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In the Mediterranean region, the widely predicted rise in temperature, change in the

precipitation pattern, and increase in the frequency of extreme climatic events are

expected to alter the shape of ecological communities and to affect plant physiological

processes that regulate ecosystem functioning. Although change in the mean values are

important, there is increasing evidence that plant distribution, survival, and productivity

respond to extremes rather than to the average climatic condition. The present study

aims to assess the effects of both mean and extreme climatic conditions on radial

growth and functional anatomical traits using long-term tree-ring time series of two

co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this

is the first attempt to apply the Generalized Additive Model for Location, Scale, and

Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data

set, with the aim of (i) detecting non-linear long-term responses to climate and (ii)

exploring relationships between climate extreme and xylem traits variability in terms

of probability of occurrence. This study demonstrates the usefulness of long-term

xylem trait chronologies as records of environmental conditions at annual resolution.

Statistical analyses revealed that most of the variability in tree-ring width and specific

hydraulic conductivity might be explained by cambial age. Additionally, results highlighted

appreciable relationships between xylem traits and climate variability more than tree-ring

width, supporting also the evidence that the plant hydraulic traits are closely linked to local

climate extremes rather than average climatic conditions. We reported that the probability

of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of

Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of

extreme events might overcome the adaptive limits of vascular transport, resulting in

substantial reduction of hydraulic functionality and, hence increased incidence of xylem

dysfunctions.
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INTRODUCTION

An accepted picture for the Mediterranean region is the ongoing
trend toward higher temperature and reduced precipitation,
associated to an increase in the frequency and magnitude of
climatic extremes, which are expected to have detrimental effects
on trees and forest biomes (Easterling et al., 2000; IPCC, 2013).
Drought imposed by changes in rainfall patterns and temperature
anomalies were implicated in a number of well-documented
drought-induced tree mortalities and forest decline episodes,
with likely consequences on species distribution and community
structure (e.g., Allen et al., 2010; Anderegg et al., 2012).

Interestingly, extreme climatic events are increasingly
considered to play a major role in tree mortality, and variation
in xylem anatomical traits linked to tree hydraulic properties
has received considerable attention in recent decades as an
important plant acclimation process (for a review on this
issue, see Jentsch et al., 2007). Specifically, both observational
and experimental studies to date reported that variability and
extremes in climate are more important drivers of ecosystem
processes than mean conditions (Royer et al., 2011; Smith, 2011;
Thompson et al., 2013). For example, a number of studies that
experimentally imposed climate extremes via field experiments
clearly described the negative impact of extreme drought on
the xylem hydraulic function and productivity (Jentsch et al.,
2011; Barigah et al., 2013; Urli et al., 2013). However, there are
so far at least three factors limiting our understanding of the
impacts of extreme events on plant hydraulic functionality: (i)
the frequently loose definition of extreme events, which needs
refinement because climate change involves modifications in
both mean and variability (Smith, 2011; Lloret et al., 2012);
(ii) the difficult comparison between case studies, particularly
due to their heterogeneity in temporal and spatial scales and
the disparity of response variables (Reyer et al., 2013); (iii) still
incomplete information on the phenotypic plasticity of trees, that
is, the potential to modify their form and function in response
to environmental changes, especially to changing climate (Fonti
et al., 2010). Phenotypic plasticity can reduce mortality risk
when plants are exposed to new conditions. The most common
plastic responses of trees to drought are a reduction in leaf area
to restrict water loss (DeLucia et al., 2000) and increased root
growth to enhance access to water and nutrients. In turn, the
structure and hydraulic function of xylem can also vary within
a single species in response to climate conditions. For instance,
variation in tree-ring widths, vessel diameters, or distribution
has often been used to reconstruct information about past
environmental conditions and infer the hydraulic function
of xylem (see Fonti et al., 2010 for a review). Nevertheless,
acclimation is not instantaneous, and it is sensitive to several
factors. For example, full acclimation to a temperature shift may
take between a few days to weeks and might be further affected
by interactions with other factors such as drought (Valladares
et al., 2007). Therefore, xylem plastic adjustments may not be
able to cope with the effect of rapid and extreme climatic events.

Nevertheless, for high temporal resolution, long-term xylem
traits chronologies have shown to be sensitive indicators
of climate variability. Promising results have been obtained

from studies on water conducting elements across a range of
hardwoods species (e.g., Maherali et al., 2004). In particular,
several authors successfully revealed a clear signal in vessel traits
of ring-porous species mainly linked to the water availability
(Fonti and García-González, 2004; Campelo et al., 2010; Gea-
Izquierdo et al., 2012); for sub-Mediterranean oaks it was
demonstrated that most of the variability in early wood vessel
size could be explained by spring precipitations (García-González
and Eckstein, 2003; González-González et al., 2014). Moreover,
several studies recently acknowledged the importance of the
ontogenetic changes on the hydraulic design of woody plants
(Olson et al., 2014), suggesting careful evaluation of the climatic
information from tree-ring time series (Carrer et al., 2015).

The present study aims to disentangle the effects of mean and
extreme climatic variability on functional anatomical vessel traits
from long-term tree-ring series. Specifically, we hypothesized
that (i) vessel traits may reflect more substantially the climatic
signal than tree-ring width, (ii) a closely link between extreme
values in tree-ring series (both ring with and specific hydraulic
conductivity) and site-specific extreme climatic condition occurs.

We used Quercus cerris L. and Quercus pubescens Willd. as
model species, both are ring-porous species with large diameter
early-wood vessels that allow water movement with a minimum
of hydraulic resistance (Tyree and Zimmermann, 2002).
However, experimental evidences indicates higher cavitation
rates and vulnerability to embolism in the former species
(Borghetti et al., 1993; Lo Gullo et al., 1995; Nardini et al., 1999),
whose large vessels could enhance water transport efficiency but
compromise the safety of the xylem (Tyree and Zimmermann,
2002). Recent studies have reported several oak-decline episodes
in the Iberian Peninsula during the 1980s and 1990s when
several intense summer droughts episodes occurred (Peñuelas
et al., 2001; Corcuera et al., 2004). To this aim, the Generalized
Additive Model for Location, Scale and Shape (GAMLSS, Rigby
and Stasinopoulos, 2005) and a Bayesian logistic simulation were
used to perform a high-resolution examination of tree-ring traits
and climate relationships. The ability of the aforementioned
tools to handle non-linear data structures can better represent
the complex relationship between xylem functional traits and
environmental variables.

MATERIALS AND METHODS

Study Site and Plant Material
The study was carried out on trees sampled in a mountain
forest in the Pollino National Park in Southern Italy, close to
the Mediterranean coast. The climate is influenced by differences
in altitude, slopes, and proximity to the sea. There is a typical
Mediterranean seasonal alternation between dry and warm
summers and rainy winters.

Temperatures were collected from Castrovillari (39◦ 83′ N,
16◦19′ E, 343m a.s.l.) and precipitation data from San Lorenzo
Bellizzi (39◦ 88′ N, 16◦ 32′ E, 851m a.s.l.) meteorological
stations (Italian Hydrographic Service, SIMI). Temperatures
were corrected for altitude by applying a coefficient of −0.007◦C
m−1 (ICAO, 2002). The average annual precipitation is 1065mm
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distributed as 39.5% in winter, 23.7% in spring, 29.2% in autumn,
and 7.6% in summer. The Mediterranean sub-humid climate is
characterized by warm summers (at this elevation, 18.06◦C is the
average temperature for July through August) and cold winters
(average 1.8◦C for December through February). Mean annual
temperature is 9.4◦C and snowfalls are generally distributed from
November to April.

In recent decades, a maximum of 120 days of dry weather was
recorded in summer.

At the study site (39◦56′58.8′′N, 16◦10′32.4′′E, elevation
1050m a.s.l.) the forest consist of scattered trees with a canopy
height of∼20 m, with few trees reaching a tree height of∼28 m.

Two 5mm diameter cores from each of 16 Q. cerris and 15
Q. pubescens tall adult trees with a diameter at breast height
(DBH) >40 cm were collected with an increment borer for tree-
ring analysis. For each core sample, tree-rings were first visually
cross dated (Yamaguchi, 1991) and then measured to the nearest
0.01mm using the incremental measuring table SMIL3 (Corona
et al., 1989) interfaced with data acquisition software. Finally,
the COFECHA software (Holmes, 1983) was used to check for
the presence of cross-dating errors and the expressed population
signal (EPS) was calculated with the package “dplR” (Bunn, 2008)
in the R statistical suite (R Core Team, 2015) to quantify the
common variability among tree-ring series. An average tree-ring
chronology spanning from 1926 to 2012 was obtained; the EPS
value exceeded the suggested threshold 0.85 level (EPS = 0.92),
indicating a high degree of common variability between tree-ring
series (Wigley et al., 1984).

Xylem Anatomy and Specific Hydraulic
Conductivity
A subsample of 10 cross-dated cores from the two species
was investigated for xylem anatomical characteristics and xylem
hydraulic conductivity after checking the presence of reaction
wood or wounding (Arbellay et al., 2012).

A sliding microtome (HM 400, Microm International GmbH,
Walldorf, Germany) was used to obtain 20µm thick transverse
sections from split micro-sections of entire wood cores (from 1
to 1.5 cm long). Histological preparations were then obtained by
staining sections with 2% astrablue and 1% safranin solutions,
which resulted in unlignified cells appearing blue and lignified
cells appearing red (Schweingruber and Poschlod, 2005). Sections
were subsequently dehydrated using a series of ethanol solutions
of increasing concentrations, washed with xylol, and embedded
in Canada balsam.

Annual ring images from transverse sections were captured
with a CCD digital camera (Skopkam DCM300) mounted on a
reflected light microscope (AxioPhot, Carl Zeiss, Jena, Germany).
Sequential images were subsequently stitched using theMicrosoft
Image Composite Editor (ICE 1.3.5), and analyzed with the
image-analysis software ImageJ v.1.40 (National Institute of
Health, Bethesda, MD, USA, http://rsb.info.nih.gov/ij). Images
were first converted from 24-bit color into 8-bit grayscale and
then the objects contour was produced in a threshold binary
image (mask) in which only the particles of interest were retained,
in our case the vessels lumen. Before any measuring, the image

was calibrated from a scale bar of known length in the image.
The particle analysis function led us to calculate for each tree-
ring, in a chosen surface (SXylem = Wr

∗l, where Wr is ring
width and l = 2mm) bounded by rays, the vessel number (N),
the vessel lumen area (A), and the Cartesian coordinates of each
vessel (>480µm2). Careful visual inspection was also performed
to verify all vessel elements and non-vascular elements included.

Since vessels are not exactly circular but mostly elliptical, the
diameter of each vessel was calculated as:

d =

(

32
(

ab
)3

a2b2

)
1
4

where a and b are major and minor perpendicular lumen
diameters, respectively (Lewis, 1992).

Based on the vessel contribution to hydraulic conductance,
we calculated the hydraulically weighted mean diameter (Dh) for
each ring according to Tyree and Zimmermann (2002):

Dh =

(

1

n

∑n

1
d4
)

1
4

According to the Hagen–Poiseuille equation, theoretical
hydraulic conductivity (Kh, m

4MPa−1 s−1) was calculated from
the vessel radii (r) as

Kh =
π
∑n

1 r
4

8η

where η is the viscosity of water at 20◦C (1.002 10−3 Pa s).
The tree-ring specific hydraulic conductivity (Ks, kg

m−1 MPa−1 s−1) was estimated by dividing the theoretical
hydraulic conductivity (Kh) by the tree-ring surface area (Si)
and multiplying with the density of water (ρ) at 20◦C (998.20 kg
m−3), according to the modified Hagen-Poiseuille equation
reported by Tyree and Ewers (1991)

Ks =
Khρ

SXylem

Average vessel size (Aav) and vessel density (dv), determined as
the ratio between the number of vessels and the area analyzed,
were also calculated.

Data Analysis
Statistical analyses were performed for the period 1952–2012 (60
years). To explore the relationships between xylem traits (Wr

and Ks) and climatic variables (temperature and precipitation)
we applied Generalized Additive Models for Location, Scale, and
Shape (GAMLSS) proposed by Rigby and Stasinopoulos (2005)
as semiparametric regression model. GAMLSS overcomes some
limitations associated with Generalized Linear Models (GLMs)
and GAMs by providing a flexible modeling framework that
allows the use of more general distributions, such as highly
skewed or kurtotic distributions, which may be more appropriate
for modeling the record of interest. The number of parameters
represented in the GAMLSS distributions varies from one to four,
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with almost all distributions represented by a location (µ) and
scale (σ) parameter and some distributions represented by one
or two shape parameters (υ and τ) to represent skewness and
kurtosis in the response variable data. For this reason, the form
of the distribution assumed for the response variable is y∼f(x|
µ, σ, υ , τ). Computational implementation was performed using
the package “gamlss” (Stasinopoulos and Rigby, 2007) in the R
statistical suite (R Core Team, 2015). Themodel also included the
cambial age as covariate and a random intercept term to account
for variation among trees. The resulting estimations, are based
on a P-Spline (ps, Penalised B-spline) smoothing function (Eilers
and Marx, 1996), where the smoothing parameters (and hence
the effective degrees of freedom) are estimated using the local
maximum likelihood method.

The model building process consisted in comparing
many competing models for which different combinations of
components (i.e., Mmodel = Ddistribution, Glink function, Tpredictors,
λsmoothing) were tried. Minimizing the Akaike Information
Criterion (AIC) was used for the model selection (Akaike,
1998). Selected models were checked for the independence and
normality of the residuals by worm plots and qq-plots (Buuren,
2007).

In addition, we used the LMS (λ-µ-σ) method (Cole and
Green, 1992) to determine the age-specific trends in the xylem
traits, thereby allowing examination of the temporal trends in
specific percentile points of Wr and Ks. They were estimated via
lms() in the “gamlss” R package, where the first three moments of
the measurement frequency distribution were modeled as cubic
smoothing spline curves, based on Box Cox-type transformations
of data. The LMS method implicitly leads to non-crossing curves
via a scaling function.

Given that low summer precipitation concomitantly with high
temperatures were found to be the most limiting factor for the
development of the Mediterranean tree species, we tested the
hypothesis of an influence of climate on extreme deviation in
the ring width (Wr) and specific hydraulic conductivity (Ks),
by applying one of the most commonly used procedures in
classical dendrochronological studies: pointer years analysis. In
fact, as stated by Schweingruber et al. (1990), event and pointer
years are a suitable proxy of the extreme climatic events to
which trees have been exposed in the past. We calculated the
pointer years on the individual series of Wr and Ks with the
“pointRes” (van der Maaten-Theunissen et al., 2015) R package
by using the normalization in a moving window (|W| = 5 years)
according to Cropper (1979; cf. Schweingruber et al., 1990).
Pointer years were defined as those years with absolute values
above a threshold of 0.75 according to Cropper (1979). This
method z-transforms tree growth in year i within a symmetric
moving window of n years, thereby providing the number of
standard deviations that tree growth deviates in individual years
from the window average. Subsequently, positive and negative
pointer years were represented by dichotomous variables coded
as 0 and 1, respectively.

Hence, a Bayesian logistic regression was adopted to test
the link between pointer years (where pointer years are
Bernoulli distributed) and climate through JAGS + “rjags” R
package cross-platform Plummer (2003). The predictor variable

comprised the Standardized Precipitation Index (SPI) computed
through the “SPEI” R package (Beguería and Vicente-Serrano,
2013).

Then, with Wr and Ks pointer years values (Y) in {0, 1} the
estimated model was:

Y ∼ Bernoulli (yi|πi)

where,πi ≡ Pr
(

yi = 1
∣

∣ SPIi, β
)

=
1

1+ exp(−SPIiβ)

JAGS used Markov Chain Monte Carlo (MCMC) to generate a
sequence of dependent samples from the posterior distribution
of the parameters by assuming a weakly informative prior
distribution (0, 0.5), as proposed by Gelman et al. (2008).
Simulation was performed by running four chains with 20,000
total iterations per chain and 10,000 initial samples “burn-in.”
Convergence diagnostics (provided by the coda R package) were
visually checked by the autocorrelation plot, Geweke’s diagnostic
and the Gelman-Rubin shrink factor (Brooks and Gelman,
1998).

Then we modeled the change in the probability of presence
(1)− absence (0) ofWr and Ks pointer years at the extreme upper
and lower SPI event (exceeding the 90th and 10th percentile,
respectively) by running 1000 bootstrap simulation of quantities
of interest (QI) from the posterior density of the Bayesian model,
as suggested by King and Wittenberg (2000).

RESULTS

Relationships between xylem traits and Wr showed that the
standard linear regression fit to these data was significantly
different from zero for Aav, Dh, and dv (Figure 1, upper panels);
in particular, all outcomes appeared to be negatively related to the
tree-ring width. Moreover, the regression coefficient for all traits
showed different significant patterns according to the quantile
considered (Figure 1, lower panels).

Results of the fitted GAMLSS highlighted significant
temperature, precipitation, and cambial age effect for Ks, whilst
only the age effect was depicted for Wr (Table 1). In particular,
as expected, increase of both temperature and precipitation
led to decrease and increase in the Ks, respectively (Figure 2).
Interestingly, both Wr and Ks models indicated that these
variables are strongly dependent on cambial age. In this regard,
further investigation (Figure 3) indicated an inverse trend across
the overall age distribution and in all percentiles for Wr and Ks,
where the rate of increase in hydraulic conductivity was directly
related to age. In particular, higher percentile levels were reached
from 10 to 20 years for Wr and from 40 years onwards for Ks.
Moreover, there were larger increases in the upper than the lower
percentiles in Ks, particularly from age >20 years. The typical
monotonic increasing trend of hydraulic conductivity tends to
be low when choosing the 5th percentile, i.e., selecting only the
smallest conduits per year.

The summary statistics table of the Bayesian logistic
model (Table 2) showed the marginal posterior distribution for
parameter α (intercept) and βSPI (coefficient; see Supplementary
Figures S1, S2 for trace and density plots). Interestingly, for Ks
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FIGURE 1 | Relationships between the average vessel size [Aav; β = −0.002, F(1, 375) = 10.52, p < 0.01], hydraulic diameter [Dh; β = −0.009,

F(1, 375) = 18.77, p < 0.001], vessel density [dv; β = −1.808, F(1, 375) = 34.12, p < 0.001], and tree-ring width [Wr] (upper panel). Red and blue rugs inside

the plots show distribution of the x and y variables, respectively. Slope of the estimated linear quantile regression for the xylem traits as a function of the τth quantile τ

(lower panels). Full red lines are the least squares estimates for the coefficients and the red dashed lines are the 95% confidence intervals for the least squares

estimates. The gray area represents the 95% confidence interval (1000 replicate bootstrap) for the quantile regression estimates (full circles, each 5th quantile).

TABLE 1 | Summary statistics for the best fitted GAMLSS for tree-ring width (Wr) and specific hydraulic conductivity (Ks) variables.

Wr Ks

Est. Std. Error t-value Pr(>|t|) df Est. Std. Error t-value Pr(>|t|) df

µ Intercept 1.12E+00 6.54E-02 17.14 *** – −8.04E+00 1.68E-01 −47.86 *** –

Temperature −3.48E-03 8.13E-03 −0.43 0.07 2.02 −7.75E-02 2.03E-02 −3.83 *** 4.25

Precipitation 3.49E-06 2.62E-05 2.42 0.17 2 8.78E-05 6.37E-05 1.38 * 2.03

Age −1.93E-02 6.24E-04 −30.91 *** 8.86 2.64E-02 1.43E-03 18.45 *** 3.42

σ Intercept 2.55E-01 3.13E-01 0.82 0.41 – −4.59E-01 3.03E-01 −1.51 0.13 –

Temperature 2.75E-02 3.60E-02 0.76 0.04 2 −1.52E-02 3.49E-02 −0.44 0.66 2.93

Precipitation −3.01E-04 1.20E-04 −2.45 * 2 −3.92E-06 1.19E-04 −0.03 0.97 2

Age −3.37E-02 2.60E-03 −12.60 *** 10.31 −1.52E-02 2.59E-03 −5.86 *** 3.46

υ Intercept 1.34E+00 3.63E-01 3.69 *** – −1.34E+00 7.66E-01 −1.74 0.08 –

Temperature −3.91E-01 3.58E-02 −10.91 *** 2 1.37E-01 8.22E-02 1.67 0.10 2

Precipitation 2.09E-03 1.45E-04 14.36 *** 10.9 2.05E-04 3.11E-04 0.66 0.51 2

Age 2.05E-03 4.36E-03 0.47 0.64 21.69 −3.03E-03 7.00E-03 −0.43 0.67 2

τ Intercept – – – – – 7.59E-01 1.21E-01 6.26 *** –

Family BCCGo BCPEo

AIC 637 −5308

Parameters of the distribution families are µ (mean, location parameter), σ (centile-based coefficient of variation, scale parameters), υ (skewness), and τ (kurtosis). Stars mean statistical

significance for ***p < 0.001, *p < 0.05. Est, Estimate; BCCGo, Box-Cox-Cole-Green-orig.; BCPEo, Box-Cox Power Exponential-orig.; AIC, Akaike Information Criterion.
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FIGURE 2 | Partial regression plots for fitted Wr (upper panels) and Ks (lower panels) models. The solid line is modeled trends and the shaded area is 95%

confidence intervals. Gray rugs on the y-axis and x-axis represent distribution of the partial residuals and covariates, respectively. Note free scales of partial residuals.

the 95% credible interval for βSPI is positive, indicating with
very high probability that the β term is positive: exposure to
high SPI increases the probability of positive deviation in Ks.
No similar evidence was found for Wr. However, simulation
of quantities of interest, in terms of predicted probability of
a success, was more informative than simply reporting the
model estimates (Figures 4, 5). In particular, results of simulation
reported the predicted and the expected probability (sensu King
and Wittenberg, 2000) of the presence/absence of pointer years
at the 90th and 10th percentile of the SPI with 95% confidence
level. Simulation in Figure 4 confirms that there was no clear
probability that formation of pointer years in Wr was affected by
changes in SPI. Indeed, we reported that in spite of extreme values
of SPI (above the 90th percentile), there is the 53% probability
of occurrence of positive pointer years. On the other hand,
SPI values below the 10th percentile are expected to affect the
formation of a negative pointer year at 46% probability. However,
contrasting results were found for simulation of Ks pointer years
(Figure 5). We expected the 78% probability of occurrence of
positive pointer years at the 90th percentile of SPI and only
22% probability of negative ones. By contrast, extreme negative
values of SPI (below the 10th percentile) led to the occurrence of
negative pointer years at 76% probability.

DISCUSSION

Notable negative relationships were detected in Figure 1 between
radial growth and vessel traits; we can therefore reasonably
rule out the hypothesis of a direct growth-dependent constraint
on the intra-annual xylem hydraulic traits. In former studies,
this inverse relationship was reported when comparing wood
anatomy of both ring porous (Phelps and Workman, 1994;
Fonti and García-González, 2004; Gea-Izquierdo et al., 2012) and
diffuse porous hardwood species (Denne et al., 1999; Rita et al.,
2015). On the other hand, according to the recent tendencies, we
cannot exclude an age-dependent constraint on the whole-plant
hydraulic function (Olson et al., 2014; see Section Discussion
below).

As a whole, there are a number of interesting considerations

that can be drawn from our GAM model. First, our findings

reported a discernible climatic signal of Ks compared to

Wr (Table 1 and Figure 2), in accordance with many recent
studies on the Mediterranean ring-porous (García-González
and Eckstein, 2003; Campelo et al., 2010), diffuse-porous
(Rita et al., 2015), and conifer trees (Olano et al., 2012).
This marked link reflects the ability of trees to adjust the
characteristics of their xylem hydraulic architecture, such as
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FIGURE 3 | Tree-ring width (Wr) and specific hydraulic conductivity (Ks) centile curve (left and central panels, respectively) using the LMS method as a

function of cambial age. Each panel shows the 5th, 25th, 50th, 75th, and 95th percentile from the bottom to the top, respectively. Scatter plot between Ks and Wr

with non-linear [Ks ∼ I(1/Wr * a) + b] quantile regression line (right panel). The black line is median (a, β = 3.505e-04, p < 0.001; b, β = 1.377e-04, p < 0.001), the

red line is the 90th quantile (a, β = 0.00069, p < 0.001; b, β = 0.00018, p < 0.001), and the blue line is the 10th quantile (a, β = 0.00015, p < 0.001; b, β = 0.00008,

p < 0.001).

TABLE 2 | Posterior summary from “coda” for tree-ring width (Wr) and

specific hydraulic conductivity (Ks) bayesian logistic regression fit.

Wr Ks

(Intercept) βSPI (Intercept) βSPI

Mean 0.002 0.092 0.049 0.98

SD 0.20 0.21 0.20 0.22

SE 0.0009 0.0010 0.0007 0.0008

2.5% −0.400 −0.323 −0.345 0.548

25% −0.135 −0.051 −0.080 0.824

50% 0.002 0.091 0.049 1.974

75% 0.140 0.234 0.184 1.129

97.5% 0.405 0.517 0.446 1.444

Marginal posterior distribution of mean, standard deviation, and quantiles for α (intercept)

and βSPI. SPI, Standardized Precipitation Index. Trace and density plots are on

Supplementary Figures S1, S2.

the arrangement, frequency, and diameter of vessels to climate
variability (Hacke et al., 2006; Sperry et al., 2008), and can
provide information about the plasticity of a species under
changing environmental conditions. For instance, functional
relationships between xylem traits of Q. canariensis trees
growing in the Mediterranean drought-prone sites exhibit both
spatial and temporal plasticity in relation to climatic variability
(Gea-Izquierdo et al., 2012).

As for the effects of climate on functional anatomical traits,
GAMs results confirm the broadly described influence of climatic
factors on the variations in wood traits structure. Accordingly,
the positive influence of precipitation and the negative effect
of high temperature on the specific hydraulic conductivity
(Ks) are considered key features of most Mediterranean tree
species (Table 1 and Figure 2). Indeed, rise in temperature
and reduced water availability, that concomitantly lead to an
intensification in evapotranspiration, are often been reported

to strongly reduce the vessel lumen area and increase their
density in order to reduce vulnerability to embolism (Lo Gullo
et al., 1995; Tyree and Zimmermann, 2002). Accordingly, many
valuable results from long-term time series of xylem traits of sub-
Mediterranean oaks emphasized greater phenotypic plasticity
in response to the stressful climate conditions (González-
González et al., 2014 among the others). In particular, the
earlywood vessels lumen area of Q. robur were found to decrease
in response to reduced spring rainfall (García-González and
Eckstein, 2003); similar findings were also highlighted by for
Q. ilex (Campelo et al., 2010). Further recent evidences showed
correlations between earlywood vessels size and precipitation
along the previous growing season for Q. petraea, whereas
the number of vessels was related to winter temperature for
the sub-Mediterranean Q. pyrenaica (González-González et al.,
2014).

In our study, relationships with cambial age over time
underlined a strong ontogenetic influence on both growth and
specific hydraulic conductivity (Figures 2, 3). In this regard,
consistent with the pattern found by other authors for ring-
porous Quercus spp. (e.g., Heliñska-Raczkowska, 1994; Lei et al.,
1996; Fonti and García-González, 2004; Leal et al., 2006),
most of the variability in vessel size might be explained by
cambial age. Their results showed an overall increasing trend
in vessel size and a slight tendency for the conductive area to
increase with cambial age. Such a relationship can be largely
explained by functional reasons. For instance, multiple lines of
evidence suggest that ontogenetic changes in wood anatomy
have evolved primarily to provide hydraulic safety in long
distance water transport (Anfodillo et al., 2006; Preston et al.,
2006; Poorter et al., 2010). Therefore, ontogenetic trends are
known to reflect an adaptive compromise between growth
constraints and the environment, which is why they should be
carefully modeled and interpreted, rather than routinely removed
by means of standardization procedures (Carrer et al., 2015).
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FIGURE 4 | Bayes simulation of quantities of interest. Predicted

probability (bar plot) and expected probability (density plot) of presence [1] −

absence [0] of Wr pointer years (Y) at the 90th (red) and 10th (blue) percentile

of the Standardized Precipitation Index (SPI). E(Wr |90
th SPI), mean =

0.53(±0.09), 2.5% = 0.34, 97.5% = 0.70; E(Wr |10
th SPI), mean =

0.46(±0.07), 2.5% = 0.33, 97.5% = 0.60.

Indeed, the age-specific tree-ring data analyses of Voelker (2011)
showed that the sensitivity of tree growth to environmental
variability changes predictably with tree age and that the growth
of older forests may be more resilient to climate change
effects.

Despite the long-standing recognition of the importance of
climate extremes on the overall functional performance of trees,
the study of climate extremes is a relatively new emphasis in
ecology (Smith, 2011). In this case, one advantage of Bayesian
methods was the ability to directly answer specific questions
in terms of probability of success. In this study we found
no direct-related effect of the SPI on tree-ring growth (Wr)
departures, according to the role of “compensatory process”
argued by Lloret et al. (2012). This result is also supported by a
short-term manipulative experiment on three young deciduous
oaks species exposed to artificial air warming and drought:
monitored growth reaction showed that, despite a phenological
shift induced by warming, annual growth and shoot biomass
were not affected by the exposed drought (Kuster et al.,
2014).

On the other hand, the probability of extreme departure
in specific hydraulic conductivity (Ks) rises at extreme values
of SPI (Figure 5). What emerged in our study provides new
insights into the effect of severe climate events on Ks from
long-term tree-ring series. Indeed, while a generic link between
pointer years (sensu Schweingruber et al., 1990) and peculiar
climate occurrences are fully investigated (Rolland et al.,
2000; Neuwirth et al., 2007; Rita et al., 2014), no specific
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FIGURE 5 | Bayes simulation of quantities of interest. Predicted

probability (bar plot) and expected probability (density plot) of presence [1] −

absence [0] of Ks pointer years (Y) at the 90th (red) and 10th (blue) percentile

of the Standardized Precipitation Index (SPI). E(Ks |90
th SPI), mean =

0.78(±0.06), 2.5% = 0.64, 97.5% = 0.89; E(Ks |10
th SPI), mean =

0.24(±0.05), 2.5% = 0.14, 97.5% = 0.36.

temporal pattern between climate extremes and functional traits
was well addressed. Therefore, by relying on our results, we
believe that the occurrence of extreme SPI (below the 10th
percentile) may lead to an adverse effect on the xylem water
transport capability for this species at the study site. In fact,
although the xylem structure can acclimate to variation during
growth and development by plastically adjusting its xylem
anatomical traits (Fonti et al., 2010), the presence of extreme
climate events may undermine this anatomical adaptation
strategy leading to embolism and related dysfunctions (Choat
et al., 2012; Urli et al., 2013). In this regard, there is much
experimental evidences suggesting that extreme drought stress
is a trigger factor inducing hydraulic failure in trees, resulting
in loss of carbon assimilation rate (Brodribb et al., 2010;
Urli et al., 2013), shoot dieback (Hoffmann et al., 2011), and
tree mortality (Carnicer et al., 2011; Barigah et al., 2013).
In particular, our results are consistent with Fonti et al.
(2013) which document a significant vessel size reduction
with diminished conductivity in saplings of three oak species
artificially drought-exposed over three consecutive growing
seasons. Moreover, physiological measurements conducted by
Nardini et al. (2013) highlighted diffuse crown desiccation in
Q. pubescens trees caused by hydraulic failure during an extreme
drought. Therefore, assuming departures in Ks during extreme
events in the current climate, it is conceivable that increased

frequency or magnitude of extreme climate events with more
adverse conditions would lead to higher reduction of Ks and
greater incidence of xylem dysfunctions. Thus, the intensification
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in local extremes rather than average climatic conditions might
affect woody plant survival.

CONCLUSIONS

In this paper we sought to describe the most likely effect of
frequency of extreme climate events on tree hydraulic system
capacity. By relying on our results, we pointed out several
important aspects of how climate variability can affect xylem
function of two Mediterranean oak species. Thus, our main
results may be summarized as follows:

– This study demonstrates the usefulness of long-term xylem
trait chronologies as records of environmental conditions at
annual resolution. In turn, we highlight that vessel traits prove
to have a better climatic signal than tree-ring width.

– Most of the variability in tree-ring width and specific hydraulic
conductivity might be explained by cambial age. In modeling
and interpreting long-term time-series of xylem anatomical
features, ontogenetic trends should not be overlooked or
ruled out, but carefully evaluated based on every climatic and
environmental growth constraint.

– Local extremes are closely linked to the specific hydraulic
conductivity in two Mediterranean oak species. Therefore,
changing frequency or intensity of extreme events might
overcome the adaptive limits of vascular transport, resulting

in substantial reduction of hydraulic functionality, and hence
increased incidence of xylem dysfunctions.
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