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ABSTRACT   

Our understanding of the distribution of heat and water in the atmosphere still shows critical gaps on all temporal and 

spatial scales. This is mainly due to a lack of accurate measurements of water vapor and temperature profiles - hereafter 

called thermodynamic (TD) profiles - with high vertical and temporal resolution, especially in the lower troposphere. 

Accurate, high temporal-spatial resolution observations of TD profiles are essential for improving weather forecasting 

and re-analyses, for studying land-atmosphere feedback processes and for improving model parameterizations of land-

surface and turbulent transport processes in the Atmospheric Boundary Layer. These observational gaps can be 

addressed with a new active remote sensing system in space based on the Raman lidar technique. Combining vibrational 

and rotational Raman backscatter signals, simultaneous measurements of water vapour and temperature profiles and a 

variety of derived variables are possible with unprecedented vertical and horizontal resolution, especially in the lower 

troposphere. This is the key concept of ATLAS, which was submitted in March 2018 to the European Space Agency in 

response to the Call for Earth Explorer-10 Mission Ideas in the frame of ESA EOEP. An assessment of the expected 

performance of the system and the specifications of the different lidar sub-systems has been performed based on the 

application of an analytical simulation model for space-borne Raman lidar systems. Results from the simulations and 

technical aspects of the proposed mission will be illustrated at the conference.  

Keywords: Raman lidar, water vapour, temperature, aerosol, active remote sensing 

 

INTRODUCTION  

An appropriate understanding and prediction of Earth’s energy and water cycles is fundamental for a sustainable 

development of the Earth system. However, our understanding of the distribution of heat and water in the atmosphere 

still shows critical gaps on all temporal and spatial scales [1-3], which is mainly due to a lack of accurate measurements 

of TD profiles with high vertical and temporal resolution, especially in the lower troposphere [4]. Accurate, high 

temporal and spatial resolution observations of TD profiles in the lower troposphere from the surface to the interfacial 

layer at the top of the atmospheric boundary layer (ABL) are essential for improving weather forecasting [e.g., [5], [6]] 
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and re-analyses [[7]], and understanding the Earth system. Furthermore, these measurements are of primary importance 

to improve parameterizations of land-surface and turbulent transport processes in the ABL, conducting to a substantial 

improvement of the representation of clouds and precipitation and the prediction of extreme events,. This is essential for 

advanced climate projections [[8], [9]]. More specifically, global scale measurements of 3-dimensional TD profiles 

would have a dramatic impact on our system understanding in four key research areas [[10]]: 

i)      radiative transfer, as well as regional and global water and energy budgets,  

ii) land-atmosphere feedback including the surface energy balance in dependence of soil properties and land 

cover, 

iii) mesoscale circulations and convection initiation [11], and  

iv) data assimilation. 

Progress in these areas would not only contribute to weather and climate research and forecasting, but also to other 

related disciplines such as soil, hydrological, and agricultural sciences, in addition to human health and air quality 

applications. 

Observational requirements to be fulfilled by networks of satellite and ground-based remote sensors, with a specific 

focus on the lower troposphere, have been identified considering four primary application fields: (1) monitoring, (2) 

verification and calibration, (3) data assimilation and (4) process studies [[10]]. For assessing climate trends, high quality 

water vapour and temperature measurements are required not only at the Earth’s surface, but also throughout the 

troposphere and stratosphere. This is only partly addressed by the current passive observing systems, as in fact, because 

of the intrinsic limitations in the inversion of the radiative transfer equation, these systems cannot provide the quality 

data required to progress in the above areas. This is primarily due to the lack in vertical resolution (>1km), which is 

insufficient to retrieve vertical gradients in water vapour and temperature profiles, temperature inversions, entrainment 

processes, etc., especially in the lower troposphere over land, where surface effects strongly limit infrared sounding 

approaches. 

Observational requirements for lower tropospheric water vapour and temperature profiling impose a vertical resolution 

of ~100 m (i.e. sufficiently high to allow resolving the temperature and moisture gradients), with the bias affecting water 

vapour mixing ratio and temperature measurements in each single vertical range bin not exceeding 5 % and 0.5 K, 

respectively, and the random uncertainty not exceeding 10 % and 1 K, respectively. Similar requirements were identified 

within the World Meteorological Organization Integrated Global Observing Systems [12-14], the World Climate 

Research Program (WCRP) and the Global Climate Observing System (GCOS) [15]. These observational requirements 

cannot be met by passive remote sensing techniques (neither in the infrared nor in the microwave region) and can only be 

fulfilled by a new active remote sensing system in space based on the lidar technique [16,17]. Combining vibrational and 

rotational Raman backscatter signals, simultaneous measurements of water vapour and temperature profiles and a variety 

of derived variables are possible with unprecedented vertical and horizontal resolution (see more details in the next 

section), especially from the surface to the lower troposphere, this being the key concept of the mission Atmospheric 

Thermodynamics LidAr in Space – ATLAS. The instrument is based on the experience and know-how gained with the 

development and operation of several existing ground-based instruments [18-31] and airborne instruments [[32]2-34]. 

On-going and planned lidar missions, such as CALIPSO, CATS, ADM-Aeolus, EarthCARE, have demonstrated the 

applicability of laser-based active remote sensing in space. ATLAS would complement these missions, being the first 

space mission based on the Raman lidar technology. Additionally, the impact of ATLAS on weather and climate 

research can be further enhanced by exploiting synergies with passive instruments on other space platforms, such as 

IASI-A/B, CrIS and AIRS [35-37] and GNSS occultation. 

2. MISSION CONCEPT 

The core element of the proposed Earth Explorer mission is a nadir-viewing water vapour and temperature Raman lidar 

system. In the present mission concept, the Raman lidar is conceived and designed to collect four primary lidar signals: 

the water vapour vibrational Raman signal, ( )zP OH 2

, the high- and low-quantum number O2-N2 rotational Raman signals, 

PloJ(z) and PHiJ(z), and the elastic backscatter signal at the laser wavelength 0, ( )zP
0

. The direct calculation of 

atmospheric temperature is obtained from the rotational Raman backscattered signals through the expression [19]: 

( )
( )

b
zP

zP

a
zT

LoJ

HiJ −

=

]ln[

)(       (1) 
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where, more specifically, PLoJ(z) and PHiJ(z) are the low (LoJ) and high (HiJ) quantum number rotational Raman 

backscatter signals in the anti-Stokes branch at wavelengths LoJ  and HiJ , respectively, received from the scattering 

volume at altitude z, and a and b are two calibration constants. The direct calculation of the water vapour mixing ratio is 

obtained from Raman backscattered signals through the following equation [38]: 

( ) ( )
( )

( )zP

zP
zTrsKzx

ref

OH

OH
2

2
 =       (2) 

where ( )zP OH 2
 is the water vapour vibrational Raman lidar signal at at wavelength 

OH 2
 , while ( )zPref  is a 

temperature-independent reference signal obtained from a linear combination of the two temperature sensitive rotational 

Raman lidar signals ( )LoJP z  and ( )HiJP z , K is a calibration constant [38], Trs(z) is a differential transmission term, 

which accounts for the different atmospheric transmission by molecules and aerosols at 
OH 2

  and HiJLoJ / . 

In addition to the temperature and water vapour mixing ratio profile, among the independently measured further 

products: the particle backscatter and extinction coefficient profiles in the ultraviolet, allowing the determination of the 

optical properties of aerosol layers and the geometric and optical properties of clouds, thus complementing similar 

measurements performed with EarthCARE; the profile of relative humidity, the real daytime PBL depth over land and 

the oceans directly obtained from the temperature profile, as well as atmospheric stability parameters like buoyancy, 

convective available potential energy (CAPE) and convective inhibition (CIN). 

Recent advances in solid-state laser, large-aperture telescope, and detector technologies allow achieving a new 

performance level from space with the Raman technique. With a laser power of up to 250 W in the ultraviolet and a 

telescope with a 4 m primary mirror, the above specified observational requirements are reached, thus realizing a 

breakthrough in earth system sciences. Different candidates for the laser transmitter of ATLAS are available, one of 

them being a frequency-tripled, diode-laser pumped Nd:YAG laser and another being a frequency-doubled alexandrite 

laser. The use of a new generation of pump chambers and diode lasers results in a wall-plug efficiency of > 5 %. The 

receiver will consist of a large-aperture telescope with a diameter of 4 m. Such a telescope would be larger than those in 

previous lidar missions, but stability and optical quality demands are significantly relaxed (no astronomic quality 

required) and the receiver technology is comparatively simple and very rugged. Simulations indicate an overall electrical 

power consumption for ATLAS of ~ 6000 W (5000 W for the laser and 1000 W for the remaining sub-systems). The 

rough estimate for ATLAS’ weight is ~ 600 kg  (~ 350 kg for the telescope and ~ 250 kg for the other sub-systems). 

An assessment of the specifications of the different lidar sub-systems has been performed with an analytical simulation 

model for space-borne Raman lidar systems developed at Università della Basilicata [16, 17]. The expected performance 

was simulated under a variety of environmental and climate scenarios using different atmospheric reference models, 

which cover various climatic regions and seasons, as well as a variety of solar illumination conditions.  In our present 

simulations the payload is hosted on a frozen dusk/dawn low-Earth sun-synchronous orbit at an altitude of 450 km 

(inclination ~97 degrees). The horizontal spatial coverage domain is global, i.e. from tropical to sub-polar regions. With 

daily overpasses at 6/18 h local time, it is possible to capture the TD states before and after the daytime development of 

the PBL, which are very important for data assimilation in weather forecast models. Figure 1 illustrates the vertical 

profiles of measurement uncertainty for water-vapour mixing ratio,
 

( ) ( )zxzx OHOH 22
 , and of temperature, T, 

considering the tropical and mid-latitude summer atmospheric models. Considering a vertical resolution of 200 m, values 

of ( ) ( )zxzx OHOH 22
  for the tropical atmosphere are in the range 2-20 % and 3-30 % up to 5.5 km for a horizontal 

resolution of 50 and 20 km, respectively, while for the mid-latitude summer atmosphere values of ( ) ( )zxzx OHOH 22
  are 

in the range 2-20 % and 3-30 % up to 4 km for a horizontal resolution of 50 and 20 km, respectively. For both the 

tropical and mid-latitude summer atmosphere values of T are in the range 0.4-1 K and 0.7-1.2 K up to 18 km for a 

horizontal resolution of 50 and 20 km, respectively. More results from the simulations and more aspects of the proposed 

mission will be illustrated at the conference. 
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Figure 1. Vertical profiles of ( ) ( )zxzx OHOH 22
  (panel a) and T (panel b) for the tropical (continuous lines) and mid-

latitude summer (dashed lines) reference models. Red lines represent night-time conditions, while blue lines represent 

daytime conditions. Thin lines represent a horizontal resolution of 20 km, while bold lines represent a horizontal resolution 

of 50 km. 
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