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Abstract— This paper presents a dynamic model for the vibration of rotating Rayleigh beam. The governing differential equations of 

motion of the beam in free vibration are derived using Lagrange’s equations and include the effect of an arbitrary hub radius. Three 

linear partial differential equations are derived. Two of the linear differential equations are coupled through the stretch and chordwise 

deformation. The other equation is an uncoupled one for the flapwise deformation. A method based on the Rayleigh-Ritz solution is 

proposed to solve the natural frequency of very slender rotating beam at high angular velocity. The parameters for the hub radius, 

rotational speed, tapered ratio, rotary inertia and slenderness ratio are incorporated into the equation of motion. Finally the resonance 

frequency of rotating bema is evaluated. The non-dimensional frequency coefficients are given in tabular form.  Some numerical 

examples are presented and the influence of different non-dimensional parameters on frequency values is discussed. 

Keywords- Lagrange’s equation, dynamics, rotating Rayleigh beam 

I.  INTRODUCTION 

There are many engineering example which can be 
idealized as rotating beams, such as helicopter blades, turbine 
blades, satellite booms, aircraft rotary wings, etc. Rotating 
beams differ from non-rotating beams in having additional 
centrifugal force and Coriolis effects on their dynamics. The 
stretching causes the increment of the bending stiffness of the 
structures, which naturally results in the variation of natural 
frequencies and mode shapes.  Vibration in many cases greatly 
affects the nature of engineering designs. Vibrational properties 
of engineering structures are often limiting factors in their 
performance. Consequently, considerable attention has been 
paid to free vibration analysis involving the study of natural 
frequencies and mode shapes of such structures. Identifying 
such structural properties is essential to the analysis of 
structural dynamics and the suppression of unwanted 
vibrations. Centrifugally stiffened rotating beams involve 
variable coefficients in the governing equations. The variable 
coefficient differential equations in general cannot be solved by 
using ordinary trigonometric or hyperbolic functions. Standard 
approximated approaches such as Rayleigh-Ritz, Galerkin and 
Finite Element have been used in solving free vibration 
problems of such structures. Power series approaches are also 
applied in obtaining solutions of rotating beam structures.  

Due to the wide range of applications and the specific 
geometric feature of beams, in which one dimension is much 
larger than the other two, various beam models have been 
employed to simulate the structural dynamics of aircraft wings, 
helicopter blades, spacecraft antennas, robot arms, towers and 
for many other industrial applications. Numerous methods such 
as experimental, analytical and numerical methods have been 
developed and used to analyze the structural dynamics of 
beam-like structures. In this respect, the modal analysis is a 
well-known practical technique for investigation of the 
dynamic response and vibrations of beams. The modal 

approach gives the solution in a series in terms of natural mode 
shapes and the corresponding generalized coordinates. 
Subsequently, a first need is determine the natural mode shapes 
and frequencies of free vibrations, analytically or numerically 
for using such techniques. Indeed transverse free vibrations of 
non-uniform beams have been studied by numerous researchers 
in both aeronautical and mechanical engineering fields either 
analytically or numerically. Added to this, several analytical 
solutions, most of which are applied for linearly tapered beams, 
have been represented in exact procedure with Bessel functions 
[1], terms of orthogonal polynomials [2] in approximation 
method, power series by Frobenius method [3], differential 
stiffness method [4] and finite element analysis [5]. On the 
other hand, a wide range of approximate and numerical 
solutions such as Rayleigh-Ritz, Galerkin, finite difference, 
finite element and spectral finite element methods have been 
used to obtain the natural vibration characteristics of variable-
section beams [6-9]. Auciello et al. [15] have applied the CDM 
method to study the dynamic problem of rotating Rayleigh 
beam. Consequently, lower bound values of the frequencies are 
obtained.  

In the present study, the equations of motion of rotating 
Rayleigh beam are derived by the Lagrange’s equation. In 
order to capture all inertia effect and coupling between 
extensional and flexural deformation, the consistent 
linearization of the fully geometrically non-linear beam theory. 
The analysis is based on a variational approach with 
Orthogonal Polynomials (BCOP) are chosen as trial functions 
polynomial trial functions.  

Finally, numerical examples have been completely carried 
through by means of the powerful symbolic software; 
Mathematica  [14]. 
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II. DYNAMIC MODEL 

Considered a tapered Rayleigh beam length L rigidly 
mounted on the periphery of rigid hub with radius r rotating 

about its axis fixed in space at a constant angular velocity . 
Figure 1 show the deformation of the neutral axis of the beam. 
The origin of the coordinate system is chosen to be the 
intersection of the centroid axes of the hub and the undeformed 
beam. A generic point Po the undeformed position is given of 
the vector: 

   0 1 2 3, ,r
T

r x x x  . (1) 

 
If the beam now in deforms as a result of flexure and also 

under tension due to the centrifugal force, the position vector of 
the deformed point would now be given of the r : 

 1 1 3 3,1 2 2,1 2 2 3 3, ,r
T

r x u x u x u x u x u          (2) 

 

The velocity of a material point in deformed state is given by: 
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where the time derivatives are defined with a dot, while (,1) 

represents  the partial derivative with respect to the integral 
domain variable x1. 

From a geometrical point of view the length, s, is a function 
of Cartesian coordinates and is given by the following 
relationship [11]: 
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with , is dummy variable. The governing differential 
equations of motion of the rotating tapered beam in free 
vibration are derived by applying Lagrange’s equation which 
requires the expression for kinetic and strain energies. 

The kinetic energy of the system is given by 

 
  2 2 2
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.
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 (5) 

  
By substituting Eq. (3) in Eq. (5) the kinetic energy 

becomes; T=T1+T2+T3 where 
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where  A is the cross-sectional area of the beam, I2, I3 and 

I23 are the second area moments of inertia and the second area 
products of inertia of the cross-section respectively.   

 The stain energy U of the rotating Rayleigh beam is 

defined [8] 
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Figure 1. Deformed of the blade neutral axis 
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E is Young’s modulus of the beam. For x2, x3 principal axes 

of inertia I23 = 0, therefore, I2 and I3 are the principal second 
area moments of the cross-section. In the present study, s, u2 

and u3 are approximated by spatial functions and the 
corresponding coordinates.  

By employing the Rayleigh-Ritz method the variables are 
approximated as follows: 

 

 

1 1 1 1 1 1

2 1 2 2 2 2 2

3 1 3 3 3 3 3

( , ) , 1,2.....

( , ) , 1,2.....

( , ) . 1,2.....

Φ q

Φ q

Φ q

T

i i

T

j j

T

k k

s x t q i n

u x t q j n

u x t q k n

   

   

  
 (13) 

 
where n1, n2 and n3 are the number of the generalized 

coordinates 
1q , 

2q  and 
3q ; and 

1 2,i j  , and 
3k  are the 

functions for s, u2 and u3. It has been already mentioned that 
the shape functions must obey only the geometric boundary 
conditions, so that it will be possible to write: 
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where the geometric conditions must be imposed on the 

vertical displacements and rotations, respectively. The 
coefficients aj, bj and cj can be determined imposing the 
boundary conditions, whereas the higher-order functions can be 
sought by means of the Gram–Schmidt iterative procedure 
[13]. The geometric boundary conditions at the ends of the 
beam can be written as follows: 
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The Lagrange’s equations for free vibration of a distributed 

parameter are given by 
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where n is the total number of modal coordinates. The 

partial derivatives of T with respect to the generalized 
coordinates are needed. Substituting (11) in terms of kinetic 
energy and strain, derivatives are obtained with respect to 
generalized coordinates given in Appendix A. 

By substituting the partial derivatives into eq. (16), the 
linearized equations of motion can be obtained as follows: 
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and 
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Equation (17) is coupled with equation (18) through 
gyroscopic coupling terms. 
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III. DIMENSIONLESS TRASFORMATION 

In order to compare the results with those reported in the 
literature it is useful to introduce the functions G(x) and H(x) 
which define, in general terms, the geometric characteristics of 
the structure 
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where A0, Io2, and I03, are respectively the area and moment 

of inertia of the section at 1x = 0. 

It is convenient to express the previous formulae in terms of 
the non-dimensional parameters: 
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Substituting the dimensionless variables and parameters 

defined in eq. (21) into Eqs. (17-19), the dimensionless 
equations of motion can be written as 
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The flapwise bending vibration of the rotating beam is 

governed by equation (24) which is not coupled with equations 
(22-23). From equation (24), an eigenvalue problem for the 
flapwise bending vibration of a rotating cantilever beam can be 
formulated by assuming that the u3,s are harmonic function of 

t. The variables, f and δ represent the angular speed ratio and 
the hub radius ratio, respectively. 

The coupling terms are often assumed negligible and 
ignored. This assumption is usually reasonable since the first 
stretching natural frequency is far separated from the first 
bending natural frequency. When the coupling effect between 
stretching and bending is ignored and when gyroscopic 
coupling terms are negligible, the equation of motion in 
chordwise bending vibration as  
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 (25)  (25) 

IV. NUMERICAL RESULTS 

 
In order to obtain accurate numerical results, several 

assumed modes are used to construct the matrices defined in 
Eqs. (24). Any compact set of functions which satisfy the 
essential boundary condition of the Rayleigh beam can be used 
as the test functions; [2].   

The normalized modes of a non-rotating cantilever beam, 
the orthogonal polynomial can be used as test functions in the 
numerical calculation. The span-wise variations of the cross 
sectional are and the second moments of area of the beams are 
defined by: 
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 The flapwise bending vibration is governed by eq. (24). 

Assuming α=0,5 ,β=0, the free frequencies are obtained using 
respectively 14 polynomial functions. In Table 1, the first five 

natural frequencies (i) of the rotating tapered Rayleigh beam 
are given for various values of parameter rH2. Results obtained 
are also included for comparison with Jackson et al. [6]. The 
full agreement with the solution in [6] is quite evident, small 
discrepancies can be noticed only for higher frequencies. 

In Table 1, Appendix. B, is examined, it is noticed that the 
rotational speed parameter has an increasing effect on the 
natural frequencies, which is due to the stiffening effect of the 
centrifugal force that is proportional to the square of the 
rotational speed. The full agreement with the frequencies 
obtained in [6,15]  is quite evident, small discrepancies can be 
noticed only for higher frequencies. As shown, the natural 
frequencies obtained by applying the CDM method [15] are 
always lower bounds to the values determined by the R-R 
method. In Fig.2 where the variation of the first three natural 
frequencies with respect to the hub radius parameter, δ and the 

rotational speed parameter, f is plotted, the effect of the hub 
radius parameter, δ, is investigated for α=0.5, rH2=1/30.  

The non-dimensional natural frequencies, i, increase as the 

speed velocity, f, increases and the rate of increase becomes 
larger for increasing hub radius, δ. Moreover, it is noticed that 
the effect of the hub radius, δ. As it can be seen from the 
results, the non-dimensional frequencies decrease as the hub 
radius ratio. 

Resonance will occur when the angular speed of the 
rotating beam equals one of the natural frequencies of the 
beam.  

The angular speed causing the resonance is called tuner 
angular speed.  

In Fig. 3 the trajectories of lower three natural frequencies 
(for δ=0, rH2=1/10, β=0 and α=0,5) and the straight line of 

ω= are plotted. The tuned angular speed occurs at =16,11 for 
δ=0, but it does not exist for δ=0.5 or δ= 1. 

 

V. CONCLUSION 

In the present study, the equation of motion for the 
vibration analysis of rotating Rayleigh beams are derived using 
the Lagrange’s equation. The equation of motion are 
transformed into dimensionless forms in which the 
dimensionless parameter are identified.  

The effect of the rotational speed, slenderness ratio and hub 
radius ratio on the natural frequencies are investigated with the 
following results: 

The free vibration increases as rotational speed increases 
because of the stiffening effect of the centrifugal force induced 
from rotation, this effect is more significant on higher modes 
than on lower modes. The rate of increase of the natural 
frequencies increases as the hub radius ratio increases. Natural 
frequencies increase with an increasing slenderness ratio of a 
beam, and frequencies of a Rayleigh beam are lower than those 
of an Euler-Bernoulli beam;  

The tuned angular speed exists, at which resonance may 
occur. 

For a rotating Rayleigh beam, the hub radius ratio, tapered 
ratio and the slenderness ratio are dominant factors in affecting 
the tuned angular speed. The advantage of the procedure used 
is the generality of polynomial functions which only need to 
satisfy the essential conditions.  
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Figure 3. Tuned angular speeds;  α=0,5, β=0.0 and rH2=1/10. 
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APPENDIX A: 

Taking into account the (9-11) we obtain the derivatives  
  

   
 , neglecting higher order non-linear terms, one has,  
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In the same way we have: 
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Using eq. (10), the partial derivatives of U with respect to the qi can be obtained as 
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APPENDIX B 

TABLE I.  THE FIRST FIVE NON-DIMENSIONAL FREQUENCIES OF ROTATING TAPERED BEAMS (=0,5) WHIT RH2=1/30; JACKSON ET AL. [6], C.D.M. [15]. 

=0   Present     [6]    [15]  

=0,5 f  f  f  f  f  f  f  f  f 

 3,8180 6,7391 11,4978 3,8211 6,7356 11,4856 3,8177 6,7332 11,4838 

 18,1688 21,7362 29,9639 18,2245 21,7911 30,0232 18,1601 21,7123 29,8974 

 46,3265 49,9288 59,3794 46,5757 50,1876 59,6737 46,2759 49,8385 59,1543 

 87,1368 90,7623 100,8026 87,7974 91,4413 101,5422 86,9716 90,4926 100,1831 

 139,4866 143,0885 153,3487 140,8192 144,4462 154,7865 139,0892 142,4541 151,9492 

 

S C I

CIENTIFICS
UBLICATIONP  

www.sci-pub.com

-- Civil Engineering --
3

- 46 -


