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Abstract: Surface water quality has a vital role when defining the sustainability of the ecological
environment, public health, and the social and economic development of whole countries.
Unfortunately, the rapid growth of the worldwide population together with the current climate change
have mostly determined fluvial pollution. Therefore, the employment of effective methodologies,
able to rapidly and easily obtain reliable information on the quality of rivers, is becoming fundamental
for an efficient use of the resource and for the implementation of mitigation measures and actions.
The Water Quality Index (WQI) is among the most widely used methods to provide a clear and
complete picture of the contamination status of a river stressed by point and diffuse sources of natural
and anthropic origin, leading the policy makers and end-users towards a more and more correct and
sustainable management of the water resource. The parameter choice is one of the most important and
complex phases and recent statistical techniques do not seem to show great objectivity and accuracy in
the identification of the real water quality status. The present paper offers a new approach, based on
entropy theory and known as the Maximum Information Minimum Redundancy (MIMR) criterion,
to define the optimal subset of chemical, physical, and biological parameters, describing the variation
of the river quality level in space and time and thus identifying its pollution sources. An algorithm
was implemented for the MIMR criterion and applied to a sample basin of Northeast Italy in order
to verify its reliability and accuracy. A comparison with the Principal Component Analysis (PCA)
showed how the MIMR is more suitable and objective to obtain the optimal quality parameters set,
especially when the amount of investigated variables is small, and can thus be a useful tool for fast
and low-cost water quality assessment in rivers.

Keywords: entropy theory; MIMR criterion; water quality parameters; river; Principal
Component Analysis

1. Introduction

Rivers have a pivotal role in ecological and human health as well as in the economic development
of territories, representing the main water supply for domestic use, irrigation, and industrial activities.
In the last decades, their water quality has ever more worsened due to both natural processes and
anthropic interventions, such as the discharge of industrial and municipal pollutants together with
runoff from agricultural lands [1]. Recently, climate change has further contributed to increasing
such problems in many countries, causing more and more extreme events. In fact, on the one hand,
less inflow in rivers during draughts reduces the dilution of the contaminants introduced from human
and natural sources; on the other hand, the more frequent occurrence of higher runoff due to intensive
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storms increases their load of pollutants. Similarly, the growth of water temperature modifies the
bio-geo-chemical processes and reduces the dissolved oxygen concentration in natural channels,
while the overflow of treated and untreated wastewater systems due to flooding seriously affects
the biotic life cycle and the possibility of waterborne diseases [2]. In addition, the rapid growth of
population and economic activities, together with the urban sprawl, are pushing towards a higher
demand of high-quality water not often matched by the locally available resources, while the discharge
of insufficiently treated wastewater raises expenses for downstream users and has damaging effects on
the aquatic environments [2].

In this context, reliable information about river water quality must be collected for an efficient
resource management and to implement protective measures and actions able to improve the conditions
of the water bodies [3] as required by the Sustainable Development Goals (SDGs). Monitoring networks
measuring various chemical, physical, and biological river quality parameters appear as a great source
of information on the water status in space and time [4–8]. However, they do not provide a complete and
clear picture of the scenario but only judgement in terms of individual parameters. In order to quickly
and easily collect information on the river water quality with a global vision, different approaches
based on the evaluation of only a few indices have been developed in recent years [9]. Among these, the
Water Quality Index (WQI) method is widely used to simplify expressions of complex sets of pollution
variables in rivers, lakes, and groundwater, and it is considered a key element in water resource
management [10]. In particular, the WQI combines various environmental parameters and converts
them into a unique value, detecting the overall status of water quality. Therefore, instead of comparing
the different evaluation results of multiple parameters, the WQI method is a reliable approach able to
provide integrated information on the quality [11]. Moreover, it helps decision makers to correctly and
sustainably manage the water resource, it analyses the impacts of the application of regulatory policy or
laws, and it provides a more comprehensive picture of the source’s quality for an easier understanding
by non-technical stakeholders [12]. Introduced as early as 1965 by [13] to define the status of water
quality in the Ohio River, it has undergone various formulations and modelling over time, becoming one
of the 25 environmental performance indicators of the holistic Environmental Performance Index [14].
The evaluation of the WQI is based on four main steps: (1) choice of parameters; (2) calculation of
sub-index values; (3) giving weights to the different parameters; (4) final assembly of the weighted
sub-index values [15].

The parameters choice is one of the most important phases in the design of the WQI and also the
most complex one. There are various WQIs across the world which are based on different selected
parameters, ranging from 4 [16] to 26 [17]. In the last decades, most of the studies have focused on
the design of a WQI with fewer environmental parameters able to describe the overall water quality,
in order to reduce the repetitive or correlated environmental variables and lower the analytical and
monitoring cost. Recently, various multivariate statistical techniques, including Cluster Analysis
(CA), Principal Component Analysis (PCA), Factor Analysis (FA), and Discriminate Analysis (DA),
have been widely used to select the few parameters able to detect variations in river water quality in
space and time and to detect potential degradation sources within the basin. For instance, Kumarasamy
et al. [18] investigated the hydrochemistry of the Tamiraparani river basin in Southern India with
multivariate CA, PCA, and FA. Phung et al. [19] applied the CA, PCA, FA, and DA techniques to
estimate the temporal and spatial changes of surface water quality in the Mekong Delta area of Vietnam.
Correlation analysis, PCA, and CA components were employed by [20] to describe seasonal changes,
identify contamination sources, and cluster monitoring stations of the Ganga and Yamuna rivers in
the Uttarakhand State (India). In 2016, Barakat et al. [4] determined the main contamination sources
in the Oum Er Rbia river and its main tributary in Morocco, using multivariate statistical methods
including Pearson’s correlation, PCA, and CA. Zandagba et al. [21] studied the suitability of Nokoué’s
water, one of the largest West African lagoons, and identified possible sources of pollution through
Hierarchical Cluster Analysis (HCA) and PCA. Although such techniques are becoming more and
more popular for their capacity to manage great volumes of spatial and temporal data deriving from
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a variety of gauge stations, they are still subjective because they depend on the number of parameters
provided for the analysis [12,16].

The present paper offers a new approach on the basis of information theory, in order to select the
variables causing the spatial and temporal quality variations of a river subject to point and diffuse
pollution sources within basin. It provides powerful tools able to relate various interconnected
flow data in order to obtain the best understanding of processes without any assumptions about
the correlations/dependencies among time series. This theory, built on the mathematical concept of
entropy, represents the quantitative measure of the information content associated with a signal. It has
been widely used in different sectors of hydraulics and hydrology to derive models of rainfall-runoff,
infiltration, and soil moisture [22–27] as well as distribution of velocity, sediment concentration,
and shear stress in open-channel flows [28–39]. Among the different applications, information theory
has also been employed for the optimization, design, and management of several gauge stations
including networks of water quality and groundwater [40,41], rainfall [42,43], streamflow, and water
level [44–51]. These problems can be solved through a multi-objective optimization approach, in which
the repetitive information is minimized whilst the total information is maximized. This concept is
known as Maximum Information Minimum Redundancy (MIMR) [45]. To the authors’ knowledge,
the MIMR criterion has not yet been used for the identification of representative sets from an ensemble
of quality parameters collected along a river. To that end, an easy-to-implement algorithm will
be developed here and applied to a sample basin of Northeast Italy, subject to continuous stresses
of urban and industrial origin, in order to verify its reliability and accuracy [52–55]. During the
selection, the three norms of maximum overall information, maximum information transition ability,
and minimum redundant information must be satisfied to achieve a unique solution under different
scenarios with a good performance and to thereby simplify the decision-making process. The MIMR
criterion, being based on a mathematical principle, could be more objective and less affected by the
number of investigated variables compared to other selection methods. In fact, the above-mentioned
four most used techniques for parameter selection (CA, PCA, FA, and DA) are characterized by
several disadvantages: the need of correlated parameters; the strict assumption about their relation
having to be linear, which occurs very rarely; and the required number of over 300 measured data
points [56,57] for the investigated sample, in order to obtain reliable results. The MIMR approach,
instead, would allow identifying only the parameters mostly responsible for the river pollution. In this
way, the local monitoring programs could be better addressed and prioritized, increasing both the
recording frequency of these parameters and the amount of measuring sites, especially in fluvial
reaches at higher risk of contamination and located in strongly anthropized, industrial, and agricultural
areas. A fast and simplified water quality assessment, based on few parameters, could thus be
more easily communicated and better understood by the public and non-technical stakeholders. In
addition, the local administrators and policy makers could be guided towards a faster and better
choice of mitigation measures and structural investments in order to achieve some of the Sustainable
Development Goals (SDGs) such as:

- the significant reduction of pollutants in fluvial and marine environments (Goals 6.3 and 14.1);
- the minimum release of hazardous substances and of untreated wastewater in rivers (Goal 6.3);
- an increasingly efficient and right use of the water resource (Goal 12.2);
- cleaner water to satisfy the needs of society and the safe use of surface waters for recreational

purposes, hygiene, and household activities (Goal 6.4).

The paper is organized as follows: in Section 2, the study area and data are introduced, the basic
entropy theory is briefly described for an easier understanding of the MIMR criterion, and the selection
algorithm is presented; Section 3 reports the results of the MIMR application in the identification
of the representative quality parameters set, the potentialities of the proposed framework, and the
comparison with the PCA selection method; finally, Section 4 states the conclusions.
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2. Materials and Methods

2.1. Study Area and Data Collection

The Bacchiglione basin, located in Northeast Italy, covers a surface of about 1177 km2 with
broad-leaved and coniferous forests dominating the mountainous area and non-irrigated arable land,
together with small and discontinuous urban fabric and concentrated industrial and commercial sites in
the remaining part up to the mouth (Figure 1). The Bacchiglione river has a length of 119 km, originates
from Dueville springs, and crosses two major cities, Vicenza and Padova, flowing into the Adriatic Sea.
The main channel is characterized by the presence of gravel boulders, cobbles, and aquatic plants on
the bottom while cane fields and shrubbery cover the banks. The fauna is especially linked to the flora
and the most common type is ornithofauna (native fauna), and the species most easily observed are
moorhens and glens. In the mountain area, the water discharge trend shows a significant variability all
year round, with high values in the winter months and low values in summer months. The flow rate
decreases going along the river due to the increasing agricultural water demand, and only near the big
cities an increase is recorded because of urban and industrial wastewaters. The most important causes
of water quality contamination in the Bacchiglione basin are to be found in the high population density
and the presence of tourists all year round, together with the numerous industrial settlements.
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Figure 1. The Bacchiglione basin: detailed pattern and land use.

Six quality parameters—Dissolved Oxygen (DO), five-day test for Biochemical Oxygen
Demand (BOD5), Ammonia Nitrogen (NH4-N), Nitrate Nitrogen (NO3-N), Total Phosphorus (TP),
and Escherichia Coli (E. coli)—were analyzed through the MIMR criterion to select the variables set
responsible for the river contamination level. They were sampled with 720 data points for each
parameter from January 2008 to December 2017 at 12 gauge stations by the Regional Environmental
Prevention and Protection Agency of Veneto (ARPAV), according to the National Environmental Quality
Standards for Surface Water (Legislative Decree No. 152/2006). The gauge stations were chosen because,
in addition to being distributed along the main reach of the river, they also measured both the flow
depth and quality parameters (Figure 2). All stations usually acquired data with a quarterly frequency
(40 data points per site and parameter), excluding stations 326, 174, and 181 which, addressing drinking
water purification, recorded with a monthly frequency (120 data points per site and parameter).
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2.2. Basic Entropy Measures

Shannon [58] developed the concept of entropy as a measure of information, disorder, chaos,
or uncertainty. Considering a certain event, defined as a discrete random variable X, it can occur in
different ways and lead to different outcomes, X1, X2, . . . , XN, with probabilities p(X1), p(X2), . . . , p(XN),
respectively. Therefore, the probability of occurrence, p(Xi), of the event Xi can thus be interpreted as a
measure of uncertainty about the occurrence of the event Xi and also provides an evaluation of the event
information content. When an event occurs with high probability, less information will be needed to
characterize the event. On the other hand, more information will be needed to characterize the event if it
occurs with low probability, p(Xi). This means that a more uncertain event transmits more information
or that more information is required to characterize it. Subsequently, being a measure of the amount
of uncertainty, entropy represents the information content of the event or its probability of occurrence.
Since the information content of an event, Xi, can be expressed as the logarithm of its occurrence
probability, p(Xi), entropy H(X) can thus be quantitatively defined as the probability-weighted average
of the information content of each event Xi:

H(X) = −
∑N

i=1
p(Xi)log2[p(Xi)]. (1)

H(X) is measured in average number of binary digits (bits) and takes values between 0 (complete
information) and log2N (no information).

In the case of an ensemble of multivariate discrete random variables N, the joint entropy can be
described as a measure of the overall information of the random variables, i.e.,

H(Xi, . . . , XN) = −
∑N1

i1=1
. . .

∑NN

iN=1
p(X1, . . . , XN)·log2p(X1, . . . , XN), (2)

where p(X1, . . . , XN) is the joint probability of the N variables. When the random variables are
stochastically independent, the joint entropy is equal to the sum of its one-dimensional marginal
entropies; otherwise, it is smaller.

It is probable that the information regarding one random variable (e.g., X1) can be derived from
knowledge of another variable (e.g., X2) of the same ensemble. Mutual information, also known as



Sustainability 2020, 12, 2078 6 of 22

transinformation, measures the linear or nonlinear dependence between two random variables and
detects how much uncertainty can be reduced in one of the variables when the other variable is equal
to the difference between the total entropy and the sum of the single entropies. For more than two
variables, the multidimensional transinformation between the n existing parameters and the new
(added) parameter (n+1) can be defined as:

T[(X1, X2, . . . , Xn), Xn+1] = H(X1, X2, . . . , Xn) −H[(X1, X2, . . . , Xn), Xn+1]. (3)

The transinformation is between 0 and H(X). It is zero when the variables are statistically
independent, while it is equal to H(X) when the variables are functionally dependent and,
thus, the information at one parameter can be fully transmitted to another parameter with no loss
of information at all. Larger values of T correspond to greater amounts of information transferred.
To assess the redundancy and the amount of duplicated information in a set of parameters, the total
correlation can be calculated, and its mathematical expression is equal to:

C(X1, . . . , XN) =
∑N

i=1
H(Xi) −H(X1, . . . , XN), (4)

where H(Xi) is the marginal entropy of the ith random variable and H(X1, . . . , XN) is the joint entropy
of the N random variables. It is equal to 0 when all random variables are independent, otherwise H(X1,
. . . , XN) > 0.

2.3. MIMR Criterion

The main concept of the MIMR approach is to choose a parameter set able to: (1) maximize the
whole information content (joint information), (2) maximize the entire information transition ability
(transinformation), and (3) minimize the redundant information (total correlation) [45].

Let there be N potential candidate parameters monitored in the gauge stations located along
the river. For each candidate parameter, there are some years of records denoted by X1, X2, X3, . . . ,
XN. Let S be the set of parameters already selected and its elements represented by XS1, XS2, . . . ,
XSk. Similarly, let F be the set of candidate parameters to be selected and its elements denoted as XF1,
XF2, XF3, . . . , XFm. The sum of k and m is the total number, N, of potential candidate parameters.
The effective information of S can be modelled as joint entropy and transinformation:

H(XS1, XS2, . . . , XSk) +
∑m

i=1
T(XS1:Sk; XFi), (5)

or
H(XS1, XS2, . . . , XSk) +

∑m

i=1
T(XS1:Sk; XFi:Fm), (6)

where XS1:Sk is the merged time series of XS1, XS2, XS3, . . . , XSk, and its marginal entropy is equal to
the multivariate joint entropy of XS1, XS2, XS3, . . . , XSk. In particular, the first part of the equation is
the joint entropy, measuring the total but not duplicated amount of information, which can be obtained
from the selected parameters. The second part is the information transition ability of S, which can be
measured by the sum of the transinformation between grouped variables in S and each parameter in F
(Equation (5)) or between grouped variables in S and in F (Equation (6)).

Another key point to consider is the redundant information among the selected parameters, and it
can be measured from the total correlation as:

C(XS1, XS2, . . . , XSk), (7)

Therefore, the MIMR criterion-based objective functions is formulated as:

max : H(XS1, XS2, . . . , XSk) +
∑m

i=1
T(XS1:Sk; XFi), (8)
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min : C(XS1, XS2, . . . , XSk), (9)

or
max : H(XS1, XS2, . . . , XSK) +

∑m

i=1
T(XS1−Sk; XFi:Fm), (10)

min : C(XS1; XS2, . . . , XSk), (11)

This constitutes a multi-objective optimization problem, which can be unified to a single objective
optimization problem through integrated functions in order to facilitate the end-user’s decision making:

max : λ1(H(XS1, XS2, . . . , XSk) +
∑m

i=1
T(< XS1, XS2, . . . , XSk >; XFi)) − λ2C(XS1, XS2, . . . , XSk), (12)

max : λ1(H(XS1, XS2, . . . , XSk) +
∑m

i=1 T(< XS1, XS2, . . . , XSk >;< XFi, . . . , XFm >))−
λ2C(XS1, XS2, . . . , XSk)

(13)

where λ1 and λ2 are the information and redundancy weights, respectively, and their sum is 1.
Their variations allow users to obtain different possible solutions under various scenarios. Since the
first goal is the maximum information of the parameter set, λ1 should be usually larger than λ2 [45].
A sensitivity analysis on different information redundancy weights found that most parameters kept
stable with λ1 between 0.5 and 1 and λ2 between 0.5 and 0.

2.4. Selection Procedure

The application of MIMR criterion requires a selection procedure, which presents the
following steps:

1. collecting the continuous time series of each potential candidate parameter and discretizing them;
2. calculating marginal entropies for all the candidate parameters;
3. identifying the parameter with the maximum marginal entropy and defining it as the

main parameter;
4. updating the S set, where the parameters already selected are saved, and the F set, where all the

unselected candidate parameters are saved;
5. selecting the next parameter from the F set by the MIMR criterion. In this step, all parameters in

F are scanned sequentially to search the one satisfying Equation (10) or Equation (11);
6. repeating steps 4 and 5 until the expected number of parameters is selected.

The convergence of the selection depends on the ratio between the joint entropy of the selected
parameters and of all potential candidate parameters. These steps show that if no convergence
threshold is provided, then all potential candidate parameters will be ranked in descending order,
which will help to determine the parameter with the least degree of importance. An algorithm in
MATLAB was built in order to minimize the implementation effort.

2.5. Data Discretization

The continuous time series acquired at the gauge stations along the river should be discretized
in order to know the entropy terms. Various approaches exist for data discretization, such as the
histogram method and the mathematical floor function. For the application of histogram discretization,
an arbitrary number of bins must be assumed, which is a questionable method since entropy terms
depend on the bin size. In particular, the entropy values decrease as the bin width increases.
The subjective calculation of the bin size could be overcome with the use of a mathematical floor
function which converts a continuous value x in its nearest and lowest integer multiple of a constant a,
i.e.,

Xq = a
[2x + a

2a

]
, (14)
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where [·] is the mathematical floor function, Xq the quantized discrete value, and a the bin width.
The advantages of the mathematical floor function are the lack of a parametric distribution and the
inclusion of physical considerations where the resolution of a should not be less than the uncertainties
involved in the continuous data. However, determining an appropriate a is not always easy, and the
selection of a should guarantee that: (a) all candidate parameters have significant and distinct
information; (b) the spatial and temporal variability of time series is preserved before and after
discretization as much as possible; and (c) the selected parameters are as stable as possible, when a
varies within an interval near its optimal value. In this paper, the bin width was calculated through
known empirical formulas of [59–61]. Scott [59] proposed an optimal bin width as:

a = 3.49σ(x)N−
1
3 , (15)

where σ is the standard deviation of an observation series of X and N is the sampling size.
Sturges [60] estimated the bin width as:

a =
Rx

1 + log2N
, (16)

where Rx represents the range of X and N its sampling size.
Bendat and Piersol [61] suggested another method for defining an optimal bin width:

a =
Rx

1.87(N − 1)0.4
, (17)

where Rx is the range of X and N its sampling.

3. Results and Discussion

3.1. Entropy Evaluation and Data Length Effect

The entropy values, reported in Table 1, are only slightly affected by the different bin widths
calculated by the methods of Scott, Sturges, and Bendat and Piersol described in the previous paragraph.
The maximum and average marginal entropies evaluated through Sturges’ approach are a little lower
than the others. All three methods present joint entropies lower than the saturated value which is
equal to log2(n) = 9.49 bits (where n is the number of data acquired in ten-year observation equal to
720). Although there are no significant differences among the three methods, Sturges’ formula seems
to show the highest information content and lowest redundancy of the time series. Considering the
seasonal trend, the entropy values tend to level out, reducing even more the differences among the
three methods (Table 2).

Table 1. Entropy values with different bin widths.

Binning
Evaluation

Maximum
Marginal Entropy

Average Marginal
Entropy Joint Entropy Total Correlation

Scott 2.86 1.46 5.78 2.96
Sturges 2.39 1.23 7.31 1.97

Bendat and Piersol 2.55 1.41 5.55 2.91
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Table 2. Seasonal entropy values with different bin widths.

Binning
Evaluation Season

Maximum
Marginal
Entropy

Average
Marginal
Entropy

Joint Entropy Total
Correlation

Scott

winter 2.36 1.31 6.63 0.52
spring 2.21 1.30 6.45 1.35

summer 2.27 1.19 6.43 1.26
autumn 2.25 1.25 6.49 0.99

Sturges

winter 2.25 1.09 6.55 0.10
spring 2.13 1.26 6.27 1.26

summer 2.23 1.11 6.47 0.15
autumn 1.99 1.08 6.37 0.25

Bendat and
Piersol

winter 2.32 1.27 6.75 0.56
spring 2.21 1.40 6.68 1.75

summer 2.16 1.23 6.62 0.89
autumn 2.24 1.27 6.64 0.96

However, a slight increase in the winter months is still detectable compared to the rest of the
year, which could be explained reporting the seasonal trend of each single parameter (Figure 3).
The box-plots were built gathering the data of all gauge stations along the river. In particular, as shown
by the figure, the mean and standard deviation values of E. coli concentrations are significantly higher in
winter than those measured in other seasons, due to domestic and industrial discharges. The seasonal
DO content depends on the water temperature (T) which mainly affects the solubility of oxygen.
In fact, it increases during winter, when T is lower, and vice versa in the summer. The lowest mean
concentrations of NH4-N occur in summer for excessive fertilizer use on agricultural land, while the
mean concentration of NO3-N is maintained roughly constant for the whole year. The same behavior is
observed for TP, even though the standard deviations are slightly higher in hot seasons, while the BOD5

parameter shows a high concentration especially in winter due to the presence of a large discharge of
urban and industrial wastewaters in the river. In summary, the higher values of mean concentrations
and their standard deviation for most parameters confirm the increase of the information content
detected in winter months.

With regard to the joint entropy, the values obtained from Scott’s and Bendat and Piersol’s
formulas increase, while Sturges’ decreases, reducing their distance. This underlines that, in the
investigated case, the estimation method of the bin width does not particularly influence the entropy
values, and thus, any formula could be chosen for the data discretization.
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The maximum and average marginal entropies, the joint entropy, and the total correlation of time
series were calculated by increasing their length in order to know the influence of the data length on the
values of entropy terms. Figure 4 demonstrates how the temporal trends are very similar for the three
methods of binning evaluation. The values usually become higher with increasing data length and then
tend to stabilize. The trends are not monotonous, and fluctuations are evident at certain data lengths
(e.g., around 1 year, 3 year, and 5 year) according to previous studies [62,63]. Moreover, it is interesting
to note how the entropy values, estimated using 1-year, 2-year, and 5-year series, nearly reach 60%,
75%, and 90% of the ones calculated in 10 years of data. More importantly, as the measure parameters
are subject to variability among years due mainly to different meteorological conditions, it is necessary
to detect and estimate such variability with shorter time series. Although, in this paper, the quality
parameters observed in at least 10 years were used for the MIMR selection, shorter lengths of series
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3.2. Application of MIMR Criterion

The MIMR criterion was applied according to the procedure described in Section 2.4,
and a threshold of 0.95 was chosen in order to consider 95% of the total joint entropy in the data set
and thus obtain the optimal subset of parameters.

With regard to the values of λ1 and λ2, the main purpose of the analysis is to obtain the maximum
information from the selected parameters, and thus the first one needs to be higher than the second
one, as suggested by [45]. Therefore, a sensitivity analysis was carried out varying λ1 from 0.5 to
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1 and λ2 from 0.5 to 0 (Table 3). The results of Table 3 show the stability of MIMR with increasing
values assigned to the information weights. In the present case, such stability is especially guaranteed
from the small number of data. In fact, the correct choice of values of λ1 and λ2 is based on a deep
knowledge of the system, which it is not always possible. Selecting optimal weights still represents
a challenge, and thus investigating the performance of MIMR with different values of λ1 and λ2 can
provide useful suggestions. In particular, by increasing the value of λ1, a more informative but less
independent parameter set is derived. As seen from Figures 5–7, a value of 0.8 for information weight
leads to a good balance between information and redundancy. To sum up, the values of λ1 = 0.8,
λ2 = 0.2, and a threshold of 95% were used in this study.

Table 4 reports the results of the MIMR criterion application over the entire 10-year series.
As highlighted in the table, the optimal representative subset of selected parameters, characterized by
a balance among maximum total information, maximum transition ability, and minimum redundant
information, is constituted by Dissolved Oxygen and Escherichia Coli, and it stays constant under
different time windows and seasonal conditions. In this way, the MIMR criterion could be used to
simplify and speed up the analysis process which leads to the quality assessment of the Bacchiglione
river. In particular, the correlation between the temporal and spatial variability of only two
parameters with one of the different factors affecting the water quality, such as population growth,
climate change, uncontrolled tourism, numerous industrial settlements, and excessive land exploitation,
allows to rapidly identify the point and/or diffuse pollution sources within the basin. For example,
Escherichia Coli is an indicator of a fecal contamination probably due to the discharge of untreated
municipal wastewaters into the river and surface runoff of pastures and fields used for livestock
farming. At the same time, the reduction of Dissolved Oxygen could be associated to the release of
untreated domestic sewages when the fluvial reach flows through strongly urbanized areas or to the
release of fertilizers and pesticides when it crosses intensive agricultural lands.

Table 3. Sensitivity analysis of the selected parameters with varying information weights.

Binning
Evaluation

Iteration Step

λ1 1 2 3 4 5 6

Scott

0.5 DO E. coli NH4-N NO3-N TP BOD5
0.6 DO E. coli NH4-N NO3-N TP BOD5
0.7 DO E. coli NH4-N NO3-N TP BOD5
0.8 DO E. coli TP NH4-N BOD5 NO3-N
0.9 DO E. coli TP NH4-N BOD5 NO3-N
1.0 DO E. coli TP NH4-N BOD5 NO3-N

Sturges

0.5 DO E. coli NO3-N NH4-N TP BOD5
0.6 DO E. coli NO3-N NH4-N TP BOD5
0.7 DO E. coli NO3-N NH4-N TP BOD5
0.8 DO E. coli TP NH4-N BOD5 NO3-N
0.9 DO E. coli TP NH4-N BOD5 NO3-N
1.0 DO E. coli TP NH4-N BOD5 NO3-N

Bendat
and

Piersol

0.5 DO E. coli NH4-N NO3-N TP BOD5
0.6 DO E. coli NH4-N NO3-N TP BOD5
0.7 DO E. coli NH4-N NO3-N TP BOD5
0.8 DO E. coli TP NH4-N BOD5 NO3-N
0.9 DO E. coli TP NH4-N BOD5 NO3-N
1.0 DO E. coli TP NH4-N BOD5 NO3-N
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Table 4. Maximum Information Minimum Redundancy (MIMR) results over the entire 10-year series.

Winter Spring Summer Autumn

Scott

Set of selected
parameters DO, E. coli DO, E. coli DO, E. coli DO, E. coli

Joint Entropy 4.51 4.52 4.27 4.35
Information

Transition Ability 6.91 6.37 6.85 6.59

Total Correlation 0.42 0.41 0.42 0.47
MIMR value 10.43 9.91 10.19 9.97

Sturges

Set of selected
parameters DO, E. coli DO, E. coli DO, E. coli DO, E. coli

Joint Entropy 2.49 2.41 2.27 2.41
Information

Transition Ability 7.01 6.78 6.72 6.90

Total Correlation 0.011 0.012 0.013 0.013
MIMR value 9.00 8.70 8.53 8.82

Bendat and
Piersol

Set of selected
parameters DO, E. coli DO, E. coli DO, E. coli DO, E. coli

Joint Entropy 4.20 4.16 3.99 3.71
Information

Transition Ability 6.93 6.63 6.75 6.94

Total Correlation 0.035 0.038 0.040 0.034
MIMR value 10.29 9.95 9.93 9.91

3.3. Comparison with PCA

The performance of the MIMR criterion was compared with another method,
i.e., Principal Component Analysis, which is now the most used multivariate statistical approach
able to detect relationships between the water quality parameters, define contamination sources,
and group gauge stations with similar characteristics into clusters. The application of PCA was
preceded by a data standardization consisting of computing the z-score values of the parameters,
which have zero mean and unit variance, in order to reduce the impact of difference on the variance of
variables, balance the variable sizes, and make the measurement units uniform. The appropriateness
of the dataset for the PCA was verified through the Kaiser–Meyer–Olkin (KMO) and Bartlett’s
tests of Sphericity. The KMO index measures the sampling suitability that represents the variance
caused by underlying principal components. In particular, if this index is greater than 0.5, the factor
analysis is satisfactory. In the present case, the KMO had a value of 0.68. Bartlett’s test of Sphericity,
instead, checks if variables are related; that is, the correlation matrix is an identity matrix, making
PCA an unsuitable technique for the data analysis. In the present case, the correlation matrix is not an
identity matrix, therefore PCA can be both applied efficiently on all data and grouped by season in
order to define interrelationship among the parameters. The results of the PCA obtained using the
SPSS Software are shown in Figure 8 and Tables 5 and 6.
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Table 5. Loadings values for water quality parameters in all seasons.

PCA1 PCA2

E. coli 0.781 0.022
NH4-N 0.565 0.428
NO3-N 0.061 0.684

TP 0.774 −0.230
BOD5 0.634 0.375

DO −0.016 0.752
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Table 6. Loading values for water quality parameters in (a) winter, (b) spring, (c) summer,
and (d) autumn.

PCA1 PCA2 PCA1 PCA2

E. coli 0.744 −0.264 E. coli 0.761 −0.213
NH4−N 0.574 0.362 NH4−N 0.636 −0.353
NO3−N −0.138 −0.354 NO3−N 0.154 0.44

TP 0.788 −0.186 TP 0.588 0.243
BOD5 0.709 0.323 BOD5 0.75 0.349

DO −0.172 0.831 DO −0.109 0.788

(a) (b)

PCA1 PCA2 PCA1 PCA2 PCA3

E. coli 0.751 0.123 E. coli 0.851 −0.086 0.017
NH4−N 0.743 −0.273 NH4−N 0.444 0.660 0.052
NO3−N 0.423 −0.430 NO3−N −0.194 0.898 −0.042

TP 0.706 0.145 TP 0.790 0.095 −0.099
BOD5 0.614 0.116 BOD5 0.483 0.361 0.465

DO 0.135 0.878 DO −0.12 −0.066 0.933

(c) (d)

In this study, the two principal components, which have eigenvalues >1 and explain almost
56% of the total variance in the water dataset, were retained. In autumn, the third component also
appears with an eigenvalue slightly greater than 1. The variables with eigenvalues <1 were eliminated
due to their low significance [64]. The PC loadings with values >0.75, 0.75–0.50, and 0.50–0.30 were
classified as strong, moderate, and weak, respectively [65]. The first factor (PC1), accounting for the
35% of the total variance, shows strong positive loadings of E. coli and TP, and moderate positive
loading of NH4-N and BOD5. If one considers the seasonal variation, the situation is very similar with
34%, 32%, 36%, and 33% in winter, spring, summer, and autumn, respectively. The parameter E. coli
remains constantly high for the whole year, while TP decreases in spring. NH4-N furtherly increases
in summer and BOD5 shows lower values in autumn. The second factor (PC2) explains 56% of the
total variance and has a strong positive loading on DO and positive moderate loading on NO3-N.
While the oxygen remains high all year round, the NO3-N levels are quite low if one considers the
seasonal trend. According to the PCA, the identified parameters are four, and they become more or
less significant in the different seasons. The MIMR criterion, instead, provides only two parameters,
Dissolved Oxygen and Escherichia Coli, which stay constant under different meteorological conditions.
This result underlines how this method seems to be more suitable to detect the optimal parameters set
both when the amount of the investigated variables is small and when a non-linear relationship among
parameters exists, being the MIMR criterion independent from the correlations among time series.

4. Conclusions

The rapid growth of the worldwide population, together with the current climate change,
are contributing to the increase of river pollution, pushing research towards the development and
implementation of effective methodologies able to rapidly and easily provide reliable information on
the degradation status.

The Water Quality Index (WQI) proved to be a useful tool to obtain a clear and complete picture
of the contamination level of a river stressed by point and diffuse sources of natural and anthropic
origin, leading the policy makers and end-users towards a more and more correct and sustainable
management of the water resource. Such index is often based on a significant number of environmental
parameters describing the overall water quality and, recently, most of the studies have focused on
reducing them in order to remove the redundant variables and lower the analytical and monitoring
costs. Therefore, the quality parameters selection represents one of the most important and complex
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phases for the design of the WQI, and recent multivariate statistical techniques do not seem to show
great objectivity and accuracy in the identification of the real water pollution status.

This study proposes a new method based on information theory in order to select the variables
causing the quality variations in time and space of a river subject to point and diffuse pollution sources
within the basin. Such method, known as the Maximum Information Minimum Redundancy (MIMR)
criterion, built on the mathematical concept of entropy, allows choosing the parameters through
a multi-objective optimization approach, where the repetitive information is minimized whilst the total
information is maximized. The criterion was validated on a sample basin of Northeast Italy subject
to continuous stresses of urban and industrial origin. Its application required the data discretization
using a mathematical floor function, which converts continuous random variables to integers assigning
a proper value of the bin width. In the present paper, the three known empirical formulas, used to
define the optimal bin width, showed not to significantly affect the entropy values, leading to the
conclusion that any formula could be chosen for the data discretization. The assessment of the quality
parameters’ information content under different time windows highlighted its reaching about 90 %
in 5-years, compared to the one calculated in 10 years, demonstrating how shorter lengths of series
could also be considered, especially when a limited amount of data is available. Besides, a sensitivity
analysis, performed by varying the information redundancy tradeoff weights, allowed choosing the
most suitable weights to balance the two conflicting objectives, maximum information and minimum
redundancy, and thus obtaining the optimal representative subset of quality parameters.

The MIMR criterion was also quantitatively compared to the multivariate statistical approach
PCA, and the results showed how the MIMR seems be more suitable to detect the optimal parameters
set both when the amount of the investigated data is small and when a non-linear relationship among
the parameters exists. In fact, this set of parameters, constituted by Dissolved Oxygen and Escherichia
Coli, stays constant both when considering all data and when grouping them in the four seasons.
This way, the MIMR criterion could be used to develop a future WQI, more objective and more
correctly weighted, able to provide a better water quality assessment of the Bacchiglione river under
different conditions. In addition, the correlation between the spatial and temporal variability of only
two parameters and one of the factors affecting the river quality status also allows a faster and clearer
identification of the contamination sources within the basin. This can help the environmental managers
to better address and prioritize the local monitoring activities and guide the local administrators and
policy makers towards the choice of mitigation measures and structural investments, which could
speed up the achievement of the Sustainable Development Goals (SDGs). Some of these mitigation
measures and interventions could be the adoption of good land use practices and sustainable food
production systems (Goal 2.4), the re-naturalization of some fluvial reaches with parks and green
areas (Goal 6.6), the revamping of wastewater treatment plants with advanced technologies (Goal 6.A),
and the building of new treatment plants (Goal 6.A).

Finally, the method achievements could help the public and non-technical stakeholders
to more meaningfully understand the drivers of the water quality degradation in the basin,
therefore, strengthening the involvement of the local communities in actions aimed at improving
the water quality and sanitation (Goal 6.B).
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