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Abstract

The paper deals with the numerical approximation of integrals of the type

I(f, y) :=

∫ 1

−1

f(x)k(x, y)dx, y ∈ S ⊂ IR

where f is a smooth function and the kernel k(x, y) involves some kinds of

“pathologies” (for instance, weak singularities, high oscillations and/or end-

point algebraic singularities). We introduce and study a product integration

rule obtained by interpolating f by an extended Lagrange polynomial based on

Jacobi zeros. We prove that the rule is stable and convergent with the order of

the best polynomial approximation of f in suitable function spaces. Moreover,

we derive a general recurrence relation for the new modified moments appearing

in the coefficients of the rule, just using the knowledge of the usual modified

moments. The new quadrature sequence, suitable combined with the ordinary

product rule, allows to obtain a “mixed ” quadrature scheme, significantly re-

ducing the number of involved samples of f . Numerical examples are provided

in order to support the theoretical results and to show the efficiency of the

procedure.
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1. Introduction

Let w(x) = vα,β(x) := (1 − x)α(1 + x)β , α, β > −1 and let {pm(w)}m
be the corresponding sequence of orthonormal polynomials. Since the zeros of

Q2m+1 := pm(w)pm+1(w) are simple, the Lagrange polynomial L2m+1(w, f),

interpolating f at the zeros of Q2m+1, can be considered. A peculiar aspect of

the so called extended Lagrange interpolation is the approximation of functions

by 2m-degree polynomials by using the zeros of orthogonal polynomials of degree

m and m + 1. This allows to construct “high” degree interpolation processes,

delaying in some sense the well known difficulties for computing the zeros of

high degree orthogonal polynomials. Another interesting feature descends from

the simple representation

L2m+1(w, f) = pm+1(w)Lm
(
w,

f

pm+1(w)

)
+ pm(w)Lm+1

(
w,

f

pm(w)

)
, (1)

where Lm (w, h) is the Lagrange polynomial interpolating h at the zeros of

pm(w). Indeed, (1) highlights that, in the construction of the 2m-degree in-

terpolating polynomial L2m+1(w, f), one can reuse the previously computed m

samples of f . It is possible to obtain other extended interpolation processes by

using sequences of polynomials orthogonal w.r.t. different weight functions, pro-

vided that the interpolation zeros are sufficiently “far” among them. Extended

interpolation processes have been extensively studied from several authors, in

bounded and unbounded intervals, and with estimates of the error in different

norms (see for instance [1], [2], [3], [4], [5], [6], [7]). Recently an application in

quadrature has been proposed in [8], [9].

Here we consider integrals of the type

I(f, y) :=

∫ 1

−1

f(x)k(x, y)dx, y ∈ S ⊂ IR, (2)

where f is a function with possible algebraic singularities in ±1 and k is a

kernel with some “pathologies” which are not reducible to any standard weight
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function. For instance k can be weakly singular or “nearly singular” or highly

oscillating and, in addition, present an algebraic singular behavior at the end-

points ±1.

Here we will employ extended Lagrange processes in constructing an extended

product quadrature rule. Denoting by Σ2m+1(f) the quadrature sum obtained by

replacing f with L2m+1(w, f) in (2), we state sufficient and necessary conditions

under which the operator

Σ2m+1 : f →
∫ 1

−1

L2m+1(w, f ;x)k(x, y)dx

is bounded in a suitable subspace of L1
u, where u = vγ,δ with γ, δ ≥ 0. This

result assures the stability of the rule, with a rate of convergence behaving as

the error of the best polynomial approximation of f in weighted uniform norm.

From the computational point of view we will gather a general recurrence

relation formula for the generalized modified moments arising in the extended

rule coefficients, starting from the so-called modified moments.

Finally, we introduce an efficient quadrature scheme obtained by “mixing”

the extended rule with the analogous “one-weight” product rule based on the

Lagrange polynomial Lm+1(w, f). As we will show, the mixed sequence allows

to reduce of one third the number of samples of f needed if we use the only one-

weight product sequence and if we want to get the same speed of convergence.

The underlying idea of this apparently tortuous path, is the possible appli-

cation to numerical methods for functional equations. For instance using the

mixed quadrature scheme for solving Fredholm second kind integral equations

it is possible to construct approximate solutions of degrees m and 2m + 1 re-

spectively, by solving two systems of linear equations of orders m and m + 1 (

instead of m and 2m+ 1).

The outline of this paper is as follows. Section 2 contains some auxiliary

results.

In Section 3 we state a Theorem on the extended interpolating process that

can be useful also in other contexts. Hence we introduce and study the extended

quadrature rule, the compound quadrature sequence and some results about the
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stability and the convergence of the mixed scheme.

Section 4 contains some details about the computation of the coefficients of

the extended rule and in Section 5 we produce some numerical tests, to confirm

the theoretical estimates and for underlining the efficiency of the mixed scheme.

Finally, Section 6 contains the proofs of the main results.

2. Notation and preliminary results

In the sequel C will denote any positive constant which can be different

in different formulas. Moreover C 6= C(a, b, ..) will be used to note that the

constant C is independent of a, b, ... The notation A ∼ B, where A and B are

positive quantities depending on some parameters, will be used if and only if

(A/B)±1 ≤ C, with C a positive constant independent of the above parameters.

Denote by IPm the space of all algebraic polynomials of degree at most m

and for any bivariate function g(x, y), denote by gy (gx) the function in the

only variable x (y). Finally, with a consolidate notation, we will set vρ,σ(x) =

(1− x)ρ(1 + x)σ, ρ, σ ∈ IR and by ϕ(x) =
√

1− x2.

For 1 ≤ p <∞, and u(x) = vγ,δ(x), γ, δ > −1

p
, let Lpu = Lpu([−1, 1]) be the

space of measurable functions f s.t. fu ∈ Lp([−1, 1]), equipped with the norm

‖f‖Lpu =

(∫ 1

−1

|f(x)u(x)|pdx
) 1
p

.

Moreover with γ, δ ≥ 0, let L∞u ([−1, 1]) =: Cu be the space of functions f ∈

C0((−1, 1)) s.t. fu ∈ C0([−1, 1]) and lim
x→1−

f(x)u(x) = 0 if γ > 0 as well as

lim
x→−1+

f(x)u(x) = 0 if δ > 0, equipped with the norm ‖f‖Cu = sup
|x|≤1

|f(x)|u(x).

For smoother functions, with r ∈ IN, consider the Sobolev-type space

W∞r (u) =
{
f ∈ Cu : f (r−1) ∈ AC[−1, 1], ‖f (r)ϕru‖∞ <∞

}
,

where AC is the space of absolutely continuous functions, and equip it with the

norm ‖f‖W∞r (u) = ‖fu‖∞ + ‖f (r)ϕru‖∞. Denoting by

Em(f)u = inf
P∈IPm

‖(f − P )u‖∞,

4



the error of the best polynomial approximation of f ∈ Cu, we recall that (see

for instance [10, p. 172]), ∀f ∈W∞r (u), r ≥ 1,

Em(f)u ≤ C
‖f‖W∞r (u)

mr
, C 6= C(m, f), . (3)

Finally, setting log+ f(x) = log(max(1, f(x))), by L log+ L we denote the space

of functions f defined in [−1, 1] s.t. ‖f(1 + log+ f)‖1 < +∞.

Consider the weight w = vα,β , α, β > −1, and let {pm(w)}m be the corre-

sponding sequence of orthonormal polynomials with positive leading coefficients,

i.e.

pm(w, x) = γm(w)xm + terms of lower degree, γm(w) > 0.

Denoting by {xk}mk=1 the zeros of pm(w) with x1 < x2 < · · · < xm, let Lm(w, f)

be the Lagrange polynomial interpolating a given function f at the zeros of

pm(w), i.e.

Lm(w, f, x) =

m∑
k=1

`m,k(w, x)f(xk), (4)

`m,k(w, x) =
pm(w, x)

p′m(w, xk)(x− xk)
= λm,k(w)

m−1∑
j=0

pj(w, x)pj(w, xk), (5)

being {λm,k(w)}mk=1 the Christoffel numbers w.r.t. w (see, for instance, [10,

(4.1.3), p.236]. About the weighted mean convergence of this interpolation

process, we recall the following result [10, p. 348], which will be useful in the

sequel.

Theorem 2.1. Let w = vα,β, u = vγ,δ, γ, δ ≥ 0 and assume sup
y∈S

ky
u
∈ L log+ L.

Then for any f ∈ Cu and with C 6= C(m, f),

sup
y∈S
‖Lm(w, f)k(·, y)‖1 ≤ C‖fu‖∞ ⇔ sup

y∈S

ky√
wϕ
∈ L1([−1, 1]),

√
wϕ

u
∈ L1([−1, 1]).

Now, denoting by {yk}m+1
k=1 with y1 < y2 < · · · < ym+1 the zeros of pm+1(w)

and recalling that yk < xk < yk+1, k = 1, 2, . . . ,m, we will set

{z2i−1 := yi}m+1
i=1 , {z2i := xi}mi=1 and Q2m+1 := pm(w)pm+1(w).
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With Lm defined as in (4), the extended Lagrange polynomial L2m+1(w, f)

interpolating f at the zeros of Q2m+1 can be represented in the following form

L2m+1(w, f ;x) =

2m+1∑
k=1

f(zk)
Q2m+1(x)

Q′m+1(zk)(x− zk)

= pm+1(w, x)Lm
(
w,

f

pm+1(w)
, x

)
+ pm(w, x)Lm+1

(
w,

f

pm(w)
, x

)
. (6)

About the convergence of the extended interpolation polynomial, we recall

Theorem 2.2. [3, Th. 3.4, p.79] Let u and w be generalized Jacobi weights.

For any f ∈ Cq([−1, 1]), q ≥ 1 ,
w

ϕq
∈ L1([−1, 1]),

u

ϕ
∈ L1([−1, 1]),

u

wϕ
∈

L1([−1, 1]), we have

‖(f − L2m+1(w, f))u‖1 ≤
C
mq

ω

(
f (q);

1

m

)
, m ≥ 4q + 5, C 6= C(m, f),

where ω(f, t) denotes the ordinary modulus of continuity of f .

Remark 2.1. Theorem 2.2 holds in a more general case since regards also the

case of the simultaneous approximation of f and its derivatives; however we

state here just what deals with our aims.

For I(f, y) in (2), consider the following “one-weight” product rule

I(f, y) =

∫ 1

−1

Lm(w, f, x)k(x, y) dx+ eIm(f, y) = Im(f, y) + eIm(f, y), (7)

where Im(f, y) =

m∑
i=1

Ci(y)f(xi), Ci(y) =

∫ 1

−1

`m,i(w, x)k(x, y)dx.

By Theorem 2.1 the stability and the convergence of the rule follows, i.e.

sup
m

sup
y∈S
|Im(f, y)| ≤ C‖fu‖∞, and sup

y∈S
|eIm(f, y)| ≤ CEm−1(f)u, (8)

with C 6= C(m, f).

Product rules were proposed by several authors (see for instance [11], [12])

and their strength is to compute problematic integrals with a rate of convergence

depending on the smoothness of f and not on the kernel k. However, their main

effort is due to the construction of the so called “modified moments” {Mj(y)}j
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needed to compute the coefficients {Ci(y)}mi=1

Ci(y) = λm,i(w)

m−1∑
j=0

pj(w, xi)Mj(y), Mj(y) =

∫ 1

−1

pj(w, x)k(x, y) dx. (9)

Usually the modified moments are obtained by recurrence relations, depending

on the peculiarities of the kernel (see for instance [13], [14], [15] and the refer-

ences therein). This means that there is no general procedure that allows us to

build the modified moments regardless of the nature of the kernel.

3. Main results

First of all we want to give a result about the extended interpolation process

which extend the results in Theorems 2.1 and 2.2.

Theorem 3.1. Let k(x, y) be defined in [−1, 1]× S, u = vγ,δ with γ, δ ≥ 0 and

w = vα,β. Under the assumptions

sup
y∈S

(
ky
wϕ

)
∈ L log+ L,

w

u
∈ L∞([−1, 1]), (10)

for any f ∈ Cu it is

sup
m

sup
y∈S
‖L2m+1(w, f)ky‖1 ≤ C‖fu‖∞, C 6= C(f). (11)

Moreover, if (11) holds true then

sup
y∈S

(
ky
wϕ

)
∈ L1([−1, 1]). (12)

Remark 3.1. We remark that (11) cannot be derived by Theorem 2.2, which

holds for f ∈ Cq([−1, 1]), q ≥ 1 and where the kernel ky does not appear. We

prove (11) in order to obtain a more general result which can be useful also in

other contexts.

Now we propose the following extended quadrature rule obtained by approx-

imating f in (2) by the interpolating polynomial (6), i.e.

I(f, y) :=

∫ 1

−1

f(x)k(x, y)dx =

2m+1∑
k=1

f(zk)Dk(y) + eΣ
2m+1(f, y) (13)

:= Σ2m+1(f, y) + eΣ
2m+1(f, y), Dk(y) =

∫ 1

−1

Q2m+1(x)

Q′2m+1(zk)(x− zk)
k(x, y)dx,
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where Σ2m+1(f, y) is the quadrature sum and eΣ
2m+1(f, y) is the remainder term.

The formula is exact for polynomials of degree not greater than 2m and first of

all Σ2m+1(f, y) converges to I(f, y), uniformly w.r.t. y ∈ S.

Theorem 3.2. Let k(x, y) be defined in [−1, 1]× S, u = vγ,δ with γ, δ ≥ 0 and

w = vα,β. Under the assumptions (10) for any f ∈ Cu it is

sup
m

sup
y∈S
|Σ2m+1(f, y)| ≤ C‖fu‖∞, C 6= C(f). (14)

Moreover assuming in addition that

sup
y∈S

ky
u
∈ L1([−1, 1]), (15)

the following error estimate holds true

sup
y∈S
|eΣ

2m+1(f, y)| ≤ CE2m(f)u, C 6= C(m, f). (16)

Remark 3.2. We underline that for any f ∈Wr(u), r ≥ 1, by (3) it follows

sup
y∈S
|eΣ

2m+1(f, y)| ≤ C
‖f‖Wr(u)

(2m)r
, C 6= C(m, f).

3.1. The computation of the quadrature coefficients

As already discussed, the main computational effort in constructing a prod-

uct integration rule is the “exact” computation of the coefficients, since they

strongly depend on the form of the kernel k(x, y). Here, we determine a recur-

rence relation connecting the coefficients {Ci(y)}mi=1 of the one-weight product

rule (7) with the coefficients {Di(y)}2m+1
i=1 of the extended quadrature rule (13).

Hence by (6) and (5) we get

Σ2m+1(f, y) =

m∑
k=1

Ak(y)f(xk) +

m+1∑
k=1

Bk(y)f(yk)

=:

m∑
k=1

f(xk)

pm+1(w, xk)
λm,k(w)

m−1∑
j=0

pj(w, xk)Mm+1
j (y) (17)

+

m+1∑
k=1

f(yk)

pm(w, yk)
λm+1,k(w)

m∑
j=0

pj(w, yk)Mm
j (y)
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where

Ms
j (y) :=

∫ 1

−1

ps(w, x)pj(w, x)k(x, y)w(x)dx,

will be called Generalized Modified Moments (GMMs).

Now we show how to compute GMMs starting from the ordinary modified

moments (MMs) {Mj(y)}j defined in (9). Just for the sake of simplicity, we

treat the Gegenbauer case w = vα,α, since the case α 6= β can be handled anal-

ogously. Following a trapezoidal scheme, (see for instance [16]), we propose an

algorithm which maps the vector {Mj(y)}2mj=0 into the two arrays {Mm
j (y)}mj=0,

{Mm+1
j (y)}m−1

j=0 . It is essentially based on the following three terms recurrence

relation for the orthonormal Gegenbauer polynomials

p0(w) ≡ 1√∫ 1

−1
w(x)dx

, p1(w, x) =
p0(w)

b1
x, b1 =

1√
3 + 2α

xpj(w, x) = bjpj−1(w, x)+bj+1pj+1(w, x) bj =

√
j(j + 2α)

4(j + α)2 − 1
, j = 2, 3, . . . .

Algorithm

Initialization: {M0
j (y) = p0(w)Mj(y)}2mj=0 and for j = 1, . . . , 2m− 1

M1
j (y) =

∫ 1

−1

pj(w, x)p1(w, x)ky(x)dx =
1

b1

[
bj+1M

0
j+1(y) + bjM

0
j−1(y)

]
.

By the symmetry Mk
j = M j

k , for k ≥ 2, k ≤ j ≤ 2m− k

Mk
j (y) =

∫ 1

−1

pj(w, x)pk(w, x)ky(x)dx

=
1

bk

[
bj+1M

k−1
j+1 (y) + bjM

k−1
j−1 (y)− bk−1M

k−2
j (y)

]
.

We remark that the construction of GMMs requires 4m2 flops approximately.

We checked the sensitivity of the proposed recurrence relation by testing

the algorithm for different kernels and comparing the values obtained by using

double and quadruple machine precisions. To be more precise, denoting by

Mdm+1
j (y) and Mqm+1

j (y) the j−th GMM in double and in quadruple precision

respectively, we computed the quantities
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Mm = max
y∈Tq

max
0≤i≤m

∣∣∣∣∣Mdm+1
j (y)−Mqm+1

j (y)

Mqm+1
j (y)

∣∣∣∣∣ ,
with Tq =

{
−1 +

i

10

}20

i=0

, for increasing values of m and by implementing the

algorithm in MatLab (release R2018a). The largest value m = 1000 corresponds

to the practical threshold value we can use, since for larger values of m the

precision in computing the zeros of orthogonal polynomials and the Christoffel

numbers, progressively reduces.

We report here, by way of example, the results obtained for the kernel

k(x, y) = |x− y|λ, with λ = 0.5, since for other λ the results are similar.

m 10 50 100 500 1000

Mm 4.2e− 15 3.9e− 14 4.0e− 13 1.0e− 12 6.3e− 12

As we can see, a moderate loss of accuracy occurs, consisting in losing 4-

5 decimal digits at most, for m = 1000. This means that by using variable

precision it should be sufficient to perform the computation by considering 4-5

additional digits. However, the implementation of the quadruple precision in

the MatLab language is simpler than other ones and certainly its use is more

than enough.

3.2. A mixed quadrature scheme

Now we propose to “compose” the sequences {Im(f)}m and {Σ2m+1(f)}m,

in order to obtain a new sequence which approximates I(f, y) with the same

speed of convergence of {Im+2(f)}m, but with a reduced number of function

samples. In addition, in view of the relations between the MMs and GMMs,

also the construction of the coefficients of the extended rules can be performed

with an efficient procedure. To be more precise, for a fixed m, we consider the

sequence Im(f), Σ2m+1(f), I4m(f),Σ8m+1(f), . . . . Once we have constructed

the m−th product rule (7), the samples of f are reused for computing the

“extended” 2m + 1 quadrature rule with only additional m + 1 samples. The
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scheme go on restarting from the 4m−th product rule (7) and using the samples

in the extended rule of order 8m+ 1 etc.

In details, for any given q ∈ IN, consider the sequences {I2km(f)}2q−1
k=0 , and

{I22km(f),Σ22k+1m+1(f)}q−1
k=0. The first requires m(22q − 1) evaluations of the

function f , while the mixed scheme only q+
2

3
m(22q−1), i.e. by this way almost

one third of the function evaluations is spared. Setting

T2nm(f) =

 I2nm(f), n = 0, 2, 4, 6, . . .

Σ2nm+1(f), n odd
, (18)

about the stability and the convergence of this mixed scheme we are able to

prove the following:

Theorem 3.3. Under the assumptions

sup
y∈S

(
ky
wϕ

)
∈ L log+ L, sup

y∈S

(
ky
u

)
∈ L log+ L,

(19)
√
wϕ

u
∈ L1([−1, 1]),

w

u
∈ L∞((−1, 1)),

we have for any f ∈ Cu and any fixed n ∈ N,

sup
y∈S
|T2nm(f, y)| ≤ C‖fu‖∞ (20)

and

sup
y∈S
|I(f, y)− T2nm(f, y)| ≤ CE2nm(f)u, (21)

where in both cases C 6= C(m, f).

4. Numerical Tests

In this section we propose some examples to test the mixed sequence (18)

and to perform a comparison with the behaviour of the one-weight sequence (7).

In each test we report the approximate values of the integral by means of the

one-weight rule (OWR) and by the corresponding mixed sequence (MixSeq),

for increasing values of m. Moreover, we specify the number # feval. of

function evaluations, corresponding to OWR and MixSeq. We point out
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that all the computations have been performed in double-machine precision

(eps ≈ 2.22044e − 16), except the routine for GMMs, performed in quadruple

arithmetic precision in view of the mild instability of the algorithm.

Example 4.1. Consider the following integral with an oscillating kernel

I1(f, y) =

∫ 1

−1

exp(x)(1 + x2) sin(10x)(1− x2)0.1dx, u = v0,0, w = v0.1,0.1

f(x) = exp(x)(1 + x2), k(x, y) = sin(yx)(1− x2)0.1, y = 10.

Since the function f is very smooth, the convergence is very fast (Table 1).

Table 1: Evaluation of I1(f, y) with y = 10.

# feval. MixSeq # feval. OWR

5 −4.4e− 01 5 −4.4e− 01

6 −4.4405e− 01 11 −4.44057e− 01

20 −4.440579949773e− 01 20 −4.440579949773e− 01

21 −4.44057994977389e− 01 41 −4.44057994977389e− 01

Example 4.2.

I2(f, y) =

∫ 1

−1

e|x−0.25|
7
2 sin(xy)dx, u = w = v0,0

f(x) = e|x−0.25|
7
2 , k(x, y) = sin(xy), y = 25.

In this case f ∈ W∞3 (u) and the error behaves like
‖f (3)ϕ3‖∞

m3
. Evaluating the

seminorm, we have for m = 256,
‖f (3)ϕ3‖∞

m3
∼ 1.8e − 06, while for m = 256

according to Table 2, 12 exact digits are achieved.

Example 4.3.

I3(f, y) =

∫ 1

−1

sin (1− x)
9
2

4
√

1− x2

|x− y|0.3
dx, u = v0.25,0.25 = w

f(x) = sin (1− x)
9
2 , k(x, y) =

4
√

1− x2

|x− y|0.3
, y = −0.2.

Since f ∈W∞9 (u) the error behaves like
‖f (9)uϕ9‖∞

m9
. By ‖f (9)uϕ9‖∞ ∼ 2e+12,

for m = 256 the theoretical estimate assures 11 digits, while the effective digits

are 15 (Table 3).
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Table 2: Evaluation of I2(f, y) with y = 25.

# feval. MixSeq # feval. OWR

16 2.811e− 01 16 2.811e− 01

17 2.8115e− 01 32 2.81158e− 01

64 2.811586e− 01 64 2.811586e− 01

65 2.811586223e− 01 128 2.81158622e− 01

256 2.8115862232e− 01 256 2.811586223e− 01

257 2.81158622325e− 01 512 2.8115862235e− 01

Table 3: Evaluation of I3(f, y) with y = −0.2.

# feval. MixSeq # feval. OWR

16 6.5e− 01 16 6.5e− 01

17 6.50e− 01 32 6.50e− 01

64 6.50512850059e− 01 64 6.50512850059e− 01

65 6.5051285005932e− 01 128 6.5051285005932e− 01

256 6.50512850059325e− 01 256 6.50512850059325e− 01

5. The Proofs

For any weight w = vα,β we recall the following estimates, useful in the

proofs:

|pm(w, x)| ≤ C(√
1− x+ 1

m

)α+ 1
2
(√

1 + x+ 1
m

)β+ 1
2

, |x| ≤ 1, (22)

(see [17, (15)]),

1

p′m(w, xk)
=
γm−1(w)

γm(w)
pm−1(w, xk)λm,k(w) (23)

obtained by comparing [17, (3)] with the first expression for `m,k(w, x) in (5),

and

∆xk = xk+1 − xk ∼
1

m
ϕ(xk), λm,k(w) ∼ ∆xkw(xk), (24)

(see [18, p. 120]).

Next Lemma can be found in [19] (see also [20, p. 101, Prop. II. 4. 6]).
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Lemma 5.1. Let {{xk = xm,k}mk=1}m=2,3,... be arc cosine distributed (i.e. set-

ting xm,k = cos θm,k, k = 1, 2, . . . ,m it is |θm,i − θm,i+1| ∼ m−1, 0 ≤ i ≤

m, θm,0 = π, θm,m+1 = 0) let l > 0 be a fixed integer, u(x) = vγ,δ with γ,

δ > −1. Then, for any polynomial Plm ∈ IPlm, it results

m∑
k=1

∆xk|Plmu|(xk) ≤ C‖Plmu‖1, C 6= C(Plm,m).

Lemma 5.2. Let be Q2m+1 = pm+1(w)pm(w). With {xk}mk=1 the zeros of

pm(w) and by {yk}m+1
k=1 the zeros of pm+1(w), it is

1

|Q′2m+1(xk)|
∼ ∆xkw(xk),

1

|Q′2m+1(yk)|
∼ ∆ykw(yk), (25)

Proof. We omit the proof, since it easily follows taking into account (23), esti-

mate
γm(w)

γm+1(w)
≤ C, C 6= C(m) and (24).

Denoting by HB(g, t) =

∫
B

g(x)

x− t
dx the Hilbert transform of the function g

on the compact set B, we recall that, if G ∈ L∞(B), F ∈ L log+ L(B), then [21,

p.361]∫
B

GHB(F ) = −
∫
B

FHB(G), ‖FHB(G)‖1 ≤ C‖G‖∞(‖F log+ F‖1 + 1),

(26)

where C 6= C(F ).

Proof of Theorem 3.1 . First we prove that (10) ⇒ (11). Denoting by

gm = sgn(L2m+1(w, f)ky), we get

‖L2m+1(w, f)ky‖1 =

∣∣∣∣∫ 1

−1

L2m+1(w, f)ky(x)gm(x)dx

∣∣∣∣
≤

∣∣∣∣∫ 1

−1

pm+1(w, x)Lm
(
w,

f

pm+1(w)
, x

)
ky(x)gm(x)dx

∣∣∣∣
+

∣∣∣∣∫ 1

−1

pm(w, x)Lm+1

(
w,

f

pm(w)
, x

)
ky(x)gm(x)dx

∣∣∣∣ .
Setting Π(t) =

∫ 1

−1

Q2m+1(x)q(x)−Q2m+1(t)q(t)

(x− t)
gm(x)ky(x)

q(x)
dx, with q an ar-

14



bitrary polynomial of degree ml, l a fixed integer, by (25) we have

‖L2m+1(w, f)ky‖1 ≤

∣∣∣∣∣
m∑
k=1

f(xk)

Q′2m+1(xk)
Π(xk)

∣∣∣∣∣+

∣∣∣∣∣
m+1∑
k=1

f(yk)

Q′2m+1(yk)
Π(yk)

∣∣∣∣∣
≤ C‖fu‖∞

(
m+1∑
k=1

∆yk
w(yk)

u(yk)
|Π(yk)|+

m∑
k=1

∆xk
w(xk)

u(xk)
|Π(xk)|

)
.

Taking into account that Π ∈ IP2m+ml, we use Lemma 5.1 in order to obtain

‖L2m+1(w, f)ky‖1 ≤ C‖fu‖∞
∫ 1

−1

w(t)

u(t)
|Π(t)|dt

and by the Remez-type inequality [22, (8.1.4)], settingAm =

[
−1 +

C
m2

, 1− C
m2

]
we have

‖L2m+1(w, f)ky‖1 ≤ C‖fu‖∞
{∫

Am

w(t)

u(t)
|H(Q2m+1gmky, t)| dt

+

∫
Am

w(t)

u(t)
|Q2m+1(t)q(t)|

∣∣∣∣H (gmkyq , t

)∣∣∣∣dt} (27)

=: C‖fu‖∞
{∫

Am

w(t)

u(t)
|H(Fm,y, t)| dt

+

∫
Am

|Gm,y(t)|
∣∣∣∣H (gmkyq , t

)∣∣∣∣ dt}
=: C‖fu‖∞ (J1(y) + J2(y)) (28)

where Fm,y(t) = Q2m+1(t)gm(t)ky(t), Gm,y(t) =
w(t)

u(t)

Q2m+1(t)q(t)wm(t)

wm(t)
,

and wm(t) = (
√

1− x+m−1)2α+1(
√

1 + x+m−1)2β+1. By (22) it follows

|Fm,y(t)| ≤ C |ky(t)|
wm(t)

and under the assumptions in (10), in view of (26)

J1(y) ≤ C
∫ 1

−1

|ky(t)|
w(t)ϕ(t)

log

(
1 +

|ky(t)|
w(t)ϕ(t)

)
dt ≤ C. (29)

In order to estimate J2 by a result in [17, p.682], we can choose the polynomial

q ∈ IPml, such that under the assumption α > −1

2
, β > −1

2
, q(t) ∼ (wϕ)(t), t ∈

Am and by (22) again, we have

|Gm,y(t)| ≤ Cw(t)

u(t)
≤ C, t ∈ Am.

15



Therefore, under the assumption
ky
wϕ
∈ L log+ L, by (26), it follows

J2(y) ≤ C + C
∫ 1

−1

|ky(t)|
w(t)ϕ(t)

log

(
1 +

|ky(t)|
w(t)ϕ(t)

)
dt ≤ C. (30)

Combining (29) and (30) with (28) it follows

sup
y∈S
‖L2m+1(w, f)ky‖1 ≤ C‖fu‖∞, C 6= C(m, f),

i.e. (11) is proved.

Now we prove (11) ⇒ (12). Consider a linear piecewise function f̄(x) s.t.

f̄(zk) = sgn(Q′2m+1(zk)(x− zk)), for zk = xk and f̄(zk) = 0, for zk = yk.

Therefore ‖f̄‖∞ ≤ 1 and |L2m+1(w, f̄ , x)ky(x)| =
m∑
k=1

|Q2m+1(x)|
|Q′2m+1(xk)(x− xk)|

|ky(x)|.

By (25) |L2m+1(w, f̄ , x)ky(x)| ≥ C|Q2m+1(x)||ky(x)|
m∑
k=1

∆xk
|x− zk|

w(zk) and since

|x − xk| ≤ 2 and using

m∑
k=1

∆xkw(zk) ≥ C, we get |L2m+1(w, f̄ , x)ky(x)| ≥

C|Q2m+1(x)||ky(x)|. Set x0 = −1 = −xm+1 and let ε > 0 be “small”. Defined

εk =
ε

4
∆xk let ζm =

(
m⋃
k=1

[xk − εk, xk + εk]

)
∪[x0, x0+ε0]∪[xm+1−εm+1, xm+1]

and let Cζm = [−1, 1] \ ζm. Hence by (11),

‖f̄u‖∞ ≥ C
∫ 1

−1

|L2m+1(w, f̄ , x)ky(x)|dx

≥ C
∫
Cζm

|Q2m+1(x)||ky(x)|dx≥C
∫
Cζm

|ky(x)|
w(x)ϕ(x)

dx,

where last inequality follows by (22). Since meas(ζm) ≤ ε, we can conclude

‖f̄u‖∞≥C
∫ 1

−1

|L2m+1(w, f̄ , x)ky(x)|dx ≥C
∫ 1

−1

|ky(x)|
w(x)ϕ(x)

dx

and the thesis follows. �

Proof of Theorem 3.2 . First we note that (14) immediately follows by (11).

Now we prove (16). With P ∈ P2m, under assumption (15), we get

|eΣ
2m+1(f, y)| ≤

∫ 1

−1

|(f(x)− P (x))k(x, y)|dx+ |Σ2m+1(f − P, y)|

≤ C‖(f − P )u‖∞
(∫ 1

−1

|ky(x)|
u(x)

dx

)
≤ CE2m(f)u. 2

16



Proof of Theorem 3.3 . First of all we remark that under the assumptions

(19) both (8) and Theorem 3.2 are true. Therefore, taking into account that, in

view of (18), the sequence T2nm(f) is obtained by alternating two subsequences

of {Im(f)}m and {Σ2m+1(f)}m, then (20) follows by the first inequality in (8)

and by (14), while (21) follows by the second inequality in (8) and by (16). �
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