

)
+
(
1− χ(|ζ − z|)

)
|ζ − z|2 , (49)

F(ζ, z) = −
n

∑
j=1

∂ϕ

∂zj
(z)
(
ζ j − zj

)
− 1

2

n

∑
j,k=1

∂2 ϕ

∂zj ∂zk
(z)
(
ζ j − zj

)(
ζk − zk

)
,

where χ is a C∞ cut-off function of the real variable t, with χ(t) = 1 for |t| < ε0/2 and χ(t) = 0 for
|t| ≥ 3ε0/4. We recall (cf. Theorem 1 in [21], p. 287)

Theorem 3. For any nonnegative integer m ∈ {0, 1, 2, · · · } the weight |ϕ|m is admissible, that is, |ϕ|m ∈
AW(Ω). Let Km(ζ, z) be the |ϕ|m-Bergman kernel for L2H(Ω, |ϕ|m). Then

Km(ζ, z) = CΩ
∣∣∇ϕ(z)

∣∣2 · det Lϕ(z) · Ψ(ζ, z)−(n+1+m) + E(ζ, z) (50)

where E ∈ C∞(Ω×Ω \ ∆
)
, ∆ is the diagonal in ∂Ω× ∂Ω, and E satisfies the estimate

∣∣E(ζ, z)
∣∣ ≤ C′Ω

∣∣Ψ(ζ, z)
∣∣−(n+1+m)+1/2 ∣∣ log |Ψ(ζ, z)|

∣∣. (51)

Theorem 3 extends C. Fefferman’s asymptotic expansion formula for the Bergman kernel of a
strictly pseudoconvex domain (cf. [16] for m = 0) to the case of |ϕ|m-Bergman kernels, m ∈ {1, 2, · · · }.
The result is due to M.M. Peloso (cf. Lemma 2.2 in [17], p. 229). However, M.M. Peloso claims
Theorem 3 is implicit in [19], while E. Ligocka employs an older idea by F. Forelli and W. Rudin
(cf. [20]). Aside from the correct credit, which certainly goes to M.M. Peloso, the history of Theorem 3
demonstrates the attention shown by the mathematical community devoted to complex analysis to an
argument born with the celebrated work by C. Fefferman (cf. op. cit.), and emphasizes the recognition
of the relevance of that argument.

Part of the proof of Theorem 3, relating Km(ζ, z) to the ordinary Bergman kernel of the
“suspended” domain

{(z, ξ) ∈ Ω×Cm : ϕ(z) + |ξ|2 < 0},
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does work for an arbitrary admissible weight γ ∈ AW(Ω). Precisely, if KΩm

(
(z, ξ), (w, η)

)
is the

Bergman kernel of the domain

Ωm =
{
(z, ξ) ∈ Ω×Cm :

∣∣ξ∣∣2m
< γ(z)

}
then

Kγ

(
z, w

)
=

ω2m−1

2m
KΩm

(
(z, 0), (w, 0)

)
, (52)

where ωN is the “area” of the sphere SN ⊂ RN+1 (this is of course Formula (14) in Section 2 of the
present survey). When γ =

∣∣ϕ∣∣m, m ∈ {1, 2, 3, · · · }, the domain Ωm is strictly pseudoconvex and (50)
follows from (52) together with Fefferman’s asymptotic expansion formula for KΩm

KΩm

(
(z, ξ), (w, η)

)
= const.

∣∣∇ϕ1(z, ξ)
∣∣2 · det Lϕ1(z, ξ) ·

·Ψ
(
(z, ξ), (w, η)

)−(n+1+m)
+ E

(
(z, ξ), (w, η)

)
,∣∣E((z, ξ), (w, η)

)∣∣ ≤
≤ const.

∣∣Ψ((z, ξ), (w, η)
∣∣−(n+1+m)+1/2 ∣∣ log

∣∣Ψ((z, ξ), (w, η)
)∣∣∣∣,

E ∈ C∞(Ωm ×Ωm \ ∆1
)
,

where Ψ
(
(z, ξ), (w, η)

)
is defined as in (49) (modulo obvious modifications) and ϕ1(z, ξ) = ϕ(z) + |ξ|2,

and ∆1 is the diagonal in ∂Ωm × ∂Ωm.
It should be observed that the Fefferman-like asymptotic expansion of a weighted Bergman kernel

is known (cf. Theorem 3 above) only for the points of the curve

C : (−1, +∞
)
→W(Ω), C(α) =

∣∣ϕ∣∣α ∈ AW(Ω), α > −1, (53)

corresponding to the integer values of the parameter. Extending Theorem 3 to all weights γ ∈ AW(Ω)

is still an open problem. By a result in [21] (cf. Theorem 2, p. 289) the curve (53) is discontinuous,
and every point of C is an isolated point in W(Ω). The result may be looked at as a measure of
the amount of job (deriving an asymptotic expansion formula for Kγ(ζ, z)) left unsolved. As a step
in this direction, by a result in [21] (cf. Theorem 4, p. 293) for every h ∈ B1/2(0) ⊂ L∞(Ω) there is
Eh ∈ C∞(Ω×Ω

)
such that

K(1+h) |ϕ|m
(
z, w

)
= (54)

= CΩ
∣∣∇ϕ(w)

∣∣2 · det Lϕ(w) · Ψ
(
z, w

)−(n+1+m)
+ Eh

(
z, w

)
,∣∣Eh

(
z, w

)∣∣ ≤ C
{∣∣Ψ(z, w)

∣∣−(n+1+m)+1/2 ∣∣ log
∣∣Ψ(z, w)

∣∣∣∣+ (55)

+
∣∣ϕ(z)∣∣−(n+1+m)/2∣∣ϕ(w)

∣∣−(n+1+m)/2[1 + F(z) + F(w) + F(z)F(w)
]}

where F(z) = |ϕ(z)|3/2 + |ϕ(z)|1/2
∣∣ log |ϕ(z)|

∣∣ and C is a constant depending only on Ω and on m ≥ 1,
m > n− 1.

The proof of (54) and (55) relies on (50) and (51) and on the analyticity of the weighted Bergman
kernel as a function of weight, as described by us in Section 2 of this work (and of course due to [2]).

Remarkable progress (towards obtaining analogs to Fefferman’s asymptotic expansion for
weighted Bergman kernels Kγ(z, ζ) for more general classes of weights γ ∈ AW(Ω)) was obtained by
M. Englis, [22], for a class of weights behaving like a power of the defining function. To state the result



Axioms 2020, 9, 48 31 of 42

in [22] let Ω = {ϕ < 0} ⊂ Cn be a smoothly bounded strictly peudoconvex domain and let us recall
that a function F ∈ C∞(Ω×Ω) is said to be almost-sesquianalytic if

∂F
∂zj

(z, ζ),
∂F
∂ζ j

(z, ζ), 1 ≤ j ≤ n,

vanish to infinite order on the diagonal z = ζ. Additionally, given a function f : Ω → R,
an almost-sesquianalytic function F ∈ C∞(Ω × Ω

)
is an (almost-sesquianalytic) extension of f

if F(z, z) = f (z) for any z ∈ Ω and F(z, ζ) = F(ζ, z). As a consequence of strict pseudoconvexity −ϕ

admits an almost-sesquilinear extension Φ(z, ζ) such that

2 Re Φ(z, ζ) ≥
∣∣ϕ(z)∣∣+ ∣∣ϕ(ζ)∣∣+ C

∣∣z− ζ
∣∣2

for some C > 0 and some ε > 0 and any z, ζ ∈ Ω with
∣∣z− ζ

∣∣ < ε. Let us fix such an almost-sesquilinear
extension Φ(z, ζ) of

∣∣ϕ∣∣. The main result in [22] is that any weight γ ∈W(Ω) of the form

γ(z) =
∣∣ϕ(z)∣∣α exp

[
g(z)

]
, α > −1, g ∈ C∞(Ω), z ∈ Ω,

is admissible and the corresponding γ-Bergman kernel admits the following asymptotic expansion

K|ϕ|α eg
(
z, ζ
)
=

=


a(z, ζ)Φ(z, ζ)−(n+α+1) + b(z, ζ) log Φ(z, ζ) α ∈ Z+ ,

a(z, ζ)Φ(z, ζ)−(n+α+1) + b(z, ζ) α ∈ (−1, +∞) \Z,

for some almost-sesquianalytic functions a, b ∈ C∞(Ω×Ω
)

and any z, ζ ∈ Ω. Moreover,

a(z, z) =
Γ(n + α + 1)

Γ(α + 1)
J
(
− ϕ

)
(z) e−g(z) (56)

for every z ∈ ∂Ω. Here J is the complex Monge–Ampére operator, that is,

J(u) = (−1)n det

(
u uzj

uzk uzj zk

)
.

The leading term (56) was first computed by L. Hörmander (cf. [14]) for α = 0 and by E. Ligocka
(cf. [19]) for g = 0 and α > −1. The fact that K|ϕ|α eg ∈ C∞(Ω×Ω \ ∆

)
for α 6= 0 was proved by M.M.

Peloso (cf. [18]) and the same result for α = 0 follows by a straightforward (according to [22], p. 1422)
modification of N. Kerzman’s arguments (cf. [13]) for the unweighted Bergman kernel.

By a result of M. Englis (cf. [110]) there is a set U ⊂ C without accumulation points such that for
any z, ζ ∈ Ω the function α ∈ (−1, +∞) 7−→ K|ϕ|α(z, ζ) ∈ C extends to a holomorphic function on
C \U having at most poles at the points of U. The prototypical situation appears to be that of the unit
ball Ω = Bn with ϕ(z) = |z|2 − 1 where the |ϕ|α-Bergman kernel is

K|ϕ|α(z, ζ) =
(α + 1) · · · (α + n)

πn

(
1− z · ζ

)−α−n−1,

hence U = ∅, and the extension of α 7→ K|ϕ|α(z, ζ) has zeros (rather than poles) at α ∈
{−1, −2, · · · , −n}. We expect that α ∈ (−1, +∞) 7→ K|ϕ|α ∈ HA(Ω) extends to a holomorphic
function C \U → HA(Ω) (as a function of one complex variable with values in a complex Fréchet
space, cf. Definition 3.30 in [111], p. 82).

See also M. Englis (cf. [112]) for weighted Bergman kernels with logarithmic weights.
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C. Fefferman discovered the asymptotic expansion (50) (for m = 0) in [16] and used it as a tool
to prove his celebrated result that biholomorphisms of smoothly bounded strictly pseudoconvex
domains extend smoothly to the boundary. Successively, (50) proved useful in C. Fefferman’s first
approach (cf. [15]) to the construction of the Fefferman metric F on ∂Ω× S1 (briefly discussed by us
in Section 3.2 of the present survey). Although [15] proposes two other methods of calculation of F
(replacing K(z, z)−1/(n+1) in the potential U(ζ, z) first by a solution u(z) to the Dirichlet problem

J(u) = (−1)n det

(
u uzj

uzk uzj zk

)
= 1 in Ω,

u = 0 on ∂Ω,

for the complex Monge–Ampère equation, and then by the 2-jet of a solution to the same equation) the
question remains as to whether∣∣ζ∣∣2/(n+1) Kγ

(
z, z
)−1/(n+1), z ∈ Ω, ζ ∈ C \ {0},

can be used for constructing new Lorentzian metrics Fγ on ∂Ω × S1. As (50) is already available,
F|ϕ|m may be derived by following the kernel-based approach in [15]. The problem of building
weighted analogs to Fefferman metrics for arbitrary weights γ ∈ AW(Ω) is open.

7. Computability of γ-Bergman Kernels

Ordinary Bergman kernels of domains in Cn were explicitly computed only for a handful of
examples, such as the unit ball (cf. [113]), or complex ovals (cf. J.P. D’Angelo [114], G. Francsics and
N. Hanges [115]). This is mainly due to the difficulty of producing explicit complete orthonormal
systems in L2H(Ω), for the various domains Ω ⊂ Cn at hand, and the problem of course remains
for the weighted case. For instance, let Ω ⊂ Cn be a (not necessarily bounded) Reinhardt domain
containing the origin, and let J =

{
α ∈ Zn

+ : φα ∈ L2(Ω)
}

, where φα(z) = zα. Then {φα : α ∈ J } is
a complete orthogonal system in L2H(Ω) and the Bergman kernel of Ω may be written as

KΩ
(
ζ, z
)
= ∑

α∈J

(
ζ z
)α∥∥φα

∥∥2
L2(Ω)

.

Note that so far one only exhibited an orthogonal system, and that the calculation of the norms∥∥φα

∥∥
L2(Ω)

requires rather involved calculations. In particular cases, such as

Ωp =
{(

z, w
)
∈ Cn ×Cm :

∥∥z
∥∥2

+
∥∥w
∥∥2p

< 1
}

, p > 0,

KΩp may be expressed in terms of elementary functions, cf. J. D’Angelo [114]. Additionally, if Ω is a
complex oval

Ωa =
{

z ∈ Cn :
n

∑
j=1

∣∣zj
∣∣2aj < 1

}
,

a =
(
a1 , · · · , an

)
, aj ∈ N, 1 ≤ j ≤ n,

KΩa may be expressed in terms of generalized hypergeometric functions, cf. G. Francsics and N.
Hanges [115]. H.P. Boas, S. Fu, and E.J. Straube considered (cf. [49]) ω =

{(
z, ζ
)
∈ C×Cn : |z| <

γ(ζ)
}

, where γ ∈ L∞(Ω) is a continuous and positive function and Ω ⊂ Cn is a bounded domain.
Then, they computed the Bergman kernel KΩm of the domain

Ωm =
{(

z, ζ
)
∈ Cm ×Cn : ‖z‖ < γ(ζ)

}
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essentially by differentiating the Bergman kernel Kω. Domains such as{(
z1 , z2 , z3

)
:
(∣∣z1

∣∣2p
+
∣∣z2
∣∣4)1/λ

+
∣∣z3
∣∣2/q

< 1
}

and {(
z, ζ
)
∈ Cn ×Cm : ‖z‖ < exp

(
− a ‖ζ‖2)}

(the Fock–Bargmann–Hartogs domain) were respectively dealt with by T. Beberok [116] and
A. Yamamori [87].

A new method of calculating (unweighted) Bergman kernels for certain families of Hartogs
domains was recently devised by Z. Huo [50], allowing him to rediscover some of the known examples
and obtain new explicit formulas. To illustrate the ideas in [50], which appear to us of a certain value,
let us look at the following example. Let

Ω =
{(

z, ζ
)
∈ C2 : |z|2a + |ζ|2 < 1

}
, a > 0. (57)

Next, let us think of ζ as a parameter ζ ∈ B1 ⊂ C, so that to associate with (57) the following
family of plane domains

{
Ωζ

}
|ζ|<1 , Ωζ =

{
z ∈ C :

∣∣z∣∣2(
1−

∣∣ζ∣∣2)1/a < 1

}
.

For each η ∈ C with |η| < 1

φ : Ωη → B1 , φ(z) =
z(

1−
∣∣η∣∣2)1/(2a)

, z ∈ Ωη ,

is a biholomprphism of Ωη onto the unit disc B1. The Bergman kernels of Ωη and B1 are then related by

KΩη
(z, ζ) =

∂φ

∂z
(z)

∂φ

∂z
(ζ)KB1

(
φ(z), φ(ζ)

)
, z, ζ ∈ Ωη ,

KB1
(
z, ζ
)
=

1
π

1(
1− zζ

)2 , z, ζ ∈ B1 ,

hence

KΩη

(
z, ζ
)
=

(
1− |η|2

)1/a

π
[(

1− |η|2
)1/a − zζ

]2 . (58)

Moreover, let us consider the differential operator

D =
1
π

(
1− |η|2(
1− wη

)2

)1/a {(
1 +

1
a

)
I +

z
a

∂

∂z

}

where I is the identity operator. Finally, applying D to (58) produces the Bergman kernel KΩ
(
z, w, ζ, η

)
.

Cf. Z. Huo [50], pp. 2–3. The choice of differential operator D is rather heuristic (the same remark
applies to the choice of differential operators DUα and DVγ in [50], p. 9) and it is still unclear
whether Huo’s method carries over to balls with both radius and center depending on the parameter.
For instance, let us consider the worm domain

Ω =

{
(z, w) ∈ C2 :

∣∣∣z− ei log |w|2
∣∣∣2 − 1 + ϕ

(
log |w|2

)
< 0

}
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where ϕ ∈ C∞(R) is an even and convex function such that (i) ϕ(t) ≥ 0, ϕ−1(0) = [−µ, µ], µ > 0,
(ii) there is a > 0 such that |t| > a =⇒ ϕ(t) > 1, and (iii) ϕ(t) = 1 =⇒ ϕ′(t) 6= 0. If ω = {w ∈ C :
1− ϕ

(
log |w|2

)
> 0} then (z, w) ∈ Ω =⇒ w ∈ ω. Hence one may associate to Ω the family of domains

Ωw = Br(w)

(
ei log |w|2), r(w) =

[
1− ϕ

(
log |w|2

)]1/2 , w ∈ ω.

Then

φ : Ωw → B1 , φ(z) =
z− ei log |w|2[

1− ϕ
(

log |w|2
)]1/2 ,

is a biholomorphism so that, by once again taking into account the transformation law of Bergman
kernels under biholomorphisms, the Bergman kernel ofWw is

KWw

(
z, ζ
)
=

1
π

1− ϕ
(

log |w|2
)[

1− ϕ
(

log |w|2
)
−
(
z− ei log |w|2)(ζ − e−i log |w|2)]2

for any w ∈ ω. It is an open problem whether a differential operator D may be produced such that
D KWw gives the Bergman kernel ofW .

8. Cartan Connections and Fefferman’s Theorem

Let G → P → M be a principal bundle, with the structure Lie group G. Let G̃ be another Lie
group, and let us assume that G is a Lie subgroup of G̃ (i.e., G ⊂ G̃). Let g and g̃ be the Lie algebras of
G and G̃, respectively. Let ω ∈ C∞(T∗(P)⊗ g̃

)
be a g̃-valued differential 1-form on P. The pair

(
P, ω

)
is a Cartan connection of type

(
G, G̃

)
if

(i) For every p ∈ P the map ωp : Tp(P)→ g̃ is an isomorphism;
(ii) R∗a ω = ad

(
a−1)ω for any a ∈ G;

(iii) ω(A∗) = A for any left invariant vector field A ∈ g, where A∗ ∈ X(P) is the fundamental vector
field associated to A.

If (P, ω) and (P′ , ω′) are Cartan connections of the same type, then a diffeomorphism ϕ : P→ P′

is an isomorphism of (P, ω) onto (P′ , ω′) if ϕ∗ω′ = ω.
Let (P, ω) and (P′ , ω′) be Cartan connections of type (G, G̃) with G connected. Then, every

isomorphism ϕ : (P, ω)→ (P′ , ω′) is G-equivariant.
Let (P, ω) be a Cartan connection of type (G, G̃) and let

(
· , ·
)

be a positive definite inner product
on g̃. Let g be the Riemannian metric on P defined by

gp
(
X, Y

)
=
(
ωp(X) , ωp(Y)

)
, X, Y ∈ Tp(P). (59)

Then, g is G-admissible; that is, for every a ∈ G the right translation Ra : P → P is uniformly
continuous with respect to the distance function dg : P× P→ [0,+∞) associated to g. In particular,
every right translation maps Cauchy sequences to Cauchy sequences, and hence the action of G on P
extends to an action of G on the Cauchy completion P̂ of

(
P, dg

)
, as a topological transformation group.

The Riemannian metric (59) is commonly referred to as the canonical metric of (P, ω). Of course,
the definition of (59) depends on the choice of scalar product on (the choice of linear basis in) g̃.
Every C1 isomorphism of Cartan connections is an isometry with respect to their canonical metrics.
We recall the following (cf. Theorem 1.2 in [23], p. 119):

Theorem 4. Let (P, ω) and (P′ , ω′) be two Cartan connections of type (G, G̃). Let C ⊂ P and C′ ⊂ P′ be
two G-invariant closed submanifolds of codimension ≥ 2. Let us assume that the base manifolds M = P/G
and M′ = P′/G are compact and the Lie structure group G is connected. Then every C1 isomorphism(

P \ C, j∗ ω
)
≈
(

P′ , j′∗ ω′
)

extends to an isomorphism
(

P, ω
)
≈
(

P′ , ω′
)
, where j : P \ C ↪→ P and

j′ : P′ \ C′ ↪→ P′ are inclusions.
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Proof. Let g and g′ be the canonical metrics of (P, ω) and (P′ , ω′). Then, j∗g and j′∗g′ are the
canonical metrics of (P \ C, j∗ω) and (P′ \ C′, j′∗ω′). Let ϕ : P \ C → P′ \ C′ be an isomorphism of
(P \ C, j∗ω) onto (P′ \ C′ , j′∗ω′). Then, ϕ : P \ C → P′ \ C′ is G-equivariant and ϕ∗

(
j′∗g′

)
= j∗g.

At this point we may end the proof of Theorem 4 by applying Lemma 2.

Lemma 2. Let P and P′ be two principal G-bundles with G-admissible Riemannian metrics g and g′. Let C ⊂
P and C′ ⊂ P′ be two G-invariant closed submanifolds of codimension ≥ 2. Let us assume that M = P/G
and M′ = P′/G are compact. Then, any G-equivariant isometry ϕ : P \ C → P′ \ C′ of

(
P \ C, j∗g

)
onto(

P′ \ C′ , j′∗g′
)

extends to an isometry ϕ̃ : P→ P′ of (P, g) onto (P′, g′).

Proof. We may assume w.l.o.g. that P and P′ are connected. There are a priori two natural distance
functions on P \ C, that is, the distance function induced by dg : P× P → [0,+∞) and the distance
function dj∗g : (P \ C)× (P \ C)→ [0,+∞) associated to the Riemannian metric j∗g. As codim(C) ≥ 2
any curve in P having end points fixed in P \ C can be smoothly approximated by curves in P \ C.
Consequently, the two distance functions coincide

dg
∣∣
(P\C)×(P\C) = dj∗g . (60)

Then (by (60)), the Cauchy completions of
(

P \ C, dj∗g
)

and
(

P, dg
)

coincide, that is, P̂ \ C = P̂.
By a well-known result in differential geometry (cf. e.g., Theorem 11.1 in [117], p. 60–61), a mapping of
Riemannian manifolds is an isometry (a metric preserving diffeomorphism) if and only if it is distance
preserving. For the moment we use only the trivial part of this statement. That is, since the map
ϕ : P \ C → P′ \ C′ is an isometry (i.e., ϕ : P \ C → P′ \ C′ is a diffeomorphism and ϕ∗

(
j′∗g′

)
= j∗g),

it must be distance preserving (i.e., dj′∗g′
(

ϕ(p), ϕ(q)
)
= dj∗g

(
p, q

)
for any p, q ∈ P \ C). Consequently,

ϕ : P \ C → P′ \ C′ extends to a distance-preserving map ϕ̂ : P̂ \ C → ̂P′ \ C′, and therefore to a map
ϕ̂ : P̂ → P̂′. Here the distance functions referred to are d̂g : P̂× P̂ → [0,+∞) and d̂g′ : P̂′ × P̂′ →
[0,+∞), induced by dg and dg′ . There is a natural injection of P in P̂, as an open subset, such that

d̂g

∣∣∣
P×P

= dg. As ϕ̂ : P̂→ P̂′ is a homeomorphism, the sets

U = ϕ̂−1[ϕ̂(P) ∩ P′
]
, U′ = ϕ(P) ∩ P′ ,

are open in P and P′, respectively. Then, ϕ̂ : U → U′ is a distance-preserving homeomorphism
(the distances alluded to are the restrictions of dg and dg′ to U and U′). Now we may apply the hard
part in Theorem 11.1 of [117], p. 61, to conclude that ϕ̂ : U → U′ is an isometry (with respect to the
pullbacks of g and g′ to U and U′) and in particular a diffeomorphism. Thus, given k ≥ 1, there is
a unique Ck manifold structure on Ω = ϕ̂(P) ∩ P′ such that ϕ̂ : P → Ω and P′ ↪→ Ω are Ck maps.
As ϕ̂ is G-equivariant, Ω is G-invariant and (the total space of) a principal G-bundle. Clearly Ω is
connected, hence Ω/G is a connected manifold such that P′/G is a both open and compact subset of
Ω/G. Thus P′/G = Ω/G, implying that P′ = Ω. It follows that ϕ̂(P) ⊂ P′. Interchanging the roles of
P and P′ one has ϕ̂(P) = P′ and ϕ̃ = ϕ̂|P is the desired extension.

Corollary 1. Let M and M′ be two compact, strictly pseudoconvex real hypersurfaces of class Ck (k ≥ 2) in a
complex manifold. Let C ⊂ M and C′ ⊂ M′ be closed real submanifolds of M and M′, both of codimension ≥ 2.
Then, every CR isomorphism M \ C → M′ \ C′ of class C2 extends to a CR isomorphism M→ M′ of class Ck.

Proof. By a result of N. Tanaka (cf. [118]) there is a covariant functor F : CR → Cartan from the
category CR of strictly pseudoconvex CR manifolds, into the category Cartan of Cartan connections,
possessing the following properties. On objects, that is, if M ∈ Ob

(
CR
)
, then F(M) = (P, ω) is

a Cartan connection of a certain type (G, G̃) (with G a connected Lie group) such that P/G = M,
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and the inclusions M \ C ↪→ M and M′ \ C′ ↪→ M′ (two morphisms in CR) are compatible with the
map on objects Ob

(
CR
)
→ Ob

(
Cartan

)
. Therefore, Corollary 1 follows from Theorem 4.

Let Ω ⊂ Cn be a smoothly bounded domain with strictly pseudoconvex boundary ∂Ω and let

Ω̃ =
{(

ζ, z
)
∈ C×Ω :

∣∣ζ∣∣2(n+1)KΩ(z, z) < 1
}

(61)

be the suspension of Ω. If n ≥ 2 then ∂Ω̃ ⊂ Cn+1 is a strictly pseudoconvex real hypersurface of class
Cn. From now on we assume that n ≥ 2 and consider a biholomorphism φ : Ω → Ω′ onto another
smoothly bounded strictly pseudoconvex domain Ω′ ⊂ Cn. The remainder of this section is devoted
to showing that such φ extends smoothly up to the boundary. This would give, by following the ideas
of I. Naruki (cf. [23]), a new, more geometric, proof to the celebrated Fefferman theorem (cf. [16]).
We only look at the case where Ω is simply connected, yet this assumption may be easily removed
(as in [23], p. 121). By the transformation law of Bergman kernels with respect to biholomorphisms

KΩ
(
z, z
)
=
∣∣Jφ(z)

∣∣2KΩ′
(
φ(z), φ(z)

)
, z ∈ Ω. (62)

As Ω is assumed to be simply connected there is a holomorphic function χ : Ω → C such that
χn+1 = Jφ. Next, let us consider the biholomorphism

φ̂ : C×Ω→ C×Ω′ ,

φ̂
(
ζ, z
)
=
(
χ(z) ζ, φ(z)

)
, ζ ∈ C, z ∈ Ω.

Then (by (61) and (62))
φ̂
(
Ω̃
)
= Ω̃′ .

Let us apply Corollary 1 to the restriction of φ̂ to ∂Ω̃ ∩
(
C×Ω

)
, that is, to the map

φ̂
∣∣
∂Ω̃∩

(
C×Ω

) : ∂Ω̃ ∩
(
C×Ω

)
→ ∂Ω̃′ ∩

(
C×Ω′

)
. (63)

Then (by Corollary 1) the map (63) extends to a C2 diffeomorphism of ∂Ω̃ onto ∂Ω̃′. This gives a
homeomorphism

Ψ : Ω̃→ Ω̃′ , Ψ|Ω̃ = φ̂
∣∣
Ω̃ , Ψ|∂Ω̃ ∈ C2 .

The well known smoothness up to the boundary theorem for the solution to the Dirichlet problem
for the Laplacian ∆0 ≡ ∑n

j=0 ∂2/∂zj ∂zj implies that Ψ is at least C1 up to the boundary. As

Ψ
(
0, z
)
= φ̂

(
0, z
)
=
(
0, φ(z)

)
, z ∈ Ω,

the restriction of Ψ to Ω̃ ∩
(
{0} ×Cn) is a C1 extension of φ. The restriction to the boundary of this

extension is a CR isomorphism of the boundaries, of class C2, and then (again by Corollary 1 applied
to M = ∂Ω and M′ = ∂Ω′) of class C∞.

It is an open problem whether Naruki’s proof (cf. [23]) may be replicated by using connections
in principal bundles (instead of Cartan connections). To any strictly pseudoconvex (in fact,
nondegeneracy suffices) CR manifold M, one may associate—in the presence of a fixed contact form
θ—a canonical linear connection ∇ (the Tanaka–Webter connection of (M, θ), cf. S.M. Webster [119]
and N. Tanaka [120]) and then a connection-distribution in a certain principal bundle U(n)→ P→ M.
In view of our comments in Section 5 of the present survey, the use of the suspended domain (61) may
hide a bond with the theory of weighted Bergman kernels. Additionally, it is an open question
whether there is any quantitative relationship between the Fefferman metrics on ∂Ω × S1 and
∂Ω̃× S1. The use of Cauchy completions, as in Naruki’s work (cf. op. cit.), is surprisingly similar
to the construction of bundle boundaries in the theory of singularities of space-times (cf. B.G.
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Schmidt [24]) and there is certainly a striking similarity between Naruki’s canonical metrics of pairs
(P, ω) and the Schmidt metric gS = ω · ω + η · η (say on the total space of the principal bundle
O
(
2n − 1, 1) → O

(
∂Ω × S1 , gS

)
→ ∂Ω × S1 of all Lorentzian frames, where ω is the Levi–Civita

connection 1-form of Fefferman’s spacetime
(
∂Ω× S1 , F

)
and η is the canonical 1-form). There is

presently no known analog to Fefferman’s theorem for the worm domain W ⊂ C2 met in Section
6 of this work (not even for complex analytic automorphisms φ ∈ Hol(W) (the treatment in [121]
is known to be incomplete)). It is an open problem whether a Cartan connection argument, as
devised by I. Naruki, can be applied to ∂W \ A (a strictly pseudoconvex CR hypersurface in C2),
where A ⊂ ∂W is the Levi flat locus of ∂W . As shown by E. Barletta et al. (cf. [122]), timelike lifts
of circles on ∂W (directed towards a point of A) run into curvature singularities (of the Fefferman
metric on

(
∂W \A

)
× S1). It is an open problem whether said curvature singularity may be quantum

mechanically resolved (cf. e.g., G.T. Horowitz and D. Marolf [123])—that is, whether the spacial part
of the Klein–Gordon operator is essentially self-adjoint as an operator with domain C∞

0 (Σ) ⊂ L2(Σ),
where Σ ⊂

[(
∂W \A

)
× S1] is a static slice.

9. Conclusions

There are many applications of Fefferman’s asymptotic expansion of the Bergman kernel that have
not been reviewed here, and that conjecturally admit weighted analogs. Perhaps the first of the
sort is P.F. Klembeck’s result (cf. [124]) that the holomorphic sectional curvature of (the Bergman
metric of) a strictly pseudoconvex domain tends, as the boundary ∂Ω is approached from inside,
to the constant holomorphic sectional curvature of the unit ball. A simpler and logically distinct
proof (based on the relationship between the Levi–Civita connection of the Bergman metric, and the
Graham–Lee connection of Ω) of Klembeck’s result, is given by E. Barletta, [125]. E. Barletta’s treatment
(cf. op. cit.) of Klembeck’s theme was inspired by the work of A. Korányi and H.M. Reimann [126].
A. Korányi and H.M. Reimann weakened the hypothesis in Fefferman’s theorem by starting with a
symplectomorphism F : Ω→ Ω (with respect to the symplectic structure underlying the Kählerian
structure of Ω, such as provided by the natural complex structure on Cn, and then on Ω, and the
Bergman metric on Ω) rather than a biholomorphism of Ω. If this is the case, F might fail to extend
smoothly to the boundary, but supposing it does, is the boundary values map f : ∂Ω→ ∂Ω at least
a contact transformation (rather than a CR isomorphism)? A. Korányi and H.M. Reimann’s positive
answer to the question exploits the fact that ϕ(z) = −K(z, z)−1/(n+1) is a defining function for Ω
(where K(z, ζ) is the unweighted Bergman kernel of Ω) and that follows as an elementary application
of Fefferman’s asymptotic expansion formula. A weighted analog to A. Korányi and H.M. Reimann’s
result is found by us in [21].

The very discoverer of Bergman kernels (S. Bergman himself [29]) anticipated applications
of Bergman kernels, and achieved some (e.g., to the theory of elliptic PDEs, cf. e.g., [127]),
reaching beyond complex analysis and, despite G. Fichera’s notorious crusade against the use of
Bergman kernels (cf. [128,129]), there have been followers such as G.G. Weill [130] and C-Y. Lo [131].
It is an open question whether the kernel function method may be used to study X-elliptic equations
as appearing in subelliptic theory (cf. e.g., A.E. Kogoj and E. Lanconelli [132], F. Uguzzoni [133]).

Even a review of quantization theory of a modest extension, such as our attempt in Section 4 of the
present survey, is bound to notice contributions from both Eastern (e.g., Czechoslovak, Polish, Russian)
and Western (e.g., British, Italian) schools of mathematical physics whose interaction with each other
is often scarce. Perhaps our gathering of contributors such as A. Odzijewicz, M. Englis, M. Cahen,
S. Gutt, and J.H. Rawnsley may provide the reader with some of the unifying means. Followers of
M. Cahen et al. (cf. [99]) such as C. Arezzo and A. Loi (cf. [96,97]) succeeded in tying quantization
theory to deep results in complex geometry (cf. [98,102]), and deserve further attention. So does
the growing literature on Bergman kernels on vector bundles, cf. D. Beltiţă and J.E. Galé [134,135],
W. Bertram and J. Hilgert [136], Z. Pasternak-Winiarski, [137].
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135. Beltiţă, D.; Galé, J.E. Linear connections for reproducing kernels on vector bundles. arXiv 2013, arXiv:1206.3969v3.
136. Bertram, W.; Hilgert, J. Reproducing kernels on vector bundles. arXiv 2020, arXiv:1402.0458.
137. Pasternak-Winiarski, Z. Reproducing kernels for holomorphic vector bundles. Adv. Math. Sci. J. 2016,

5, 25–32.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.geomphys.2017.06.001
http://dx.doi.org/10.1512/iumj.1978.27.27020
http://dx.doi.org/10.1016/j.na.2008.12.029
http://dx.doi.org/10.1007/s00208-014-1072-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Admissible Weights and Reproducing Kernels
	Mathematical Analysis of the Function K
	Banach Manifold of Weights
	Analyticity of the Vector Valued Function -3.45muK
	Weighted Ramadanov Theorem

	Reproducing Kernels and Quantization of States
	Hilbert Spaces of L2 Holomorphic Sections
	Hermitian Geometry of Complex Line Bundles
	Canonical Hermitian Connection
	Liouville Measure
	Transition Probability Amplitudes
	Parallel Translation and Transition Probability Amplitudes
	Complex Orbifolds
	Regular Quantization

	Djrbashian Kernels on Siegel Domains
	Djrbashian–Karapetyan Projection
	Saitoh's Construction and Djrbashian Kernels
	Djrbashian Kernels and Quantum States

	Forelli–Rudin–Ligocka–Peloso Asymptotic Expansion Formula
	Computability of -Bergman Kernels
	Cartan Connections and Fefferman's Theorem
	Conclusions
	References

