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Abstract— In this paper a preliminary study on a new
concept of fully actuated Unmanned Aerial Vehicle (UAV),
named ODQuad (OmniDirectional Quadrotor), is presented.
By exploiting two additional actuators, the designed UAV can
simultaneously modify the tilting angle of all the propellers,
in such a way to decouple position and attitude motions.
This solution, differently from other fully actuated UAVs with
tilted propellers, avoids internal forces and energy dissipation,
due to non-parallel propellers’ axes. A preliminary mechanical
design and the kinematic and dynamic models are developed.
Moreover, a motion control scheme, based on a hierarchical
two loop, has been designed. Simulations are provided in order
to show the feasibility of the concept and the effectiveness of
the control scheme.

I. INTRODUCTION

Vertical Take Off and Landing (VTOL) Unmanned Aerial
Vehicles (UAVs) offer several advantages over standard
mobile robots operating on ground in many application
scenarios (e.g., inspection and manteinance services [1], data
collection and exploration operations [2], precision agricul-
ture [3]). More recently, aerial manipulators (i.e., UAVs
equipped with grippers or robotic arms) opened up a new
stream of applications, e.g., in assembly of structures in
remote environments, maintenaince operations and payload
transportation [4], [5].

A typical configuration of a VTOL UAV is that of a
multi-rotor vehicle, i.e., an aerial vehicle equipped with
four or more coplanar propellers. A classical multi-rotor
vehicle is an underactuated system, since thrusts generated
by propellers are directed along parallel axes, orthogonal
to the plane of the propellers [6]. In fact, in order to
change its position and/or counteract external disturbances,
a rotation of vehicle’s body is required. This limitation may
become severe in some applications, e.g., manipulation tasks
involving contact with the environment [7], and/or limit the
distrubance counteraction capabilities of the system.

In order to overcome this problem, recently, the interest
of the research community has focused on omnidirectional
platforms, which combine the advantages of existing multi-
rotor systems with the agility and the maneuverability of
fully actuated UAVs. One of the most common approaches
is based on the use of tilted propellers A tilt-wing mech-
anism has been proposed in [8] and [9], where a vehicle
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equipped with four wings, that can be rotated from vertical
to horizontal position, is designed. Such a solution requires
at least seven actuators, in order to decouple position and
orientation control, thus resulting in an overactuated system.
Other overactuated quadrotor UAVs with titling propellers
has been proposed in [10], where 4 additional control inputs
are adopted for tilting the propeller’s arms, and in [11],
where 4 motors are adopted for propellers rotation and 8
servomotors are used for tilting each propeller.

The adoption of overactuated platforms increases the sys-
tem weight, due to additional motors, and the complexity
of the control because of the need of handling both vertical
and lateral air flows. To overcome this problem, hexarotors
with tilted propellers have been proposed. In [12] each rotor
is mounted in a fixed configuration rotated about two axes.
The two angular parameters defining the rotor tilting are
obtained via optimization, aimed at reducing the control
effort magnitude. Adoption of an hexacopter in lieu of
the quadrotor configuration allows to increase the system
payload and the robustness to faults, at the expense of a
slightly more complex mechanical structure. An eight-rotor
configuration is adopted in [13].

To increase the efficiency, in [14], a new UAV concept
is proposed, with an additional motor aimed at tilting all
propellers at the same time, where the tilting angle is
computed by an high-level slow-rate controller. The use of
a single motor reduces the energy consumption and the total
mass, allowing to drive the platform from a configuration
energetically efficient, but underactuated, to a fully actuated,
but less efficient, one.

More recently, in [15], an hexarotor with independently
tiltable rotors is designed and experimentally tested, where
the tilting angle of the rotors is computed on line via a
suitable control allocation scheme: this solution, however,
does not avoid internal wrenches caused by counteracting
actuators and uses redundant control inputs.

In [16], the tilting angle of the propellers of a quadrotor
is simultaneously controlled by two additional actuators by
employing a parallelogram mechanism; the idea is to change
the orientation of all propellers, keeping them aligned along
the same direction: hence, this solution does not suffer from
energy dissipation, due to internal wrench caused by coun-
teracting actuators and uses six inputs to control six Degrees
of Freedom (DOFs); a feedback linearization approach is
adopted for motion control, requiring acceleration feedback.

The aim of this paper is to present a new concept of an
aerial vehicle, named ODQuad (OmniDirectional Quadro-
tor), able to fly in any position with any orientation, having
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the same main features of the solution in [16], i.e., avoiding
internal wrenches and redundant inputs. To this purpose,
a novel mechanical design is adopted, where the frame,
on which the four rotors are mounted, is rotated via two
rotational joints realizing a two-axis (roll and pitch) gimbal
mechanism. In this way, the adoption of complex closed-
chain mechanisms is avoided. Although the approach is
developed for a quadrotor configuration, it might be easily
exploited for other multirotor configurations.

In detail, a preliminary mechanical design of the system
is carried out, and kinematic and dynamical models are
developed; the obtained results will be exploited to design
and build a first prototype of the ODQuad. Also, a motion
scheme, based on a hierarchical approach used for under-
actuated multirotor systems, is designed and tested in sim-
ulation: the scheme computes in real time the angles of the
gimbal joints, based on the required forces and moments to
achieve the desired motion.

Finally, the main features of the designed system are
summarized and discussed, together with a brief description
of the ongoing work.

II. KINEMATIC STRUCTURE

The proposed vehicle is based on three components:
• A platform, hosting computing hardware, electronics,

batteries and sensors;
• A rotor frame, that supports the propellers;
• A mobile frame, that connects the platform and the rotor

frames.
The three components are sketched in Fig.1. A rotational
joint connects the platform to mobile frame (roll joint,
see Fig.1(b)), while the mobile frame and the rotor frame
are connected via another rotational joint (pitch joint, see
Fig.1(c)) with axis orthogonal to the previous one.

During the motion, the vehicle modifies the orientation
of the rotor frame to generate a thrust component along an
arbitrary direction. In this way, the platform can assume any
orientation independently from that of the rotor frame.

Let us define the following relevant coordinate frames:
• Inertial coordinate frame, Σ{O, x, y, z};
• The coordinate frame Σ0{O0, x0, y0, z0}, attached to

the platform in such a way that the axis x0 coincides
with the axis of the roll joint;

• The coordinate frame Σ1{O1, x1, y1, z1}, attached to
mobile frame in such a way that the axis x1 coincides
with the axis of the pitch joint;

• The coordinate frame Σ2{O2, x2, y2, z2}, attached to
the rotor frame in such a way that the axis x2 coincides
with x1.

It is worth noticing that Σ0, Σ1 and Σ2, without loss of
generality, have been chosen such that O0 ≡ O1 ≡ O2. The
relative orientation between the coordinate frames is given
by the following rotation matrices

R0
1(α) =

 0 −1 0
cα 0 −sα
sα 0 cα

 , (1)

R1
2(β) =

1 0 0
0 cβ −sβ
0 sβ cβ

 , (2)

where α is the pitch angle, β is the roll angle, cα = cosα,
sα = sinα, cβ = cosβ and sβ = sinβ and Rj

i denotes the
orientation of Σi with respect to Σj .

III. MODELING

The dynamic model of the system can be derived by
considering the Euler-Lagrange formulation, in which the
mechanical system is characterized by the function

L = T − U , (3)

where T and U denote the total kinetic and potential energy,
respectively. The Lagrange equations are given by (i =
1, . . . , 8)

d

dt

∂L
∂q̇i
− ∂L
∂qi

= ζi, (4)

where qi is the i-th generalized coordinate of the system
and ζi is the corresponding generalized force. The chosen
generalized coordinates are

q =
[
pT0 φ

T
0 δ

T
]T
∈ IR8, (5)

where p0 ∈ IR3 is the position of O0 with respect to
the inertial frame, φ0 = [ϕ ϑ ψ]

T ∈ IR3 is the vector of
Euler angles (e.g., roll-pitch-yaw angles) representing the
platform orientation with respect to the inertial frame, and
δ = [α β]

T ∈ IR2 collects the gimbal joint positions.

A. Kinematics

Let us consider a coordinate frame, ΣC0 , attached to the
center of mass, C0, of the platform and having the same
orientation of Σ0. The position of C0 with respect to the
inertial frame can be expressed as

pC0
= p0 +R0(φ0)r00,C0

, (6)

where R0 is the rotation matrix expressing the platform
orientation with respect to the inertial frame and the vector
r00,C0

denotes the position of C0 with respect to O0, ex-
pressed in Σ0. By differentiating (6), the linear and angular
velocities of ΣC0

are given by{
ṗC0

= ṗ0 − S(r0,C0)ω0

ωC0 = ω0,
(7)

where ω∗ is the angular velocity of the coordinate frame Σ∗
(∗ = C0, 0), expressed in the inertial frame, and S(·) is the
skew-symmetric operator performing the cross product [17].
Equation (7) can be expressed in terms of the generalized
coordinates as follows{

ṗC0
= JP0

(q)q̇
ωC0 = JO0(q)q̇,

(8)

where the Jacobian matrices JP0
∈ IR3×8 and JO0

∈ IR3×8

are given by

JP0 =
[
I3 − S(r00,C0

)T (φ0) 03 03

]
(9)

JO0 = [O3 T (φ0) 03 03] , (10)
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(a) ODQuad (b) Roll joint (c) Pitch joint

Fig. 1. ODQuad overall assembly (a), roll joint axis (b), pitch joint axis (c).

T (φ0) is the matrix relating the derivative of the Euler
angles, φ̇0, to the angular velocity, ω0 [17], I3 and O3 are
the (3× 3) identity and null matrices, respectively, while 03

is the (3× 1) null vector.
Let us consider a coordinate frame ΣC1

, attached to the
center of mass, C1, of the mobile frame and having the same
orientation of Σ1. The position of the center of mass C1, can
be expressed in the inertial frame as

pC1
= p1 +R1(φ0, α)r11,C1

, (11)

where the vector r11,C1
represents the position of C1 with

respect to O1, expressed in Σ1, while R1(φ0, α) =
R0(φ0)R0

1(α) is the rotation matrix expressing the orienta-
tion of Σ1 with respect to the inertial frame. Since O1 ≡ O0,
(11) can be rewritten as:

pC1
= p0 +R1(φ0, α)r11,C1

. (12)

The linear and angular velocities of ΣC1 are given by{
ṗC1

= ṗ0 − S(r1,C1)ω1 = JP1(q)q̇
ωC1 = ω1 = JO1(q)q̇.

(13)

Since
ω1 = ω0 + α̇x0(φ0), (14)

the Jacobian matrices JP1
∈ IR3×8 and JO1

∈ IR3×8 are
given by

JP1
= [I3 − S(r1,C1

)T (φ0) − S(r1,C1
)x0 03] (15)

JO1
= [O3 T (φ0) x0 03] , (16)

where x0 is the first column of R0.
Let us consider a coordinate frame, ΣC2

, attached to the
center of mass, C2, of the rotor frame and having the same
orientation of Σ2. The position of C2 can be expressed in
the inertial frame as

pC2
= p2 +R2(φ0, α, β)r22,C2

, (17)

where the vector r22,C2
represents the position C2 with

respect to O2, expressed in Σ2, while R2(φ0, α, β) =

R1(φ0, α)R1
2(β) expresses the orientation of Σ2 with re-

spect to the inertial frame. Since O2 ≡ O0, (17) can be
rewritten as:

pC2
= p0 +R2(φ0, α, β)r22,C2

. (18)

The linear and angular velocities of ΣC2
are given by

ṗC2
= ṗ0−S(r2,C2)ω2

= ṗ0−S(r2,C2
)(ω1 + β̇x1)

= ṗ0−S(r2,C2
)(ω0 + α̇x0 + β̇x1)

= JP2
(q)q̇

ωC2 = ω2 = ω1 + β̇x1(φ0, α)

= ω0 + α̇x0(φ0) + β̇ x1(φ0, α)
= JO2

(q)q̇

(19)

where x1 is the first column ofR1, and the Jacobian matrices
JP2 ∈ IR3×8 and JO2 ∈ IR3×8 are given by

JP2
=[I3 −S(r2,C2

)T (φ0)−S(r2,C2
)x0 −S(r2,C2

)x1] (20)
JO2

=[O3 T (φ0) x0 x1] . (21)

B. Dynamics

The kinetic energy, T , for the ith body (i = 0, 1, 2) is
given by

Ti=
1

2
miq̇

TJT
Pi

(q)JPi
(q)q̇+

1

2
q̇TJT

Oi
(q)M iJOi

(q)q̇, (22)

where mi is the mass, M i = RiM
i
iR

T
i is the inertia tensor

expressed in the inertial frame, while M i
i is the inertia tensor

expressed in Σi.
The potential energy U for the ith body (i = 0, 1, 2) can

be written as
Ui = miḡ

TpCi
(q), (23)

where ḡ =
[
0 0 −9.81

]
is the gravitational acceleration

vector.
By virtue of (3), (22) and (23) the dynamic model can be

written in compact form as

M(q)q̈ +C(q, q̇)q̇ + F q̇ + g(q) = ζ, (24)
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where M(q) ∈ IR8×8 is the inertia matrix

M(q) =

2∑
i=0

(
miJ

T
Pi

(q)JPi
(q) + JT

Oi
(q)M iJOi

(q)
)
,

(25)
C(q, q̇) ∈ IR8×8 collects the Coriolis and centrifugal terms

C(q, q̇)q̇ = Ṁ(q)q̇ −
[
∂

∂q

(
1

2
q̇TM(q)q̇

)]T
, (26)

g(q) ∈ IR8 contains the generalized gravitational forces

g(q) =

(
∂U(q)

∂q

)T

= −
2∑
i=0

miḡ
TJPi(q). (27)

and F q̇ ∈ IR8 is a term collecting friction forces and
aerodynamics disturbances at low velocities. The vector ζ
collects the external generalized forces acting as inputs, i.e.,

ζ =

f0

µ0

τ δ

, (28)

where f0 and µ0 are the force and moment, respectively,
acting on the platform and τ δ ∈ IR2 are the torques acting
on the gimbal joints. The force f0 depends on the four
propellers’ thrusts, σi (i = 1, . . . , 4). Such thrusts are
directed along the z2 axis, thus the total force acting on
the platform, expressed in Σ2, has the following expression
f2
2 = [0 0 fz]

T. By exploiting f2
2, f0 can be expressed as

f0 = R2f
2
2. (29)

Analogously, the moment µ0 can be written as

µ0 = R2

(
µ2

2 + S(r22,C2
)f2

2

)
, (30)

where µ2
2 is the moment generated by the propellers ex-

pressed in frame Σ2. In turn, f2
2 and µ2

2 can be expressed
as [6]

[
fz
µ2

2

]
=


1 1 1 1
l 0 −l 0
0 −l 0 l
c −c c −c



σ1
σ2
σ3
σ4

 = Nσ, (31)

where l > 0 is the distance from each motor to the origin O2,
c = γd/γt, with γd and γt the drag and thrust coefficients,
respectively. The torque vector τ δ is given by the sum of the
torques generated by the joint actuators, τ c, and the effect
of the thrusts on the joints

τ δ = τ c + JT
2 h2, (32)

where

J2 =

[
JP2

JO2

]
, h2 =

[
R2f

2
2

R2µ
2
2

]
.

For control design purposes, the matrices in (24) can be
written as block matrices

M =

 Mpp Mpφ Mpδ

Mpφ
T Mφφ Mφδ

Mpδ
T Mφδ

T M δδ

 ,

where Mpp ∈ IR3×3, Mpφ ∈ IR3×3, Mpδ ∈ IR3×2, Mφφ ∈
IR3×3, Mφδ ∈ IR3×2 and M δδ ∈ IR2×2; and

C =

Cp

Cφ

Cδ

, F =

F pF φ
F δ

, g =

gpgφ
gδ

,
where Cp ∈ IR3×8, Cφ ∈ IR3×8, Cδ ∈ IR2×8,F p ∈ IR3×8,
F φ ∈ IR3×8, F δ ∈ IR2×8, gp ∈ IR3, gφ ∈ IR3, gδ ∈ IR2.
The block decomposition allows to rearrange the dynamic
model (24) as

Mppp̈0 +Mpφφ̈0 +Mpδδ̈ +Cpṗ0 + F pṗ0 + gp = f0

MT
pφp̈0 +Mφφφ̈0 +Mφδδ̈ +Cφφ̇0 + F φφ̇0 + gφ = µ0

MT
pδp̈0 +MT

φδφ̈0 +M δδδ̈ +Cδδ̇ + F δδ̇ + gδ = τ δ, (33)

where the matrix dependencies have been dropped for com-
pactness.

IV. CONTROL

In this Section, a model-based motion control scheme for
the ODQuad is developed. The control scheme is inherited
from the approach developed in [5] for aerial manipulators
and is based on a two-loop approach. The outer loop im-
plements the position controller: its output is the force to
be applied to the vehicle’s platform required to achieve the
desired vehicle’s position trajectory and the reference angles
for the gimbal joints. The inner loop, on the basis of the
vehicle’s desired orientation and the reference joint angles,
computes the moment and the torques for the joints required
to achieve the desired angular motion. A sketch of the control
block scheme is reported in Fig. 2.

The control objective is to track desired position and
orientation trajectories for the platform (i.e., the coordinate
frame Σ0), expressed, respectively, by the vectors p0,d(t)
and φ0,d(t) (together with the corresponding velocities and
accelerations, ṗ0,d(t), p̈0,d(t), φ̇0,d(t), φ̈0,d(t)).

A. Position controller

The position controller is based on the well-known inverse
dynamics approach, aimed at achieving global linearization
of the closed-loop dynamics. To this purpose, the com-
manded force to be applied to the platform is computed as

f0,c = Mppγp +Mpφγφ +Cpṗ0 + gp, (34)

where it has been assumed Mpδ ' O3×2 and F p can
be neglected since, usually, it is not available without an
experimental identification. This assumption, verified with an
excellent approximation in practice, as shown in Section V,
allows to decouple the inner and the outer loop. The auxiliary
inputs γ∗ (∗ = p, φ) are computed as

γp = p̈d,0 +KD,p

(
ṗd,0 − ṗ0

)
+KP,p

(
pd,0 − p0

)
+KI,p

∫ t

0

(
pd,0 − p0

)
dρ (35)

γφ = φ̈d,0 +KD,φ

(
φ̇d,0 − φ̇0

)
+KP,φ

(
φd,0 − φ0

)
+KI,φ

∫ t

0

(
φd,0 − φ0

)
dρ, (36)

macbook13_fp
Font monospazio
                         Preprint version accepted at  2019 International Conference on Unmanned Aircraft Systems (ICUAS).                                                                    Final version available at http://ieeexplore.ieee.org/



Desired position 𝛼𝑑, 𝛽𝑑

f0,c

𝝁0,c

𝝉c

Desired Attitude

Position 
controller

Attitude 
controller

Roll-pitch 
controller

𝒑𝟎, 𝝓𝟎, 𝜹

𝝈

Rotor
thrusts

Fig. 2. Block scheme of the controller.

where KD,∗, KP,∗ and KI,∗ (∗ = p, φ) are symmetric and
positive definite gain matrices.

B. Attitude and roll-pitch controller

The force f0,c is the control input to be applied to the
platform expressed in the inertial frame. In order to compute
the reference roll-pitch angles it is worth expressing the
control input in the frame Σ0, i.e., f0

0,c = RT
0 f0,c, and

in view of (29) relating it to the commanded total force to
be provided by the four propellers, f2

2,c. Thus

f0
0,c = R0

2f
2
2,c = R0

1R
1
2f

2
2,c. (37)

By considering (1) and (2), the following equation can be
derivedf00,cxf00,cy

f00,cz

 =

 0 −cβ sβ
cα −sαsβ −cβsα
sα cαsβ cαcβ

 0
0
fz,c

 . (38)

Hence, the desired values of the joints angles and the total
thrust to be delivered by the propellers can be computed as

fz,c =
∥∥f0

0,c

∥∥ , (39)

αd = arctan

(
−
f00,cy
f00,cz

)
, (40)

βd = arcsin

(
f00,cx∥∥f0

0,c

∥∥
)
. (41)

The desired velocity and acceleration of the joints can be
obtained via numerical differentiation. Since, in practice,
αd and βd are affected by noise, the desired velocities and
accelerations are to be computed by using suitable robust-
to-noise filters. A possible approach is detailed in [5], where
the time-varying filter proposed in [18] is adopted in order
to compute both the first and second time-derivatives of the
reference values.

The commanded moment to be applied to the platform
and the joint torques can be computed as in (34)

µ0,c =Mpφγp+Mφφγφ+Mφδγδ+Cφφ̇0+gφ (42)

τ c =MT
pδγp+MT

φδγφ+M δδγδ+Cδδ̇+gδ−J
T
2 h2

where the auxiliary input γδ is computed as

γδ = δ̈d +KD,δ

(
δ̇d − δ̇

)
+KP,δ (δd − δ)

+KI,δ

∫ t

0

(δd − δ) dρ, (43)

with KD,δ , KP,δ and KI,δ symmetric and positive definite
gain matrices. It is worth noticing that F φ and F δ have been
neglected for the same reasons of F p.

In view of (30), the commanded total moment to be
provided by the four propellers, µ2

2,c, can be computed as

µ2
2,c = RT

2 µ0,c − S(r22,C2
)f2

2,c, (44)

Finally, the rotor thrusts can be easily obtained via (31)

σ = N−1

[
fz,c
µ2

2,c

]
. (45)

V. SIMULATION CASE STUDY

In order to validate the proposed UAV concept and the
proposed controller, a simulation case study has been devel-
oped.

The mechanical design has been carried via CAD soft-
ware, which has been used to compute masses and inertia.
The main geometric and dynamic parameters of the system
are reported in Table I. Then, the UAV has been modeled
as a multi-body system in the MATLAB© SimMechanics
environment.

TABLE I
MAIN MODEL PARAMETERS

Parameter Value
Platform mass m0 0.699 kg

Mobile frame mass m1 0.128 kg
Rotor frame mass m2 0.551 kg
Vehicle arm length l 0.212 m

c = γd/γt 0.1

The control gains are reported in Table II.
It is assumed that reliable measurements of the position

and the orientation of the platform are available. This as-
sumption can be hardly fulfilled in many practical cases;
however, since this paper is a preliminary feasibility study
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TABLE II
CONTROL GAINS

KD,∗ KP,∗ KI,∗
Position 1.8 I3 10 I3 0.01 I3

Orientation
25.5 0 0

0 25.5 0
0 0 8.5

 325 0 0
0 325 0
0 0 125

 150 0 0
0 150 0
0 0 50


Joints 25.5 I2 325 I2 150 I2

0 5 10 15 20 25 30

Time [s]

0

1

2

3

[m
]

 

(a) Position Trajectory

0 5 10 15 20 25 30

Time [s]

0

5

10

15

20

25

[d
e

g
]

(b) Orientation Trajectory

Fig. 3. Desired (continuous line) and actual (dashed lines) position and
orientation trajectories for the platform.

of a novel UAV concept, it looks appropriate to tackle details
on sensing in a separate study. Moreover, it is assumed that
measurements of the angular positions of the two joints are
available as well, while velocities are obtained via numerical
filtering of the corresponding variables. Measurement noise
has been not introduced, to better highlight the intrinsic
tracking performance of the proposed controller; in the
presence of the measurement noise, however, the approach
in [18] can be adopted, wich has been proven to be effective
(see, e.g., the results in [5]).

In order to make a first test of the robustness of the con-
trol law, the following uncertainties have been intentionally
introduced:

• centrifugal and Coriolis terms have been neglected in
control laws (34) and (42);

• viscous friction has been modeled but not considered in
the control design.

The assigned desired trajectory is composed by three
phases (at the end of each phase, the desired variables are
kept constant for 2 s):

1) Phase 1 (0 ≤ t ≤ 8 s): Rotations around the axes x,
y and z (respectively, 20 deg, 18 deg and 10 deg) are

0 5 10 15 20 25 30 35

Time [s]

-5

0

5

10

[m
]

10
-3

(a) Position Error

0 5 10 15 20 25 30 35

Time [s]

-0.5

0

0.5

[d
e

g
]

(b) Orientation Error

Fig. 4. Position and orientation tracking errors.

commanded, while the vehicle is in hovering.
2) Phase 2 (10 ≤ t ≤ 18 s): Position displacements along

the axes x, y and z (respectively, 1 m, 2 m and 2 m)
are commanded, while the orientation is kept constant.

3) Phase 3 (20 ≤ t ≤ 28 s): Position displacements
along the axes x and y (respectively, −1 m and −2
m) and orientation displacements around axes x, y and
z (respectively, −20 deg, −18 deg and −10 deg) are
commanded.

The resulting trajectory can be seen in Figs. 3(a)–3(b).
Tracking errors are reported in Figs. 4(a)–4(b), which show
that the adopted control law ensures accurate tracking of the
desired trajectories; indeed, the maximum error is below 8
mm for the position and 0.4 deg for the orientation, and
asymptotic convergence to zero is achieved.

The desired and the actual position of the gimbal joint
angles are reported in Fig. 5(a), while the tracking errors
are reported in Fig. 5(b). Good tracking performance are
obtained as well, with a maximum error of about 0.2 and
0.4 deg.

Finally, Figs. 6(a)–6(b) report the control inputs, i.e. the
joint torques and vehicle thrusts. It is worth pointing out that
both the vehicle thrusts and the joint torques can be obtained
via off-the-shelf motors.

To highlight the effect of the approximation introduced in
(34), Fig. 7(a) reports the norm of the inertia matrix along
the trajectory, while Fig. 7(b) reports the percentage error
between the norm of M and the approximated matrix, M̂ ,
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Fig. 5. Performance of roll and pitch joints: desired (continuous line) and
actual (dashed line) positions (a), and tracking errors (b).

0 5 10 15 20 25 30

Time [s]

-0.1

-0.05

0

[N
m

]

(a) Roll and pitch joint torques

0 5 10 15 20 25 30

Time [s]

3.2

3.4

3.6

[N
]

(b) Propeller’s thrusts

Fig. 6. Control inputs.

obtained by nullifying the therm Mpδ , i.e.

eM% = 100

∥∥∥M − M̂
∥∥∥

‖M‖
. (46)

It can be noticed that the difference is almost constant
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Fig. 7. Comparison of inertial matrix with the approximated matrix used
in the control inputs.

and very close to zero (about 0.17%), thus confirming that
the proposed approximation is feasible. The same results
have been obtained along a number of different simulated
trajectories.

A. Comparison with an under-actuated UAV

In order to show the effectiveness of the ODQuad with
respect to an under-actuated quadrotor UAV, a simulation
in the presence of a disturbance force in the x0–y0 plane
has been carried out. The under-actuated UAV has been
modeled in SimMechanics starting from the ODQuad and
removing the gimbal joints and the corresponding motors;
the controller in [19] has been considered and tuned in such
a way to achieve the same step response achieved by the
ODQuad controller (with the gians in TableII). During the
simulation, a force along x0 axis with magnitude

f0(t) = (5 + cos(t/5)) sin(t) N, (47)

has been applied to the origin of Σ0 (see Fig. 8), while the
UAV is in hovering condition.

Figure 9 shows the position error of the ODQuad (Fig.
9(a)) and the under-actuated UAV (Fig. 9(b)). It can be
noticed that the ODQuad presents an error along the x axis
below 2 cm while the error of the under-actuated reaches
a peak of 7 cm. Moreover, the orientation of the ODQuad
platform is kept below 0.5 deg; this cannot be achieved by
the under-actuated UAV, since the roll and pitch angles are
computed by the controller to generate the horizontal motion
needed to compensate the disturbance.
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Fig. 8. Disturbance force.

The capability to counteract disturbances on the horizontal
plane makes the ODQuad particularly suitable for applica-
tions requiring the UAV to carry a gripper or a robotic arm
in order to execute manipulation tasks.
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(a) ODquad position error.
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(b) Under-actuated UAV position error.

Fig. 9. Position error in the presence of disturbance force.

VI. DISCUSSION AND ONGOING WORK

It is worth remarking that the designed system is con-
ceived to provide a fully controllable platform for aerial
manipulators, i.e., UAVs carrying a robotic arm to execute
manipulation tasks, even in contact with the external en-
vironment. Such a capability is clearly highlighted by the
results in Section V-A. In other words, the ODQuad is
not designed to execute aggressive maneuvers and/or reach
extreme orientations (e.g., putting the aerial platform in a
vertical configuration, as in [15]).

The vehicle frame (rotor frame, mobile frame and plat-
form) considered in the first design, is made of aluminum,
which represents a good trade-off between robustness and
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Fig. 10. ODQuad orientation in the presence of disturbance force.

lightness; indeed, a low cost prototype can be developed by
adopting aluminum profiles and 3-D printed ABS clamps.

While the market offers several motors for propellers,
the choice of gimbal motors is not trivial, since small
dimensions, low weight and high bandwidth are required.
Another useful feature, not common to commercial servo
motors, is the possibility to control the motor at the torque
level, which is important for designing and testing advanced
model-based control laws.

Ongoing work is focused on the development of a detailed
model of the system, including several effects not considered
in this paper (e.g., noise, aerodynamic effects, adoption of
position-controlled servos).

Future work will be devoted to test a first prototype in an
indoor scenario, by exploiting an external localization system
(i.e., an optical motion capture system).
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