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Abstract
This study proposes a methodology based on machine learning (ML) algorithms for rapid 
and robust classification of building structural types (STs) in multispectral remote sens-
ing imagery aiming to assess buildings’ seismic vulnerability. The seismic behavior of 
buildings is strongly affected by the ST, including material, age, height, and other main 
structural features. Previous works deployed in  situ data integrated with remote sensing 
information to statistically infer STs through supervised ML methods. We propose a trans-
ferable methodology with specific focus on situations with imbalanced in  situ data (i.e., 
the number of available labeled samples for model learning differs largely between differ-
ent STs). We learn a transferable model by selecting features from an exhaustive set. The 
transferability relies on deploying geometric features characterizing individual buildings; 
thus, the model is less sensitive to domain adaption problems frequently induced by e.g., 
changes in acquisition parameters of remotely sensed imagery. Thereby, we show that few 
geometry features enable generalization capabilities similar to models learned with a large 
number of features describing spectral, geometrical or contextual building properties. We 
rely on an extensive geodatabase containing almost 18,000 building footprints. We follow 
a Random Forest (RF)-based feature selection strategy to objectively identify most valu-
able features for prediction. Furthermore, the problem of unbalanced classes is addressed 
by adopting two approaches: downsampling the majority class and modifying the classifier 
internally (weighted RF). The implemented model is transferred on the challenging urban 
morphology of the Val d’Agri area (Italy). Results confirm the statistical robustness of the 
model and the importance of the geometry features, allowing for reliable identification of 
STs.
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1 Introduction

The disastrous seismic events which struck Italy in the last 50 years caused more than 5000 
casualties and an economic loss of more than 120 billion €. These numbers stress the high 
vulnerability of urban systems with respect to earthquakes. In order to adequately miti-
gate risk, the vulnerability of structures must be decreased both by means of earthquake-
resistant design for new structures and, especially, through strengthening actions on the 
existing ones. The destructive events in Italy in 2016 emphasize the need for an urgent 
area-wide vulnerability assessment of existing buildings to identify hot spots of damage 
and consequently carry out appropriate protection measures. Risk analyses and earthquake 
damage scenarios exploit quantity, arrangement, and value of the exposed structures and 
their expected seismic behavior to quantify physical effects due to earthquakes of given 
intensity (Dolce et al. 2003; Chiauzzi et al. 2012).

The expected seismic behavior of buildings due to an earthquake having fixed intensity 
is assessed by “Damage Estimation Models” (DEMs). Several DEMs have been developed 
following different approaches based on specific physical characteristics of the structures 
as input data (Calvi et  al. 2006). In this study, the term “building stock” is confined to 
residential buildings and does not involve other exposed elements such as public buildings 
and lifelines. Physical variables characterizing the building stock such as building height, 
size, spatial configuration, symmetry in elevation and plan, disposal of resisting elements 
in plan, arrangement of buildings, foundations type, etc. are crucial for the application of 
DEMs (Dolce et al. 2003). These properties enable the classification of the structural type 
(ST) which has a significant influence on seismic behavior (Taubenböck et al. 2009): build-
ings that pertain to the same ST are likely to show similar behavior with respect to a given 
ground shaking. The calculation of expected losses in terms of number of destroyed and 
unusable buildings following earthquakes of given intensity can allow estimation of home-
less people, fatalities, needs for shelters, and economic losses. Consequently, this informa-
tion supports the development of strategies aimed at decreasing the actual seismic risk; in 
a pre-event phase it enables the intelligent and efficient preparedness of emergency efforts 
relevant to the post-event phase. Therefore, it is crucial to assess the vulnerability of the 
exposed building stock. At the same time, compiling this information is very demanding in 
terms of required time as well as economic and human resources.

Countries highly threatened by earthquake risk most frequently lack reliable build-
ing datasets containing important information and attributes (Geiß et al. 2016), due to 
format problems or to restricted access for privacy concerns. In the perspective of effi-
cient risk assessment, the scientific community is operating towards the preparation of 
building inventories involving the calculation of physical parameters. Large areas can 
be investigated thanks to the spatial resolution and coverage of remote sensing imagery 
(Mueller et  al. 2006; Taubenböck et  al. 2008). Thereby, the usability of remote sens-
ing for contributing to the determination of seismic risk in different areas of the world 
is investigated jointly by civil engineering and remote sensing communities. Numer-
ous recent studies emphasize the feasibility of remote sensing in supporting pre-event 
vulnerability assessments and post-event structural damage evaluation of built-up struc-
tures in a spatially contiguous manner. Sarabandi et al. (2008) developed a set of meth-
odologies for updating spatial and geometric information of buildings from single and 
multiple high-resolution optical satellite images. Balkaya et al. (2015) proposed a GIS-
based real time monitoring system deploying satellite imagery for disaster management 
in the aftermath of damaging events. Casciati et al. (2016) designed and implemented 
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a satellite-based asset tracking system to sustain emergency preparedness in the context 
of a critical event. However, a globally applicable methodology enabling the fully auto-
mated extraction of physical parameters affecting the seismic vulnerability of the build-
ing stock does not exist. More specifically, not all the parameters that are crucial for a 
vulnerability assessment (e.g., the ST) can be directly calculated but have to be inferred 
in an indirect manner.

The first aim of this study is to explore the potential of the combined use of remote 
sensing data and a large in situ building data base to classify the building stock by ST in 
order to provide large area information for the implementation of DEMs. Various studies 
proved that physical characteristics describing the building stock derived from multi-sensor 
remote sensing data allow for an assessment of building STs. Furthermore, the fragility 
curves based on such data have been applied for the risk assessment of exposed buildings 
(Taubenböck et al. 2009; Geiß et al. 2015). However, most studies focus on larger metro-
politan areas where a multitude of clearly distinguishable STs are present which allows the 
correlation between building STs and fragility curves. In contrast, this study deals with a 
dominantly rural and peri-urban area with less STs: only two dominating STs are present. 
The two STs exhibit features that appear very similar from a remote sensing perspective. 
Thus, the identification of the two different classes is challenging and requires meaningful 
and robust features. At the same time, the morphology and spatial composition of these two 
STs is very complex. This complex morphology, representative of the Italian small urban 
centers, will allow us to show that even in such difficult morphologic environments remote 
sensing can provide data useful for the large scale vulnerability assessment of buildings 
with viable accuracies.

However, in many real-world situations, the availability of in situ data on the building 
stock is limited and the representability of the samples deployed to train the classification 
algorithm is frequently restricted to the source domain (i.e., the area which the samples 
were collected from) (e.g. Geiß et al. 2015). In this context, transfer-learning problems can 
affect the analysis of remote sensing data. Thereby, the challenge is to generate a robust 
model which is learnt on a source domain and also applicable on a target domain with-
out a significant decrease in accuracy. Especially a shift of the covariates (i.e., features), 
as frequently induced by changes during the data acquisition (e.g., atmospheric condition, 
illumination angle etc.), can hamper the unadapted transfer of models (Tuia et al. 2016). 
We propose a transferable methodology with specific focus on situations with imbal-
anced in situ data (i.e., the number of available labeled samples for model learning differs 
largely between different STs). We learn a transferable model by selecting features from an 
exhaustive set. The transferability relies on deploying solely geometric features character-
izing individual buildings; thus, the model is less sensitive to domain adaption problems 
frequently induced by a covariate shift. Thereby, we show that those few geometry features 
enable generalization capabilities similar to models learned with a large number of features 
describing spectral, geometrical or contextual building properties. The developed method-
ology is supported by an in situ database of almost 18,000 buildings, supplying substantial 
data for validation and being a particular novelty of this work; it provides detailed physical 
knowledge on STs (Masi et al. 2014).

The following organization is used for the rest of the document. Section 2 describes the 
study area and the seismic characteristics of the two building classes; furthermore, in situ 
data, the derived geo-information and remote sensing data, are also explained. Section 3 
outlines the methodology, introduces the features used for the classification and explains 
the algorithms as well as the metrics used to assess the accuracy of the classification maps. 
Section 4 illustrates the experimental setup. Section 5 contains the analyses of the obtained 
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results. Section 6 provides a discussion of the results in the perspective of future develop-
ments in engineering applications; in Sect. 7 final conclusions are remarked.

2  Materials

2.1  Study area: Val d’Agri, Italy

The Val d’Agri area (1405.45  km2), located in the Basilicata region in Southern Italy, 
comprises 18 villages. This area, situated in the seismically active axial sector of South-
ern Apennines, is characterized by high hazard: among the most destructive events which 
have stricken the Italian peninsula, it is worth mentioning the 16 December 1857 earth-
quake (X–XI intensity of Mercalli scale, 7.0 magnitude) having its epicenter exactly in Val 
d’Agri. This event concerned a considerable portion of the Southern Apennines, and in the 
Val d’Agri area it caused heavy damage and many casualties in the Potenza and Salerno 
provinces (INGV 2018).

From a remote sensing point of view, the classification of the dwelling buildings into 
STs influencing their seismic behavior is challenging due to the organic urban structure 
of the villages (Fig. 1). Specifically, the arrangement of the buildings is very diverse and 
complex and distinctive spatial patterns cannot be clearly identified: generally, the villages 
present a very dense historical center, where buildings are mostly irregularly arranged and 
very close to each other, often sharing the same walls, and a more recent surrounding area 
where buildings show lower density.

Two main building types are present in the area of interest: masonry (Fig. 2a) and rein-
forced concrete (RC; Fig. 2b). The classification of buildings in masonry and RC is a useful 
element to preliminarily distinguish seismic performances. Specifically, a first difference is 
that in masonry buildings the resistance to ground shaking is distributed almost in all the 
vertical structural elements, while in RC buildings this resistance is concentrated only in 
some specific elements. Masonry is a compound material consisting of large size inert ele-
ments, having natural or artificial origin, and a binder. The performance of masonry struc-
tures is mainly determined by: nature, geometry and quality of ceilings and wall surfaces; 
kind and effectiveness of the connection elements, as well as construction details (Penazzi 
et  al. 2000). RC buildings show seismic performance, which is mainly due to strength 

Fig. 1  Example of the arrangement of the building stock in the studied area (Viggiano village), a from aer-
ial picture; b from 2013 orthophoto
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and ductility of structural elements. Strength and ductility in the individual elements are 
strongly dependent on mechanical and quantitative characteristics of steel and concrete 
(longitudinal and transversal rebar ratio, grip between the two materials, dimensions of 
the reinforcement bars, resistance), disposal of the two elements (mooring in concrete and 
overlap, disposition in the section of tension and compression reinforcement, construc-
tional details in beam-column joints, elongation of longitudinal and transversal reinforce-
ment bars), quality of the executed work (Fardis 2009; Masi et al. 2013). Ultimately, geo-
metrical attributes of RC buildings contribute in characterizing their performance under 
seismic load (Masi 2003; Masi and Vona 2012).

2.2  Derived geoinformation and in situ data

A thorough building-by-building inventory is available in GIS format for the 18 villages of 
the Val d’Agri area for pre-event vulnerability analyses (Masi et al. 2014). This inventory 
was collected by purposely-trained technicians under the supervision of researchers from 
the University of Basilicata School of Engineering during in situ inspections between 2001 
and 2006. The data set consists of a digital cadastral map of 17,462 geolocated building 
polygons (Table 1) affiliated with physical parameters which affect their seismic vulner-
ability. These include the total number of storeys, average storey height, average floor area, 
building age and use, regularity, ST, roof type and building use, among others.

With regard to the ST, the data base consists of 13,819 masonry and 3643 RC buildings 
(79.1% and 20.9% of the total inventory respectively). For a detailed description of the 

Fig. 2  a Example of ensemble of masonry buildings; b example of ensemble of RC buildings in the study 
area in their typical arrangement

Table 1  Numbers of buildings and ST distributions of the whole inventory, the village Paterno deployed 
for the learning of ST classification models and the remaining 17 villages used for evaluating the model 
transfer

Buildings [no. (%)]

Structural type All 18 villages Paterno
(model learning)

17 remaining villages
(model transfer)

Masonry 13,819 (79.1) 1338 (72.6) 12,481 (79.9)
RC 3643 (20.9) 506 (27.4) 3137 (20.1)
Total 17,462 1844 15,618
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survey procedure, the collected building attributes as well as the deployed survey form the 
reader is referred to Masi et al. (2014).

Mapping inconsistencies within the inventory building footprint geometries were cor-
rected by manually editing inaccurate polygons taking the remote sensing data (Sect. 2.3) 
as reference.

2.3  Remote sensing data

With concern to the remote sensing data we use an airborne orthophoto with a spatial reso-
lution of 50  cm and 4 spectral bands (Red, Green, Blue and Near Infrared) acquired in 
2013. This data set was chosen on the one hand because it is comparable to current mul-
tispectral satellite images with very high spatial resolution (VHR; e.g. GeoEye, Pléiades 
or WoldView II–IV) and could therefore easily be substituted by them. On the other hand, 
these data are easily available for the whole of Italy via the Italian National Directory of 
Territorial Data (RNDT 2018).

3  Methodology

Two main building STs, i.e. masonry and RC, are dominating the study area. In conse-
quence we address a binary classification problem to assign the buildings their respective 
ST by the use of remote sensing data automatically. To this end we implemented the fol-
lowing sequential procedure (Fig. 3).

On the basis of the building polygons and the remote sensing images (Sects. 2.1 and 
2.2), relevant spatial and spectral image features determined in previous studies (e.g. 
Taubenböck et al. 2009; Geiß et al. 2014, 2015) have been calculated based on a multi-
level concept (Sect. 3.1). These descriptive image features aim at capturing the individual 
buildings’ physical characteristics as well as their spatial context properties and form the 
basis for modelling the relationship between the remote sensing data and in situ collected 
ST information using supervised machine learning. In a next step, the resulting classifica-
tion models are used to estimate the STs for unseen buildings based on their associated 
feature manifestations.

Two different Machine Learning algorithms were tested for ST classification, RF and 
K-Nearest Neighbors (KNN). A RF-based feature selection procedure has been integrated 

Fig. 3  Overview on the framework and calculation steps carried out in this study
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in the classification workflow in order to create a robust and considerably reduced subset of 
features (Sect. 3.2.1) which is convenient with regard to the computation time. The models 
were then re-learned using the selected features to provide a higher level of model transfer-
ability and rapid applicability. In addition, we use techniques to address misclassification 
problems related to class imbalance (Sect. 3.2.2). Finally, the resulting classifiers have been 
transferred to the entire Val d’Agri area. The classification maps have been evaluated in 
terms of confusion matrices and corresponding accuracy measures (Sect. 3.3).

3.1  Multi‑level feature calculation

For an exhaustive and discriminative characterization of the individual buildings, a com-
prehensive state-of-the-art feature set including geometric, spatial context as well as spec-
tral measures has been calculated based on three different spatial levels. Please refer to the 
“Appendix” for a detailed list of all deployed features, respective definitions and references.

3.1.1  Spatial levels

To comprehensively take the buildings’ urban environment into account, three differ-
ent spatial levels (Fig. 4) have been considered each of them encoding distinctive spatio-
contextual aspects: (1) the individual building (IB) represents the actual footprint of every 
single dwelling structure. Derived from the first, the other two levels describe the morpho-
logical setting in which the buildings are embedded in: (2) the aggregated buildings (AB) 
level involves the adjacent building footprints forming additional polygons. (3) The “buffer 
distance” (BD) level is the largest considered entity: a buffer of 10 m has been calculated 
around each building, then overlapping buffer polygons have been merged together and cut 
by using a layer of the main road network (available from OpenStreetMap). The distance 
of 10 m has been chosen since it has been shown appropriate to reflect the spatial arrange-
ment of neighboring buildings in the considered area. In this manner the non-regular set-
tlement structure of the villages where common spatial entities such as building blocks 
are not applicable was captured and used for encoding contextual information. The three 
information layers served as basis for the calculation of features.

3.1.2  Geometry features

Geometry features relate to the two- and three-dimensional extent of buildings as well as 
to the description of their shape characteristics. The building heights can be derived from 
LIDAR or stereoscopic remote sensing data with high accuracies (e.g. Rottensteiner and 
Briese 2002; Wurm et al. 2011; Geiß et al. 2015; Leichtle et al. 2017). However, since such 
data was lacking in this study the analysis has been based on the in situ height information 
of the building inventory data base for an evaluation of the capability of these features. The 
height value information of each building contained in the database enabled the computa-
tion of 3D features such as volume, shape index 3D, Inverted Floor Area Ratio, average 
building volume contained in AB and BD polygons.

3.1.3  Spectral features

The spectral characteristics are mainly used as indications of the material and layout of the 
roof area (Mueller et  al. 2006). The mean and standard deviation values of the different 



 Bulletin of Earthquake Engineering

1 3

Fig. 4  Spatial levels used as basis for the calculation of features. a Individual building (IB) level; b aggre-
gated buildings (AB) level; c buffer distance (BD) level
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image bands have been calculated in addition to the band ratios and index characteristics, 
which aim to highlight spectral variation (Geiß et  al. 2014, 2015; Leichtle et  al. 2017). 
Finally, rotation-invariant texture measures relying on the grey-level co-occurrence matrix 
(GLCM) (Haralick and Shanmugam 1973) have been derived since it was shown that such 
features can provide supplementary information if the spectral resolution is limited (Pacif-
ici et al. 2009).

3.1.4  Spatial features

In addition to spectral information (e.g. average values per band, median, minimum and 
maximum, average ratio, variance, etc.), building objects store spatial information related 
to location, neighborhood, typology, etc. (Blaschke 2010). To account for spatial context 
and configuration of IB and AB, orientation and geographical distance measures are intro-
duced, among others. Other features whose purpose is to depict the spatial environment are 
calculated at BD level and consist of the area and average size of buildings.

In total, every building object is described by a 123-dimensional feature vector sum-
marized in Table 2 (also compare “Appendix” for details), whereby 51 features are calcu-
lated based on the individual building footprints, 53 are calculated based on the aggregated 
buildings and 19 are calculated based on the buffer distance. Since the approach is flexible 
for considering more features, there is the opportunity for further investigating the contri-
bution of more remote sensing features.

3.2  Supervised classification

RF (Breiman 2001) is an ensemble method combining a number of N decision trees to 
solve a single prediction problem by aggregating their results. This nonparametric clas-
sification approach was chosen to account for a considerable redundancy shown by the fea-
tures, which can be critical for the estimation of statistics in parametric approaches (Geiß 
et  al. 2015). RF is a robust and effective tool in prediction since it is based on the Law 
of Large Numbers (Feller 1968): features are used at each node to grow a tree and the 
forest chooses a class having the most out of N votes, for that case. In addition, RF is 
extremely advantageous to obtain a timely grasp of the relevance of the feature, especially 
if a feature selection is required (Géron 2017). In order to generate a RF classifier, two 

Table 2  List of features from 
different categories with number 
of features according to spatial 
scales

IB individual building, AB aggregated buildings, BD buffer distance

Features Number of features per spatial level

IB AB BD

Geometry-extent 2D 6 5 5
Geometry-shape 2D 15 15 –
Geometry-extent 3D 3 5 7
Geometry-shape 3D 1 2 –
Spatial context/configuration 3 3 7
Spectral-1st order 20 20 –
Spectral-2nd order 3 3 –
∑ 51 53 19
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hyperparameters are required: the number of features used at each node to generate a tree 
and the number of trees. In this study case, the first parameter has been set as the squared 
root of the number of features. The number of trees has been set to 500 since this was the 
value which provided the best accuracy in a set of experiments. Furthermore, numerous 
studies (e.g. Genuer et al. 2008) have shown that this amount of trees is enough to provide 
a reliable error estimate, while keeping computation times appropriate. The sorted attribute 
selection method is “entropy” rather than the typical Gini impurity, since this parameter 
has provided the greatest accuracy for our data set; in addition, Gini impurity is likely to 
separate the most populated class in its own tree branch, while entropy is prone to generat-
ing relatively more balanced trees (Géron 2017). For details on both measures we refer to 
Hastie et al. 2009.

K-Nearest Neighbors is a non-parametric algorithm, which considers all the available 
labeled data and classifies new data based on similarity measure. The key principle of this 
method is to assign an unclassified sample to the class involving the majority of the K near-
est neighbors in the training set. During the training phase the feature vectors and the labels 
of the training samples are acquired. In the classification phase, the algorithm computes 
the K nearest neighbors of the query point (i.e. unlabeled data) and the class is assigned by 
voting among these neighbors (e.g. Hastie et al. 2009). This classifier has been chosen due 
to its simplicity and its robustness to noisy training data. The KNN algorithm requires only 
two parameters: K and the distance metric for obtaining significant accuracy. In this study, 
the KNN algorithm has been empirically tested for various numbers of neighbors and it 
has been found that K = 5 produces the best result. The commonly employed Euclidean 
distance has been considered as distance metric.

3.2.1  Feature selection

In supervised learning problems based on high dimensional data as in this case, it is useful 
to decrease the number of features used by the model. When the best features are chosen, a 
good accuracy is achieved and less training data are required. Reducing the dimensionality 
of the feature vector is beneficial because it implies a reduction in time and data complexity 
to implement the model. Confronting high dimensionality typically implies the occurrence 
of negligible, redundant and noisy features that do not increase the accuracy of a predictive 
model or may effectively reduce it (Guyon and Elisseeff 2003; Aravena Pelizari et al. 2018).

In this study, feature selection is an essential element to implement a model based on 
few features enabling robust transferability. It is worth specifying that in this procedure we 
do not take into account any information from the target domain besides the output labels 
used for validation. This step of the work has been performed by ranking the features, 
according to their importance in the RF classification. This was done by using a function 
(i.e., “Feature importance”) supplied by Scikit-learn, a free machine learning library for the 
Python programming language (Pedregosa et al. 2011). The feature importance function is 
based on the assumption that, looking at a single Decision Tree, important features sup-
porting the ultimate choice of a broader portion of the input samples are likely to appear 
closer to the root of the tree, whereas less important features often turn out to be closer to 
the leaf. Therefore, it is possible to extract a features’ importance by computing the average 
depth at which it shows up across all the trees in the forest. Scikit-learn calculates this for 
each feature after training (Géron 2017). The ten most important features have been chosen 
based on the results of this calculation.
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3.2.2  Class imbalance

Machine learning applications are often affected by class imbalance, which emerges when 
a dataset contains many more samples from one class than from the other class(es). The 
uneven class distribution has a negative effect on the classifier performance, since if a class 
is represented by a small number of samples, it is difficult to uncover regularities and thus 
construct decision boundaries. Additionally, the classifiers are prone to prefer the most fre-
quent class (Nguyen et al. 2008). The reason of these effects on classification is the fact 
that the algorithms are accuracy driven, therefore they try to minimize the overall error 
that is not much influenced by the minority class. In addition, they suppose a smooth dis-
tribution of data for all classes and errors to have similar cost for all classes (KrishnaVeni 
and Sobha Rani 2011; Ganganwar 2012). In order to reduce the incorrect classification, 
researchers have established several methods (Chawla et al. 2004; He and Garcia 2009). In 
this study, two different approaches have been implemented: the first is the downsampling 
of the largest class during the training step (Khalilia et al. 2011). Therefore, the frequency 
of masonry buildings has been decreased and conformed to that of the RC buildings con-
sidered to learn the model. The second approach envisages the change of a hyper-parame-
ter in the RF model, in order to edit the weights related to errors from the two classes and 
to penalize more the erroneous classification on the less frequent class (Chen et al. 2004; 
Winham et al. 2013). If this parameter is not given, by default all classes are assumed to 
have weight 1.

3.3  Evaluation of the accuracy

For the evaluation of the accuracy we derive confusion matrices from the experiments 
described in Sect.  2. Confusion matrices oppose instances in a predicted class against 
instances in an actual class. Given “masonry” as the positive class and “RC” as the nega-
tive and considering True Positives (TP), True Negatives (TN), False Positives (FP) and 
False Negatives (FN), measures of classification accuracy can be calculated from the con-
fusion matrices (Table 3) as follows.

The first score is the overall accuracy (OA i.e. the total classification accuracy):

Other metrics include recall (RE), related to commission errors (i.e. objects tagged as 
being part of the positive class but actually belonging to the negative class) and precision 
(PR, relevant to omission errors (i.e. objects labeled as negative but belonging to the posi-
tive class):

(1)OA =
TP + TN

TP + FP + FN + TN

Table 3  Confusion matrix for the binary classification problem of this study case

Reference data
1 (positive = masonry) 2 (negative = RC)

Classification 1 (positive = masonry) TP FP
2 (negative = RC) FN TN
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The F1-score (F1) is calculated as the harmonic average of precision and recall, but 
does not consider the true negatives; it is higher for classifiers that have similar precision 
and recall:

Cohen´s κ is suitable to assess the performance of the classifier, although it is sensitive 
to imbalanced data (Jeni et al. 2013) (5); it varies between − 1 and + 1 and, where + 1 indi-
cates absolute agreement. The values of κ can be qualitatively interpreted according to the 
following categories (McHugh 2012):

• κ ≤ 0 indicates no agreement;
• 0.01 < 𝜅 < 0.20 indicates no to slight agreement;
• 0.21 < 𝜅 < 0.40 indicates fair agreement;
• 0.41 < 𝜅 < 0.60 indicates moderate agreement;
• 0.61 < κ < 0.80 indicates substantial agreement;
• κ > 0.80 indicates almost perfect agreement. 

True Skills Statistics (TSS, Allouche et  al. 2006) has been also considered since it is 
widely insensitive to imbalanced classes (Klotz et al. 2016); it ranges from − 1 to + 1, where 
+ 1 indicates perfect agreement and values of zero or less indicate a performance no better 
than random:

4  Experimental setup

The experimental setting comprises the following steps: first, the classifier has been built 
based on one sample area (the village of Paterno). There, the building stock has been 
divided into two portions, one for training and the second for test purposes. Second, both 
classifiers—RF and KNN—have been learned using the complete set of 123 features. 
Third, the RF-based feature selection has been applied to identify the most important fea-
tures and run the models again. Fourth, approaches involving downsampling and different 
weights for the two classes have been tested to overcome the class imbalance problem. 

(2)
RE =

TP

TP + FN

(3)PR =
TP

TP + FP

(4)F1 = 2 ×
precision × recall

precision + recall

(5)κ ≡

OA −
(TP+FP)(TP+FN)+(FN+TN)(TN+FP)

(TP+FP+FN+TN)2

1 −
(TP+FP)(TP+FN)+(FN+TN)(TN+FP)

(TP+FP+FN+TN)2

(6)TSS =
TN

FP + TN
+

TP

FN + TP
− 1
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Fifth, the most accurate method has been transferred to all other villages for analyzing the 
capability for seismic building vulnerability assessment over large areas using earth obser-
vation data.

4.1  Splitting into training and testing areas

The 1844 buildings in the Paterno village, whose reference data are depicted in Fig.  5, 
have been spatially split into training and testing areas. Specifically, 20% of the buildings 
have been selected for testing the model. Each BD polygon, containing a different amount 
of buildings, has been randomly selected in order to prevent issues arising from sample 
selection bias and covariate shift (Geiß et al. 2017) resulting when the training set is not a 
casual population portion (Tuia et al. 2016). Furthermore, this has been done since all the 
elements contained in each BD have the same feature value for the BD-related features. 
In each realization of classification, a different sampling to constitute the test set is per-
formed: single buildings within each BD polygon are randomly picked until 20% (circa 400 
buildings) of the entire dataset is reached. The training examples consist of the remaining 
80% of the buildings, obtained by removing the test set from the entire dataset.

Fig. 5  Reference data in Paterno 
village: labeled building poly-
gons. Red: masonry; blue: RC
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4.2  Learning the models

Representative for the entire Val d’Agri area, the building stock in the Paterno village is highly 
unbalanced (Table 1). With regard to their ST 1338 (73%) belong to the masonry class and 
506 (27%) belong to the RC class. Therefore, in order to ensure an even distribution of training 
samples for the two classes when learning the model, the majority class has been decreased 
based on the procedure described in Sect. 3.2.2. In this way, 1212 buildings have been used 
to learn the model: 506 from the masonry class, 506 from the RC class. After the downsam-
pling, 30 independent iterations of classification have been carried out, each for the RF as 
well as for the KNN approach. The implementation of the RF approach using the weighted 
classes approach allowed modifying the hyperparameter giving each class a weight. In the 
“balanced” mode weights are regulated inversely proportional to the class frequencies in the 
input data and the errors coming from the minority class are penalized more severely. In this 
study, the majority class (masonry) has been given weight 1, whereas the minority class (RC) 
was assigned weight 4. Such weights have been empirically obtained through prior experi-
ments: classifications have been performed, based each time on random sample selection as 
explained in Sect. 4.1, while systematically varying the combination of weight values assigned 
to the two classes. The weights leading the model to achieve the best classification perfor-
mance metrics have been considered to be used in the final model. After that, the RF model 
has been applied for 30 iterations using the complete set of features and 30 times adopting the 
selected features.

4.3  Feature selection

A RF-based feature selection procedure has been carried out together with the splitting of the 
data for 30 iterations. The random split has been performed for each iteration following the 
procedure described above. The complete set of features has been ranked according to their 
importance in the classification process. The 10 best features have been selected by consider-
ing their frequency in the ranking of the iterations.

4.4  Transferring the models

Since the results obtained for the Paterno area by using KNN were not satisfying, only the RF 
model has been applied to the rest of Val d’Agri area.

Therefore, the 10 best features calculated as described in Sect. 3.2.1 have been derived for 
the 15618 buildings in the remaining 17 villages, used for validating the model.

The building stock of the Paterno village has served as training dataset: when applying the 
downsampling approach described in Sect. 4.2 the selection of buildings used as sample for 
training is random. In this way a different number of training (and, as a consequence, of test-
ing) examples is used; therefore, 30 iterations have been executed. Giving the classes a differ-
ent weight enables exploiting the whole building stock in Paterno within the learning phase; 
hence, it has been implemented only once to classify the other 15,618 buildings.
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5  Results

Results are reported as indicated in the following: Sect. 5.1 presents the results of the clas-
sification for the training area (Paterno). Section  5.2 describes the results of the feature 
importance ranking aimed at decreasing the dimensionality of the feature vector; Sect. 5.3 
illustrates results of the classification of the entire Val d’Agri area.

5.1  Results in the training area

The accuracy scores obtained from the experiments illustrated in Sect.  4 are listed in 
Table 4. In general, the experiments reveal that the RF approach based on the complete set 
of features and the downsampled training dataset performs for the training area better than 
the KNN approach. With a mean OA of 0.90, a mean κ of 0.70 and a mean TSS of 0.66 the 
results prove the feasibility of the approach.

For the RF model deploying the downsampled training dataset and the selected features, 
we find only slightly lower accuracy scores than obtained using all the features (mean OA 
of 0.88, a mean κ of 0.69 and a mean TSS of 0.65). We consider this reduced approach 
meaningful since the results show that the decrease in the accuracy scores is minimal, 
whereas the improvement in terms of rapid applicability of the model is considerable. The 
RF approach based on the weighted classes approach and the complete feature set pro-
vides lower accuracy metrics (mean OA of 0.80, mean κ of 0.38 and mean TSS of 0.32). 
Nevertheless, such results are still adequate and suitable for applications (Congalton and 
Green 2008). The RF approach based on the weighted classes and using the ten best fea-
tures obtains only slightly lower accuracy metrics (mean OA of 0.78; mean κ of 0.36 and 
mean TSS of 0.32).

In general, the KNN models perform consistently inferior than the RF models. Specifi-
cally, the OA in both cases is lower than 80% and κ shows only a fair agreement between 
prediction and reality (i.e., κ < 0.4; Sect. 3.3). For this reason KNN has not been used in 
transferring the model to the whole area.

The best models in the training area are RF based on the downsampled training data 
approach. The models based on the extended feature set reach higher accuracy values; 

Table 4  Classification accuracy statistics of RF and KNN based on the downsampled training dataset (left) 
and on the weighted classes approach (right) reported as mean and standard deviation (in brackets) from 30 
iterations with a varying configuration of labeled samples on the training area (Paterno village)

Downsampled training data Weighted classes

RF KNN RF

Accuracy 
statistics

All  
features

Selected 
features

All  
features

Selected 
features

All  
features

Selected 
features

RE 0.96 (± 0.01) 0.95 (± 0.01) 0.88 (± 0.05) 0.90 (± 0.02) 0.66 (± 0.03) 0.66 (± 0.04)
PR 0.90 (± 0.02) 0.90 (± 0.02) 0.80 (± 0.02) 0.81 (± 0.03) 0.78 (± 0.03) 0.73 (± 0.03)
OA 0.90 (± 0.02) 0.88 (± 0.02) 0.75 (± 0.03) 0.78 (± 0.02) 0.80 (± 0.02) 0.78 (± 0.03)
F1 0.93 (± 0.02) 0.92 (± 0.01) 0.84 (± 0.03) 0.85 (± 0.02) 0.68 (± 0.04) 0.68 (± 0.04)
κ 0.70 (± 0.07) 0.69 (± 0.05) 0.30 (± 0.08) 0.39 (± 0.06) 0.38 (± 0.07) 0.36 (± 0.07)
TSS 0.66 (± 0.07) 0.65(± 0.064) 0.28 (± 0.07) 0.36 (± 0.06) 0.32 (± 0.07) 0.32 (± 0.07)
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nevertheless, all the accuracy metrics values obtained with the selected features are compa-
rable with those obtained using all the features.

5.2  Results of the feature selection

In general, the feature selection analysis revealed that the 10 most important features refer 
to the geometrical extent and shape characteristics at the IB level. There is only one excep-
tion which is referring to the BD level. Specifically, the selected features are: area, perim-
eter, volume, length, width, fractal dimension, shape index 3D, height, number of pixels at 
IB level, and average built-up area at BD level. These most important features can be con-
sidered invariant: since they are geometry features, they are expected to be not influenced 
significantly by varying atmospheric situations or sensor properties and related spectral 
inhomogeneity—properties that are frequently related to spectral features. In addition, such 
features can be readily calculated, reducing the time cost related to the implementation of 
the classification model. Therefore, relying on these features is beneficial when transferring 
the model on unseen data. The importance ranking has been calculated for 30 classification 
iterations. The 10 best features, listed in Fig. 6, have been chosen depending on the fre-
quency with which they were ranked among the 10 most important features.

5.3  Results of the model transfer

When the RF models are applied on the 15,618 buildings located in the remaining 17 vil-
lages resulting classification accuracy values (Table  5) are lower but still acceptable for 
application. Model transfer classification results of the two approaches for a selection of 
three different villages are visualized in Fig. 7 by means of the spatial distribution of cor-
rectly classified buildings (TPs and TNs) and misclassified buildings (FPs and FNs).

Comparing the accuracy values resulting from the transfer of RF model based on the 
downsampled training data and weighted classes RF model, all global accuracy meas-
ures consistently indicate that the latter performs better. Thereby the weighted class RF 
approach obtains an OA of 80%, a TSS value of 0.35 and a κ value of 0.31 expressing a fair 
agreement.

Fig. 6  Outcome of the feature selection: the y-axis lists the ten best features; the x-axis shows the frequency 
with which each feature has been ranked among the best ten over 30 iterations



Bulletin of Earthquake Engineering 

1 3

Figure  7 demonstrates that the accuracies for the single villages vary. While the 
weighted class RF classification result for Village 3 shows a substantial agreement with the 
reference data (κ = 0.62), the villages 2 and 1 show a moderate (κ = 0.57) and fair (κ = 0.36) 
agreement respectively. In general, however, spatial patterns of ST type distributions 
related to the settlement cores and outskirts are well captured.

6  Discussion

The potential of VHR remote sensing imagery for seismic building risk assessment has 
been the object of extensive research studies in the last decade. With VHR satellite images 
enabling covering large geographical areas in high geometric detail and with short revis-
iting time the capabilities have been shown. However, for seismic building vulnerability 
assessment some crucial information cannot directly be obtained from remote sensing 
images, but must be statistically inferred.

In order to produce classification maps useful for risk management applications, super-
vised classification methods are commonly deployed on remote sensing images. These 
algorithms are based on features describing the investigated classes for learning rules to 
discriminate between such classes. These rules, applied on a target domain, produce results 
having accuracies that are highly affected by the amount of data used to train the model. 
The retrieval of appropriate ground truth data for implementation and validation purposes 
requires large efforts in terms of time consumption and economic resources, as in the case 
of assessment of seismic building vulnerability. Therefore, in most areas in situ data are 
either lacking or are outdated and unreliable. The limited availability of in situ data is a 
challenge for classification problems, especially in the perspective of model transferability.

In this paper, the location of structural building typologies for the Val d’Agri area 
(South Italy) has been identified in order to assess seismic vulnerability. Our study is based 
on high detailed and extensive data sets and is thus not limited by data scarcity. We rely on 
an extensive, unique data set on buildings represented by geolocated polygons in the larg-
est building-by-building geodatabase in Italy. Detailed structural knowledge has been col-
lected during field surveys by teams of purposely trained engineers and stores very detailed 
physical characteristics of the constructions. Thus, for the first time ever, we have been able 
to systematically test such a remote sensing based approach for the complex morphological 

Table 5  Results of RF based on the downsampled and weighted classes approaches on the 17 villages used 
for transferring the model. With regard to the downsampled training data RF approach mean and stand-
ard deviations from 30 iterations with a varying configuration of labeled samples are given. In case of the 
weighted classes RF approach all buildings were used to learn the final model to be transferred. Conse-
quently only one a single value for each accuracy measure is given here

Accuracy statistics Downsampled training data RF Weighted classes RF

RE 0.66 (± 0.01) 0.64
PR 0.60 (± 0.01) 0.68
OA 0.60 (± 0.03) 0.80
F1 0.56 (± 0.02) 0.65
κ 0.20 (± 0.02) 0.31
TSS 0.32 (± 0.02) 0.35
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Fig. 7  Classification maps obtained by transferring the models to three representative villages (left: down-
sampling approach; center: weighted class approach). Respective in situ reference data is shown on the right
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situation in Europe. Its quality, detail level and reliability represent the added value of 
this research in providing solid contribution to the implementation of methods for image 
classification.

Due to the quantity of data used for validation, the developed models can be considered 
statistically robust as shown by the results presented in Sect. 5.

In detail we reveal, when transferring the models, the weighted class RF approach per-
forming better than the RF approach based on downsampled training data. This is presum-
ably due to the fact that the latter deploys less building inventory data in the training phase 
and consequently encodes less in situ information.

However, identifying in a more appropriate way such a percentage requires the effect 
in terms of estimated damage and expected consequences (fatalities, homeless people) to 
be verified. Percentages of misclassifications generating limited variations of the expected 
effects and/or conservative estimates of such effects may be considered acceptable. In this 
perspective, misclassifications of RC buildings should be considered more carefully: this 
building type is on average characterized by larger average volume—therefore, higher 
exposure—compared to masonry. Therefore, it can be expected to add more inaccuracies 
in the quantification of predicted impacts (Dolce et al. 2003; Masi et al. 2015). This implies 
that in practical applications the building volume should be taken into account as a weight-
ing factor, since considering equally the individual buildings would lead to a wrong dam-
age distribution map. The last component to be taken into consideration in determining the 
minimum level of accuracy of the classification necessary for the application of engineer-
ing DEMs is the intrinsic level of approximation of such models and other parameters used 
in the determination of seismic damage scenarios (Dolce et al. 2003).

The specific morphologic situation in the studied area presents a special distribution of 
the STs in only two classes; this may be considered representative of the Italian building 
stock with regard to villages. The discrimination of STs is essential in order to determine 
the expected seismic behavior of buildings; nevertheless, in the studied area such distinc-
tion is challenging due to the similar buildings’ characteristics and the complex urban 
morphology. However, we find that the achieved results prove that the developed models 
still provide high accuracy; nevertheless, the decrease in the accuracy with respect to the 
transferred model calls for additional prior knowledge from the target domain or other 
areas in Italy, since the building STs are expected to be quite similar to those examined in 
this investigation. Furthermore, an important remark is relevant to the selected features: 
when only the 10 best features are deployed, the accuracy metrics show a slight decrease, 
whereas higher transferability is achieved. Such result expresses that a further step towards 
a rapid classification of building STs has been done, especially taking into account the 
selected geometrical features related to shape and extent.

7  Conclusion

Most previous studies on seismic vulnerability assessment of building structures tested 
their approaches in cities of the Global South and proved that remote sensing data allow 
for a large area assessment with acceptable accuracies. The building stock in large parts of 
Italy does not feature such a large morphological variety. This study, however, proves that 
also in this morphological situation where only two main STs are dominating the building 
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stock, remote sensing has the potential to be an appropriate method to contribute to fast 
and area-wide seismic vulnerability assessment of buildings.

The two STs, i.e. masonry and RC, were accurately identified using remote sensing data 
for the Val d’Agri area (Italy). Based on a very large in situ dataset we were able to learn 
the applied RF and KNN algorithms and validate them accordingly. With an extensive fea-
ture set (123 features at different spatial levels), it was proven that the two STs can be 
identified with viable accuracies in order to assess seismic building vulnerability, although 
other building features, among which age, height, are concurrently required to achieve this. 
Beyond, we found that 10 invariant geometric features allow obtaining good accuracy and 
are capable for transferring the model.

The dataset was affected by the class imbalance problem, with masonry being the major-
ity class. Therefore, the models have been implemented adopting two different approaches: 
(i) downsampling the majority class, and (ii) changing the classifier internally. The model 
has been learned based on a small sample and then applied to the entire Val d’Agri area. 
Results show that the weighted classes approach produces better performance when RF 
is applied to the whole area (OA = 80%; κ = 0.31; TSS = 0.35). Therefore, the achieved 
results are encouraging and meaningful for practical applications. Although the considered 
area is representative of the building stock of Italian small villages, additional data can be 
encoded to render the model more invariant and further improve accuracy: further research 
may concern any other areas in Italy, or similar morphological situations in the Mediter-
ranean countries.

Appendix

Features Description References: studies on characteri-
zation of built environments

Geometry-extent 2D
Area (IB_AREA; AB_AREA) IB and AB polygon area Steiniger et al. (2008), Hermosilla 

et al. (2014), Voltersen et al. 
(2014), Geiß et al. (2015) and 
Wurm et al. (2016)

Length (IB_LENGTH;  
AB_LENGTH)

Length of the longer side of the 
minimum bounding rectan-
gle comprising IB and AB 
polygons

Geiß et al. (2015) and Wurm et al. 
(2016)

Width (IB_WIDTH; AB_WIDTH) Length of the shorter side of the 
minimum bounding rectan-
gle comprising IB and AB 
polygons

Geiß et al. (2015) and Wurm et al. 
(2016)

Length/width (IB_L_W; 
AB_L_W)

Ratio between length and width 
of each IB and AB polygon

Steiniger et al. (2008), Voltersen 
et al. (2014), Geiß et al. (2015 
and Wurm et al. (2016)

Perimeter (IB_PERIMET;  
AB_PERIMET)

IB and AB polygon perimeter Hermosilla et al. (2014), Voltersen 
et al. (2014), Geiß et al. (2015) 
and Wurm et al. (2016)

Inverted floor area ratio  
(IB_IFAR)

IB =
polygon area

polygon area × number of floors
Berger et al. (2013)

BD Area (BD_AREA) Area of each BD polygon Steiniger et al. (2008)
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Features Description References: studies on characteri-
zation of built environments

Average built-up area  
(AV_IB_AREA)

Average area of the IB polygons 
within each BD polygon

Yu et al. (2010)

Sum built-up area  
(SUM_IB_AREA)

Sum of the IB polygon areas 
within each BD polygon

Steiniger et al. (2008)

Average L/W IB (AV_IB_L_W) Average length/width based on 
IB polygons within each BD 
polygon

Voltersen et al. (2014)

Average L/W AB (AV_AB_L_W) Average length/width based on 
AB polygons within each BD 
polygon

Voltersen et al. (2014)

Geometry-shape 2D
Number of building vertices 

(building corners)  
(IB_N_VERT, AB_N_VERT)

Count of polygon points of the 
exterior ring

Steiniger et al. (2008) and Wurm 
et al. (2016)

Shape index (IB_SI, AB_SI) Describes the smoothness of 
the outer shape of the polygon 
object. Calculation is based on 
the proportion between the real 
perimeter P of the polygon and 
an approximated square with 
the same area as the polygon

SI =
P

4×
√

A

Belgiu et al. (2014), Hermosilla 
et al. (2014), Geiß et al. (2015) 
and Wurm et al. (2016)

Fractal dimension (IB_FRAC_DI, 
AB_FRAC_DI)

Provides a numerical descrip-
tion of the complexity and 
segmentation of a polygon by 
computing the proportion of 
area and perimeter

FD =
ln

(

U

4

)2

lnA

Hermosilla et al. (2014) and Wurm 
et al. (2016)

Density (IB_DENS, AB_DENS) The distribution in space of the 
pixels of an image object, 
calculated by the number of 
pixels forming the image object 
divided by its approximated 
radius, based on the covariance 
matrix. (Trimble 2014)

Belgiu et al. (2014), Geiß et al. 
(2015) and Wurm et al. (2016)

Border index (IB_BI, AB_BI) BI =
perimeter

2× (length+width)
Belgiu et al. (2014), Geiß et al. 

(2015) and Wurm et al. (2016)
Compactness (IB_COMP,  

AB_COMP)
COMP =

length × width

number of pixels
Hermosilla et al. (2014) and Belgiu 

et al. (2014)
Rectangular fit (IB_RECT_FIT, 

AB_RECT_FIT)
The calculation is based on a rec-

tangle with the same area as the 
image object. The proportions 
of the rectangle are equal to 
the proportions of the length to 
width of the image object. The 
area of the image object outside 
the rectangle is compared with 
the area inside the rectangle. 
(Trimble 2014)

Belgiu et al. (2014), Geiß et al. 
(2015) and Wurm et al. (2016)
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Features Description References: studies on characteri-
zation of built environments

Radius of largest enclosing ellipse 
(IB_RLEE, AB_RLEE)

The Radius of Largest Enclosed 
Ellipse feature describes how 
similar an image object is to 
an ellipse. The calculation uses 
an ellipse with the same area 
as the object and based on the 
covariance matrix. This ellipse 
is scaled down until it is totally 
enclosed by the image object. 
The ratio of the radius of this 
largest enclosed ellipse to the 
radius of the original ellipse 
is returned as feature value. 
(Trimble 2014)

Belgiu et al. (2014), Geiß et al. 
(2015) and Wurm et al. (2016)

Radius of smallest enclosing 
ellipse (IB_RSEE, AB_RSEE)

The Radius of Smallest Enclos-
ing Ellipse feature describes 
how much the shape of an 
image object is similar to an 
ellipse. The calculation is based 
on an ellipse with the same 
area as the image object and 
based on the covariance matrix. 
This ellipse is enlarged until 
it encloses the image object in 
total. The ratio of the radius of 
this smallest enclosing ellipse 
to the radius of the original 
ellipse is returned as feature 
value. (Trimble 2014)

Belgiu et al. (2014), Geiß et al. 
(2015) and Wurm et al. (2016)

Elliptic fit (IB_EL_FIT,  
AB_EL_FIT)

The Elliptic Fit feature describes 
how well an image object fits 
into an ellipse of similar size 
and proportions. While 0 indi-
cates no fit, 1 indicates a perfect 
fit. The calculation is based on 
an ellipse with the same area as 
the selected image object. The 
proportions of the ellipse are 
equal to the length to the width 
of the image object. The area 
of the image object outside the 
ellipse is compared with the 
area inside the ellipse that is not 
filled by the image object

Belgiu et al. (2014), Geiß et al. 
(2015)

Roundness (IB_ROUND,  
AB_ROUND)

The Roundness feature describes 
how similar an image object is 
to an ellipse. It is calculated by 
the difference of the enclos-
ing ellipse and the enclosed 
ellipse. The radius of the largest 
enclosed ellipse is subtracted 
from the radius of the smallest 
enclosing ellipse. (Trimble 
2014)

Belgiu et al. (2014), Geiß et al. 
(2015) and Wurm et al. (2016)
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Features Description References: studies on characteri-
zation of built environments

Normalized perimeter index 
(IB_NPI, AB_NPI)

The NPI is the proportion of 
the perimeter of a circle with 
the same area as the building 
polygon ( PAcircle) with the same 
perimeter of the building object

nPI =
PAcircle

P

Wurm et al. (2016)

Normalized proximity index 
(IB_NPRI, AB_NPRI)

The proximity index is based on 
the calculation of Euclidian dis-
tances between single pixels of 
an object and the object center

nPrI =
PAcircle

PAobject

where the proximity of the circle 
is

PAcircle =
2

3
× rAcircle

and rAcircle
 is the radius of the 

circle and for Pobject

Pobject =
n
∑

j=1

dj ×
1

n

where d is the Euclidian distance 
of the pixel to the object center

Wurm et al. (2016)

Normalized spin index (IB_NSI, 
AB_NSI)

The nSI (or moment of inertia) is 
similar to the proximity index, 
but the moment of inertia 
weights the extremities of the 
polygon higher:

nSI =
JAcircle

JAobject

the moment of inertia for the 
circle is:

JAcircle
=

1

2
r2
Acircle

and for the object:

Jobject =
1

n
×

n
∑

j=1

d2
j

where d2
j
 equals the square 

Euclidian distance of the pixels 
to the object center

Wurm et al. (2016)

Areal asymmetry (IB_ASYM, 
AB_ASYM)

The asymmetry feature describes the 
relative length of an image object, 
compared to a regular polygon. 
An ellipse is approximated around 
a given image object, which can 
be expressed by the ratio of the 
lengths of its minor and the major 
axes. The feature value increases 
with this asymmetry

Wurm et al. (2016)

Geomtry-extent 3D
Building height (IB_HEIGHT) For each IB polygon the height 

has been calculated as:
Average interstorey height × num-

ber of floors × area

Hermosilla et al. (2014)
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Features Description References: studies on characteri-
zation of built environments

Maximum height AB  
(AB_Max_HEIGHT)

Building height of AB polygons cal-
culated considering the maximum 
height value of the IB polygons 
forming each AB polygon

Hermosilla et al. (2014)

Area weighed maximum height 
AB (AB_WEIGHT_A)

Area-weighed height based on 
maximum heights of IB poly-
gons within AB polygons

Hermosilla et al. (2014)

Building average height  
(AB_MEAN_H)

Building height of AB polygons 
calculated considering the 
average height value of the IB 
polygons forming each AB 
polygon

Hermosilla et al. (2014)

Area weighed mean height  
(AB_MEAN_W_A)

Area-weighed height based on 
the average height of IB poly-
gons forming each AB polygon

Hermosilla et al. (2014)

Maximum height BD  
(BD_MAX_HEIGHT)

Maximum height value within 
BD polygon

Hermosilla et al. (2014)

Area-weighted maximum height 
BD (BD_WEIGHT_A)

Area-weighed height based on 
maximum heights of IB poly-
gons within BD polygons

Hermosilla et al. (2014)

Mean of building height within 
BD (AV_IB_HEIGHT)

Average height of IB within BD 
polygons

Voltersen et al. (2014), Hermosilla 
et al. (2014) and Geiß et al. 2015

Area-weighted on mean heights 
BD (BD_AV_MA)

Area-weighed height based on 
average heights of IB polygons 
within BD polygons

Yu et al. (2010)

Building volume (IB_VOLUME) The building volume of the IB is 
calculated as:

IBVOLUME = average floor area

× average interstorey height

× number of floors

Yu et al. (2010)

Maximum building volume based 
on maximum height  
(AB_VOL_MAX_H)

Maximum building volume of 
AB polygons within BD poly-
gons based on maximum height 
of IB polygons

Hermosilla et al. (2014)

Mean building volume  
(AB_AV_VOL)

Average building volume of AB 
polygons within BD polygons 
based on maximum height of 
IB polygons

Hermosilla et al. (2014)

Geometry-shape 3D
IB Shape index 3D (SI_3D) Describes the smoothness of the 

object in three dimension; it is 
calculated by the proportion 
of the real perimeter with the 
approximated perimeter of a 
cube with the same volume 
than the real object

SI
3D

=
P

4×
3
√

V

Wurm et al. (2016)

Shape index 3D_maxHeight 
(AB_SI3D_MAX_H)

Shape index 3D of AB polygons 
based on area-weighted maxi-
mum heights of IB

Wurm et al. (2016)
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Features Description References: studies on characteri-
zation of built environments

Shape index 3D_meanHeight 
(AB_SI3D_AV_H)

Shape index 3D of AB polygons 
based on area-weighed mean 
heights of IB

Wurm et al. (2016)

Spatial context/configuration
Orientation (IB_ORIENT,  

AB_ORIENT)
Orientation of the major axis 

of the minimum bounding 
rectangle

Belgiu et al. (2014) and Geiß et al. 
(2015)

Distance to nearest building 
(IB_DIST, AB_DIST)

The shortest distance between 
buildings

Xie et al. (2015)

St. Dev. IB orientation  
(IB_STDV_OR)

Standard deviation of the IB 
polygons orientation within BD 
polygons

Cheriyadat (2014)

St. Dev. AB orientation  
(STDV_AB_OR)

Standard deviation of the AB 
polygons orientation within BD 
polygons

Gil et al. (2012)

Mean nearest IB (IB_MEAN_NN) Mean distance to the nearest 
building based on IB polygons

Yu et al. (2010)

Mean of distances to nearest 
building based on AB  
(AB_MEAN_NN)

Mean distance to the nearest 
building based on AB polygons

Yu et al. (2010)

IB in BD (IB_COUNT) Number of IB polygons within 
each BD polygon

Steiniger et al. (2008)

AB in BD (AB_COUNT) Number of AB polygons within 
each BD polygon

Steiniger et al. (2008)

Mean IFAR (AB_MEAN_IFAR, 
BD_ MEAN_IFAR)

Mean of inverted floor area ratio 
based on IB polygons within 
AB and BD polygons

Voltersen et al. (2014)

Building aggregation measure 
(BD_BA) BA =

Ab

AAOI

Median(Db)
−

Median(IFAR)

NB

where Ab , floor area covered by 
buildings; AAOI , area of inter-
est; Db , distance to the nearest 
building; IFAR , Inverted Floor 
area Ratio; NB , number of 
buildings

Berger et al. (2013)

Normalized building aggregation 
measure (BD_NBA)

NBA =
BAi−BAmin

BAmax−BAmin

where BAi , BA in the i-th BD 
polygon; BAmax , maximum BA 
value; BAmin , minimum BA 
value

Berger et al. (2013)

Spectral-1st order
Mean blue (IB_sMeanB,  

AB_sMeanB)
Mean intensity in the blue chan-

nel
Bruzzone and Carlin (2006), Geiß 

et al. (2015) and Leinenkugel 
et al. (2011)

Mean green (IB_sMeanG,  
AB_sMeanG)

Mean intensity in the green 
channel

Bruzzone and Carlin (2006), Geiß 
et al. (2015) and Leinenkugel 
et al. (2011)

Mean red (IB_sMeanR,  
AB_sMeanR)

Mean intensity in the red channel Bruzzone and Carlin (2006), Geiß 
et al. (2015) and Leinenkugel 
et al. (2011)
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Mean NIR (IB_sMeanNIR,  
AB_ sMeanNIR)

Mean intensity in the NIR  
channel

Bruzzone and Carlin (2006), Geiß 
et al. (2015) and Leinenkugel 
et al. (2011)

St. Dev. blue (IB_sSTDV_B,  
AB_ sSTDV_B)

Standard deviation of the inten-
sity in the blue channel

Bruzzone and Carlin (2006), Geiß 
et al. (2015) and Leinenkugel 
et al. (2011)

St. Dev. green (IB_sSTDV_G, 
AB_ sSTDV_B)

Standard deviation of the inten-
sity in the green channel

Bruzzone and Carlin (2006), Geiß 
et al. (2015) and Leinenkugel 
et al. (2011)

St. Dev. red (IB_sSTDV_R,  
AB_ sSTDV_R)

Standard deviation of the inten-
sity in the red channel

Bruzzone and Carlin (2006), Geiß 
et al. (2015) and Leinenkugel 
et al. (2011)

St. Dev. NIR (IB_sSTDV_NIR, 
AB_sSTDV_NIR)

Standard deviation of the inten-
sity in the NIR channel

Bruzzone and Carlin (2006), Geiß 
et al. (2015) and Leinenkugel 
et al. (2011)

Blue/green (IB_sB/G,  
AB_ sB/G)

Mean blue/mean green Bruzzone and Carli (2006), Geiß 
et al. (2015) and Leinenkugel 
et al. (2011)

Blue/red (IB_sB/R, AB_ sB/R) Mean blue/mean red Bruzzone and Carlin (2006) and 
Geiß et al. (2015)

Blue/NIR (IB_sB/NIR,  
AB_ sB/NIR)

Mean blue/mean NIR Bruzzone and Carlin (2006) and 
Geiß et al. (2015)

Green/red (IB_sG/R, AB_ sG/R) Mean green/mean red Bruzzone and Carlin (2006) and 
Geiß et al. (2015)

Green/NIR (IB_sG/NIR,  
AB_ sG/NIR)

Mean green/Mean NIR Bruzzone and Carlin (2006) and 
Geiß et al. (2015)

Red/NIR (IB_sR/NIR,  
AB_ sR/NIR)

Mean red/mean green Bruzzone and Carlin (2006) and 
Geiß et al. (2015)

Normalized green  
(IB_sG/GRNIR,  
AB_ sG/GRNIR)

Mean(green)/[mean(green) +  
mean(red) + mean(NIR)]

Bruzzone and Carlin (2006) and 
Geiß et al. (2015)

Normalized red  
(IB_sR/GRNIR,  
AB_ sR/GRNIR)

Mean(red)/[mean(green) +  
mean(red) + mean(NIR)]

Bruzzone and Carlin (2006) and 
Geiß et al. (2015)

Normalized NIR  
(IB_sNIR/GRNIR,  
AB_ sNIR/GRNIR)

Mean(NIR)/[mean(green) +  
mean(red) + mean(NIR)]

Bruzzone and Carlin (2006) and 
Geiß et al. (2015)

Brightness (IB_sBRIGHT,  
AB_ sBRIGHT)

Mean intensity of all channels Bruzzone and Carlin (2006), Geiß 
et al. (2015) and Voltersen et al. 
(2014)

Normalized differenced vegeta-
tion index (IB_sNDVI,  
AB_ sNDVI)

NDVI =
NIR−red

NIR+red
Geiß et al. (2015) and Leinenkugel 

et al. (2011)

Soil-adjusted vegetation index 
(IB_sSAVI, AB_ sSAVI)

SAVI =
NIR−red

NIR+red+L
× (1 + L)

where L = 0.5

Bruzzone and Carlin (2006) and 
Geiß et al. (2015)
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Spectral-2nd order

GLCMinv. (Angular 2nd moment) 
(IB_GLCM_ANG,  
AB_GLCM_ANG)

N−1
∑

i,j=0

(Pi, j)2

where i, row number; j, column 
number; Pi,j , normalized value 
in the cell i, j; N is the number 
of rows or columns

Geiß et al. (2015) and Zhang et al. 
(2006)

GLCMinv. (entropy)  
(IB_GLCM_ENT,  
AB_GLCM_ENT)

N−1
∑

i,j=0

Pi,j(− lnPi,j)

where i, row number;
j, column number; Pi,j , normal-

ized value in the cell i, j; N, 
number of rows or columns

Geiß et al. (2015) and Zhang et al. 
(2006)

GLCMinv. (homogeneity)  
(IB_GLCM_HOM,  
AB_GLCM_HOM)

N−1
∑

i,j=0

Pi,j

1+(i−j)2

where i, row number; j, column 
number; Pi,j , normalized value 
in the cell i, j; N, number of 
rows or columns

Geiß et al. (2015) and Zhang et al. 
(2006)

List of the state-of-the-art features deployed to describe the building stock in the present study
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