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Abstract. The design of submerged structures in sea currents presents certain problems that are not only 
connected to the shape of the obstacle but also to the number of acting forces as well as the correct 
modelling of the structures dynamic response. Currently, the common approach is that of integrated 
numerical modelling, which considers the contribution of both current and structure. The reliability of such 
an approach is better verified with experimental tests performed on models of simple geometry. On the 
basis of these considerations, the present work analyses the hydrodynamic forces acting on a sphere, which 
is characterised by a low mass ratio and damping. The sphere is immersed in a free surface flow and can 
oscillate along the streamwise and transverse flow direction. It is located at three different positions inside 
the current: close to the channel bottom, near the free surface and in the middle, and equally distant from 
both the bottom and free surface. The obtained results for different boundaries and flow kinematic 
conditions show a relevant influence of the free surface on the hydrodynamic forces along both the 
streamwise and transverse flow directions.  

1 Introduction  
Knowledge of the dynamic response of submerged and 
not-completely submerged structures in sea currents is 
fundamental for the correct design of a large number of 
off-shore structures (e.g., ocean risers, wind farms, 
marine turbines, oil conduits, platforms, buoys, power 
wave converters, and submerged floating tunnels). 
Although this topic has been considered in several 
previous studies, many questions remain unanswered. 
For example, in these types of structures, the modelling 
of the hydrodynamic response is usually subject to a 
linearization of the hydrodynamic force components 
considering: the inviscid flow, body subject only to 
conservative forces due to gravity and irrotational 
motion. Such linearization implies that the fluid 
oscillations are smaller than the wave length. As a 
consequence, the modelling of the hydrodynamic 
response of the oscillating structure does not allow us to 
consider the effects of refracted or steep waves or 
secondary, or of superior order, hydrodynamic effects. In 
addition, modelling situations in which the 
displacements of both submerged and floating bodies are 
larger than their typical dimensions is not allowed. 
Moreover, in most cases, these structures are modelled 
without considering the presence of free surface (water-
air interface) effects, which therefore overlooks an 
important interference factor for body movements. In 
fact, this hypothesis can hide the effects of vortex-
induced vibrations (VIV), which are not negligible 
whenever resonance or lock-in phenomena (where the 

frequency of VIV is close to the natural frequency of the 
submerged or floating system) occur. In fact, such 
phenomena are two of the most critical mechanical 
conditions for these structures. 

Considering the complexity of the research topics 
and numerous different forces stressing the structure, 
integrated numerical modelling seems to be the most 
suitable method to consider the contributions of the most 
significant forces [1-3]. Additionally, the presence of a 
free surface influences hydrodynamic actions in a 
peculiar way, both in the case of a steady flow, such as a 
sea current, and unsteady ones, such as waves [4].  

To assess their reliability, the resolving methods 
derived from integrated numerical modelling need to be 
compared with the results of the experimental analyses. 
Given the complexity of the phenomena, these involve 
models of simplified geometries (e.g., spheres, cylinders, 
and rectangles). In this complicated scenario, most 
studies in the literature focus on two-dimensional 
structures, such as rectangles and cylinders [5-7].  

Few studies report the analysis of hydrodynamic 
forces acting on a three-dimensional body, such as a 
sphere [8-10]. In particular, Govardhan and Williamson 
[8] investigated the fluctuating transverse forces acting 
on an elastically mounted sphere that was constrained to 
move transversely to the flow direction. These forces 
were measured by force balance and utilising linear 
variable displacement transducers. The other two papers 
[9,10] instead show a trend of the mean drag coefficient 
of tethered buoyant spheres that are free to oscillate 
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along both the streamwise and transverse flow 
directions. 

All of the above mentioned studies refer to spheres 
that are completely immersed in the current and distant 
from the free surface and channel bottom. In contrast to 
previous studies, this paper analyses the influence of 
both the free surface and channel bottom on the 
hydrodynamic forces acting on an elastically mounted 
sphere that is free to move in the streamwise (x) and 
transverse (y) flow directions. 

2 Experimental set-up  
The experimental set-up consisted of a deformable rod-
sphere system immersed in a steady flow and in a 
horizontal, non-tilted, Plexiglas open water channel with 
a rectangular cross section of 0.5 x 0.6 m and a length of 
approximately 7 m (Fig. 1a). The sphere was composed 
of PVC, water filled, and with a diameter D= 0.087 m 
[11,14]. The surface of the sphere was covered with 
paint to reduce the surface roughness. A flexible 
cylindrical rod was used to retain the sphere and connect 
it to a fixed support structure.  

The rod had a circular cross-section. The longer 
upper part was composed of Polyoxymethylene (Delrin) 
with a diameter D1= 0.012 m; the shorter lower part was 
composed of stainless steel with a much smaller cross-
section and a diameter D2= 0.003 m to avoid perturbing 
the flow in the proximity of the sphere.  

A clutch linked the rod to a fixed support structure 
that was located above the channel (Fig. 1) and allowed 
the deformable length of the rod and the immersion of 
the sphere to change.  

 
Fig. 1. Experimental channel; the transverse section of the 
channel and sphere positions at (b) h*=2, (c) h*=3.97, and (d) 
h*=0. 

The rod flexibility allowed the sphere two degrees of 
freedom (in the streamwise, x, and transverse, y, 
directions). 

The spherical body was immersed in a free surface 
flow with a water depth equal to 5 times the sphere 
diameter (H= 0.435 m) to maintain the blockage 
coefficient (γb= 0.03, the ratio between the body frontal 
area and transverse section of the channel) constant. The 

flow had a constant turbulence level of approximately 10 
%, whereas the mean flow velocity, U, changed between 
0.2 and 0.5 m/s.  

Three different boundary conditions of the flow 
around the sphere were tested and were denoted by value 
h* of the ratio between h (distance of the sphere upper 
surface from the free surface) and the sphere diameter, 
D. We considered a quasi-symmetric condition (h*= 2) 
with the sphere equally distant from the free surface and 
channel bottom (Fig. 1b) as well as two other conditions 
of asymmetric bounded flow (Figs. 1c and 1d): one with 
the sphere close to the channel bottom (h*= 3.97) and 
the other with the sphere close to the free surface (h*= 
0). 

The sphere displacements for the different flow 
velocities, U, were measured by image analysis through 
a Charge Coupled Device (CCD) camera, which allowed 
reconstruction of the sphere trajectories in the horizontal 
plane (x-y). The camera, which was located below the 
water channel (Fig. 1a), permitted us to memorise the 
body 2D displacements due to the presence of a marker 
placed below the sphere in-line with its barycentre [11-
14]. The time history of the 2D movement of the sphere 
was provided by using a blob analysis algorithm to 
recognise the position, dimension and shape of the 
marker on each image. The sequence was pre-processed 
by a filter procedure. We set the level of the threshold 
filter at 100/255, which is a value that assured the 
negligible influence of the filtering on the calculated 
displacement. The high quality of the acquisitions and 
blob detection procedure used for the identification of 
the marker minimised the measurement uncertainty of 
the sphere displacements. This uncertainty was assumed 
to be less than the image’s pixel dimension, which 
ranged between 0.4mm and 0.5 mm (with an image 
resolution between 18.5 and 23 pixel/cm). The position 
of the sphere on each frame was provided considering 
the barycentre of the marker, which had a mean area of 
approximately 100 pixel2. Moreover, during the 
procedure of the displacement calculation, we controlled 
the dimension of the marker on the image so that it did 
not change more than 5 % along the sequence [11-14]. 

3 Dynamic characterisation of the rod-
sphere system and determination of the 
hydrodynamic forces 
From a mechanical point of view, the composite rod acts 
as an elastic restraint for a sphere in the x and y 
directions. Furthermore, due to its small mass, its 
dynamics can be disregarded, and the fluid forces on the 
sphere can be simply computed by use of the dynamic 
equilibrium equation of a sphere that is considered to be 
a rigid body as well as by knowledge of its velocity, 
acceleration and forces exerted by the rod. 

We assumed that the oscillations were of a small 
amplitude so that: (a) the forces exerted by the rod could 
be linearly related to the sphere displacement through a 
stiffness coefficient, k, and (b) the rod could also be 
linearly related to the velocity through a damping 
coefficient, c. The values of the spring stiffness, k, and 
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damping coefficient, c, were determined from the modal 
properties estimated through dynamic experimentation in 
air as well as a parametric technique with reference to 
the geometry and structural boundary conditions of the 
experimental set-up described in Section 2. In particular, 
they were evaluated by disregarding the mass of the rod 
and by examining the motion of the sphere in the y 
direction, assuming that the rod-sphere system behaves 
like a linear single degree-of-freedom (SDOF) oscillator 
of mass equal to that of a sphere filled with water (m= 
0.46 kg). A comparison of the results with the theory of 
the SDOF oscillators permitted an assessment of the 
validity of the assumed linearity hypothesis for the rod 
forces at the displacement level involved by the testing 
in the water channel described in Section 2. 

When using dynamic testing, it is easy and reliable to 
estimate the stiffness, k, if the mass is known, but 
damping is one of the most difficult modal structural 
properties to estimate. This is due to several reasons. 
One is the representation through viscous damping of 
different forms of dissipation, which can be due to 
several mechanisms of an internal or external nature, 
such as hysteretic damping, Coulomb-friction damping, 
velocity squared damping (hydrodynamic force), or 
other cinematic variables that are different from the 
velocity. Another reason is the measurement noise, 
which requires some form of averaging in the estimation 
process to eliminate its effects.  

The classical method of the logarithmic decrement 
(Log-Dec) was adopted here to estimate the modal 
parameters of the rod-sphere system and was 
supplemented with averaging to mitigate the noise 
effects. The Log-Dec method can strictly only deal with 
SDOF systems, whereas in the case study, the length of 
the rod, its mass (albeit small) and the spatial distribution 
of the mass on the sphere only lead to an approximation 
of a SDOF oscillator, and therefore, more than one mode 
is possible. However, in practice, whenever the natural 
frequencies of the system are sufficiently separated, as in 
the case analysed here, the response of a SDOF oscillator 
can be obtained by isolating the single mode of interest 
utilising a band-pass filter. Care must be exerted in 
choosing the type of filter since it distort the signal in the 
time domain and cause bias error.  

The adopted procedure is as follows:  
a) recording of several free decay oscillations (Fig. 2) 

of the sphere were set free to oscillate from an 
initial position that is displaced in the flow-
transverse direction, y, by 5 cm with respect to the 
static equilibrium position. A Brüel & Kjær Type 
4384 piezoelectric accelerometer with a sensitivity 
of 1.004 pC/ms-2 at 159.2 Hz was used along with a 
16 bits ADC at the sampling frequency of 500 Hz;  

b) estimate the power spectral density (PSD) function 
from the recorded signal using the Welch’s method 
[15] and divide the input signal into eight 
overlapping segments with a 50 % overlap (a 
Hamming window is used on each segment before 
estimating the PSD); 

c) identify the PSD of the spectral bell and the 
damped natural frequency (fd=1.422 Hz) of the first 
mode in the air (Figs. 3 and 4). Due to the small 

value of damping, this frequency can be considered 
as that of the un-damped structure, fn; 

d) filter the free decay signal (Figs. 6 and 7) with a 
band-pass filter centred on fn to obtain the response 
of an SDOF (an order two band-pass Butterworth 
filter, Fig. 5, with lower and upper cut-off 
frequencies of 0.5 Hz and 2 Hz, respectively, is 
applied to the time series first in the forward 
direction and then backwards to avoid phase 
distortion of the filtered signal);  

e) separate the recorded signal into single episodes of 
free decay oscillations; 

f) transform to the absolute value;  
g) represent the results in a semi-log scale of each 

free decay oscillation (Figs. 8 and 9) and linearly 
interpolate the peaks to obtain the angular 
coefficient of the line, which when divided by 2πfn, 
directly provides the value of the critic damping ζ = 
c/[2(km)0.5].  

Some tests were prematurely stopped (e.g., at t=340 s 
in Fig. 2) due to the large coupling of the longitudinal (x) 
and lateral (y) vibration components. The non-perfect 
linear shape of the elastic rod induces this type of 
coupling and is also partially responsible for the 
deviation from linearity in the system response at low 
amplitudes, which is clearly shown by the scattering of 
the peaks in Figures 8 and 9 from 55 s onward. Also note 
that for the small values of acceleration at approximately 
100 s shown in Figure 9, the accelerometer is close to its 
operational limits, and the effect of the signal to noise 
ratio may have contributed to the scattering in spite of 
the band-pass filtering. 

This scattering can adversely influence the estimation 
of the damping factor value. Therefore, this was 
calculated for each single free decay episode; first, by 
using all of the peaks, and then, by subsequent 
confirmation using only the larger amplitude peaks 
corresponding to the first 20 % of each signal, which are 
less affected by the effects of the rod geometric non-
linearity. The results are listed in Table 1. Nearly 
negligible differences were obtained from the two 
different estimates. A mean value of ζ= 0.00443 was 
finally selected from the results of the second column in 
Table 1. 

Assuming a mass m= 0.46 kg from the natural 
frequency fn = 1.422 Hz of the first mode, the stiffness 
and the damping coefficient (with = 0.00443) in the air 
of the SDOF system can be computed as: 

                                  k = (2fn)2m=36.72 kg/s2  (1) 

                                 c = 2(km)0.5=0.036 kg/s  (2) 

The values of fnw and ζw in water, which were equal 
to 1.213 Hz and 0.0038, respectively, were obtained by 
multiplying the values of the same parameters in the air 
by the coefficient [m*/(m*+CA)]1/2 in which m* is the 
ratio between the system mass, m, and displaced fluid 
mass, md (m*=m/πρD3/6= 1.34) and CA is the potential 
added mass coefficient (CA= 0.5 for a sphere) when 
taking into account the water presence according to the 
paper by [8]. 
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Fig. 2. The recorded acceleration signal showing several free decay episodes: black = unfiltered, grey = after filtering. 

 
Fig. 3. Estimated power spectral density functions of accelerations: black = unfiltered acceleration signal, grey = after filtering. 
Overall view (a) and zoom-in (b). 

 
Fig. 4. Estimated power spectral density functions of accelerations: black = unfiltered acceleration signal, grey = after filtering. The 
larger zoom-in level (a and b) showing no attenuation of the spectral bell due to band-pass filtering. 

 

Fig. 5. The Frequency Response Function (FRF) of the adopted Butterworth 2nd- order filter. 
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Fig. 6. The detail of the acceleration signal (a) before and (b) after filtering for the free decay oscillations episode at a time of 7-73 s. 

 
Fig. 7. Detail of acceleration signal (a) before and (b) after filtering for the free decay oscillations episode at a time of 83-200 s. 

 
Fig. 8. Linear fit for the free decay oscillations episodes at a time of 83-200 s: (a) using the peaks of the first 20 % of the signal and 
(b) using all of the peaks. 

 

 

Fig. 9. Linear fit for the free decay oscillation episodes at a time of 537-616 s: (a) using the peaks of the first 20 % of the signal and 
(b) using all of the peaks. 
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Table 1. Damping ratio values from episodes of different 
free decay oscillations. 

Time [s] 
ζ [%] First 20% 

of the peaks  
ζ [%] 100% of 

the peaks 

7.7 – 73 0.4561 0.4430 
83 – 200 0.4550 0.3819 
273 – 316 0.4360 0.4782 
486 – 520 0.4360 0.4782 
537 – 616 0.4326 0.4326 

Under the linearity and decoupling hypotheses 
assumed herein, the decoupled equations of motion of 
the sphere along the streamwise, x and transverse, y 
directions are: 

                                  Fx = mẍ+cẋ+kx  (3) 

                                 Fy = mӱ+cẏ+ky  (4)  

where Fx and Fy are the total fluid forces in the 
streamwise and transverse direction, respectively; m is 
the total oscillating structural mass (i.e., not including 
fluid added mass); and k and c are the stiffness and the 
damping coefficients, respectively, that were previously 
estimated.  

The instantaneous velocities (ẋ,ẏ) and accelerations 
(ẍ,ӱ) in (3,4) were obtained by the Centred Finite 
Difference Method (CFDM) starting from the 
streamwise and transverse displacements (x,y) as 
measured within the experimental campaign described in 
Section 2. 

4 Discussion of the results 
In this study, we investigated fluid-dynamic loading on 
an oscillating sphere located at three different relative 
submergence conditions h*= 2, h*= 3.97 and h*= 0 in 
steady free surface flows (Table 2) to analyse how the 
presence of both the flow free surface and channel 
bottom influences the fluid-dynamic loading acting on 
the sphere.  

First, we report the dynamic response in terms of 
amplitude, A*y, and frequency, f*, as related to the three 
submergence conditions already considered by Mirauda 
et al. [11-14]. In particular, the experimental condition of 
h*= 2 (a completely submerged sphere) is compared 
with those observed in literature. The dynamic response 
in the function of the reduced velocity U* (U*= U/fnwD) 
is reported in Figure 10. This figure highlights how the 
trend of oscillation amplitudes is crescent with U*, 
which is similar to the first branch of the literature curve 
(Fig. 10a) and tends to reach Mode I. Moreover, from 
the frequency response in Figure 10b, it is possible to 
observe how the system tends to reach a resonance 
condition that is typical of the periodic Mode I, in which 
the oscillation frequency is close to the natural frequency 
for the higher flow velocity (U*= 4.74). 

 

 

Table 2. Experimental tests [11]. 

Test h* U* 
1 2 1.90 
2 3.97 1.90 
3 0 1.90 
4 2 2.84 
5 3.97 2.84 
6 0 2.84 
7 2 3.79 
8 3.97 3.79 
9 0 3.79 
10 2 4.74 
11 3.97 4.74 
12 0 4.74 

 
Fig. 10. (a) Transverse normalised amplitudes (A*y) and (b) 
frequency ratios (f*) at different relative submergences (h*) in 
the function of U*. 

The other two conditions, h*= 3.97 and h*= 0, were 
never analysed in the literature and show different 
behaviours (Fig.10). In detail, for h*= 3.97, the trend of 
the oscillation amplitudes and frequencies are similar to 
those of h*= 2, which show how the presence of the 
bottom does not influence the dynamic response of the 
system. On the contrary and in the case of h*= 0, a first 
increase and subsequent decrease of A*y for U*> 2.84 
are observed, and the latter was induced by the distortion 
of the free surface, which inhibits the development of a 
dynamic response typical of Mode I. The frequencies 
trend in the case of h*= 0 is always a crescent but seems 
to be distant from Mode I (Fig. 10b). Within the 
experimental range shown in Figure 10, the fluid-
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dynamic loading that was acting on the sphere was 
calculated with (3,4); moreover, it was also split into a 
“potential force” component (Fp) and a “vortex force” 
component (Fv) due to the dynamics of vortices as 
performed by [8,16,17] and several other studies: 

                                  F(x,y)=Fp(x,y)+Fv(x,y)  (5) 

where the potential force can be calculated as: 

                      Fp(x,y) = -CAmd(ẍ, ӱ)t=-md(ẍ, ӱ)t  (6) 

in which ma is the added mass (CAmd) and ẍ(t) and ÿ(t) 
are the instantaneous accelerations of the sphere in the 
streamwise and transverse directions, respectively. 
Normalising the forces by 1/2ρU2πD2/4, the force 
coefficients (Cx and Cy) and potential components (Cp) 
can be computed, whereas the vortex force coefficients 
(Cv) were computed as the difference between the total 
and potential components. 

When the experimental results evidence the 
resonance condition of Mode I, we also considered the 
hypothesis of sinusoidal behaviour to solve the equation 
of motion as reported by [8]. In most cases of vortex-
induced vibrations, the frequency of body oscillations 
are synchronised with the periodic vortex wake mode 
downstream of the body, and therefore, the transverse 
amplitude response y(t) and the fluid force Fy(t) are well 
represented by: 

                          y(t) = - A sin(2ft)  (7) 

                      Fy(t) = F0 sin(2ft+)  (8) 

where f is the transverse oscillation frequency (fy) and φ 
is the phase angle between the total fluid force and the 
transverse body displacement. Therefore, the solution of 
Eq. (4) is: 

  A*y = y/D= 3/322  Cysin/(m*+CA)w  (U*/f*)2 f*  (9)                    

where: 

                    f*= f/fnw= [(m*+CA)/(m*+CEA)]0.5   (10)                    

and CEA is an effective added mass coefficient that 
includes an apparent effect due to the transverse total 
fluid force in phase with the body acceleration (Cycosφ): 

                   CEA = 3/162A*y  (U*/f*)2  Cycos          (11)     

By combining these three equations, we computed 
the transverse force coefficient (Cy) acting on the sphere 
when knowing the transverse displacements, y, and 
oscillation frequency, fy.  

Figures 11 and 12 report the transverse displacements 
(y/D) normalised with respect to the sphere diameter and 
coefficient (Cy) compared for each different h*; 
moreover, we report the transverse coefficients split into 
the potential (Cp,y) and vortex (Cv,y) components, as 
discussed before. The figures refer to Tests 1, 2, 3 
(Figure 11), 10, 11 and 12 (Fig. 12) of Table 2. The 
mean component of the displacements and force 
coefficients remain constant around the zero value due to 
the symmetry of the set-up. The comparison between 
Figures 11 and 12 highlight the increase of the 
displacement and force fluctuating components with the 
increasing velocity when the sphere is far from the free 
surface (h*= 2 and h*= 3.97). Instead, and different 
from these two submergence conditions, a reduction of 
the displacement and force fluctuating components 
occurs at h*= 0 with the increase of the reduced velocity 
(Figs. 11a, 11b, 12a and 12b). In the case of the forces, 
the splitting of the transverse coefficient into its potential 
(Cp,y) and vortex (Cv,y) components highlights that this 
behaviour is imputable to the vortex component of the 
transverse force coefficient.  

Fig. 11. (a) Trend of normalised transverse oscillations (y/D); (b) transverse total force Cy; and (c) and (d) are the potential and 
vortex component of the transverse total force for low flow velocity (U*= 1.90). 
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Fig. 12. (a) Trend of normalised transverse oscillations (y/D); (b) transverse total force Cy; and (c) and (d) are the potential and 

vortex component of the transverse total force for high flow velocity (U*= 4.74).  

The experimental data lead us to consider that the 
strong distortion of the free surface, which occurs when 
h*= 0 and the flow velocity is larger than U*= 2.84, 
noticeably reduces the fluctuating component of both the 
displacements and transverse force coefficient acting on 
the sphere. By contrast, for values of U*<2.84, we 
observe an increase of the transverse displacement 
fluctuating component and a significant influence of the 
vortex component on the transverse force coefficient. As 
discussed before, when Mode I is achieved, the 
transverse force coefficient (Cy) acting on the sphere 
could be computed by knowing the transverse 

displacements, y, and oscillation frequency, fy, under the 
hypothesis of sinusoidal behaviour. With the aim of 
verifying the force coefficient evaluation, we compared 
the methods discussed before. We considered the case of 
U*= 4.74 with h*= 2 and h*= 3.97; which are 
conditions when the sinusoidal behaviour is prevalent in 
the transverse displacements (Figs. 13a-f) and Mode I is 
achieved (Fig. 10). Instead, we could not consider the 
condition of h*= 0 for the low periodicity of the signal 
as observed in Figures 13g-i, probably due to the strong 
deformation of the free surface above the sphere that 
influences body movement and induces random motion. 

 
Fig. 13. Power spectra of the transverse force coefficients at (a), (b), and (c) h*= 2; (d), (e), and (f) h*= 3.97; and (g), (h), and (i) 
h*= 0 for high flow velocity (U*= 4.74).  

8

EPJ Web of Conferences 180, 02067 (2018)	 https://doi.org/10.1051/epjconf/201818002067
EFM 2017



 

* Corresponding author: domenica.mirauda@unibas.it 

Figures 14 and 15 report the trends of the force 
coefficients derived from the computation of the body 
instantaneous velocities and accelerations by means of 
the CFDM (black line). These trends also come from the 
solution of the motion equation according to [8] (grey 
line) for the conditions of relative submergence h*= 2 
and h*= 3.97 and for the higher flow velocity (U*= 
4.74, Test 10 and 11). For this velocity of the flow, the 
sphere is close to the resonance condition of Mode I. The 
analysis of the curves shows how the results are, in the 
resonance situation, very similar. 

 
Fig. 14. (a) Transverse total force Cy and (b) and (c) are the 
potential and vortex component, respectively, of the transverse 
total force for high flow velocity (U*= 4.74) at h*= 2 (Test 
10). 

Instead, Figures 16a and 16b report that the 
behaviour of the streamwise movement was normalised 
with respect to the sphere diameter and the drag 
coefficients for the three relative submergences h* at a 
low flow velocity (U*=1.90; Test 1, 2 and 3). It is 

important to note how the mean and fluctuating 
components of the drag coefficient are significantly 
greater in the asymmetrical boundary conditions (h*= 0 
and h*= 3.97). 

In addition, Figures 16c and 16d show that the drag 
coefficients split into the potential (Cp,x) and vortex (Cv,x) 
components, as previously discussed. As expected, the 
potential component of drag (Fig. 16c) moves around 
zero, whereas the vortex component (Fig. 16d) contains 
the mean and part of the fluctuating components of the 
drag coefficient. 

 
Fig. 15. (a) Transverse total force Cy and (b) and (c) are the 
potential and vortex component, respectively, of the transverse 
total force for high flow velocity (U*= 4.74) at h*= 3.97 (Test 
11). 

In addition to, as it is possible to note through the 
power spectra of Figure 17, in the cases of h*= 3.97 and 
h*= 0, the signal is periodic with one predominant peak 
of approximately 1Hz, whereas under the condition of 
h*=2, an overlapping of non-periodic signals is observed 
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with a range of frequencies between 0.7 and 1.5 Hz. By 
increasing the velocity from U*= 1.90 to U*= 4.74 (Fig. 
18a), the mean displacements of the sphere in the x 
direction, with respect to its static position (zero value), 
are amplified. However, for this higher flow velocity 
(Fig. 18), interestingly enough, the results are different 
in terms of the mean and fluctuating components of the 
force coefficients along the x direction. As Figure 18b 
depicts, the mean values of Cx follow the ordering 
displayed in Figure 18a for the displacements. For h*= 
2, an increase of the mean value of Cx is noted as well as 
of the fluctuating component, whereas the case of h*= 
3.97 also leads to a larger mean value associated with a 

larger loss of periodicity. Moreover, h*= 0 leads to the 
lowest value of Cx (the mean value of Cx is 1.25 while 
the standard deviation is stdCx= 0.05 for U*= 4.74), 
which is a value lower than that found for U*= 1.90 
(Cx=1.47 and stdCx= 0.43). In this case, the amplitude of 
the fluctuating part is also reduced, which suggests a 
radical change in the mechanism of the vortex 
detachment.  

Such behaviour could be due to the presence of a jet-
like flow between the upper surface of the sphere and 
free surface, which reduces both the mean and 
fluctuating component of the forces.  

 
Fig. 16. (a) Trend of normalised streamwise oscillations (x/D); (b) streamwise total force Cx; and (c) and (d) are the potential and 
vortex component, respectively, of the streamwise total force for low flow velocity (U*= 1.90). 

 
Fig. 17. Power spectra of the streamwise force coefficients at (a), (b), and (c) h*= 2; (d), (e), and (f) h*= 3.97 and (g), (h), and (i) 
h*= 0 for low flow velocity (U*= 1.90). 
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Fig. 18. (a) Trend of normalised streamwise oscillations (x/D); (b) streamwise total force Cx; and (c) and (d) are the potential and 
vortex component, respectively, of the streamwise total force for high flow velocity (U*= 4.74). 

4 Conclusions 
The measurements of the forces acting on the structure 
with simplified geometry described in this paper 
represent a necessary step for the numerical resolution of 
coupled mechanical-fluid dynamic models. Knowledge 
of the internal forces in the mechanical model permits 
computation of the fluid dynamics from its motion. The 
internal forces were reconstructed after establishing a 
correlation between the internal forces and motion of the 
mechanical model. 

The results underlined an increase of the mean 
components of the force coefficients along the 
streamwise direction in the asymmetrical conditions of 
flow for low velocity with respect to the condition of 
h*= 2. Instead, a reduction of the mean component is 
observed for the higher velocity in the case of h*= 0. 
Such behaviour is explained by the presence of a free 
surface distortion, which reduces the mean component of 
the force. Instead, the fluctuating components show 
similar values for all of the conditions. Only in the case 
of h*= 0, at the investigated low velocity, is it possible 
to observe larger values of displacement and force 
coefficients due to the presence of a jet-like flow 
between the upper surface of the sphere and free surface, 
which increases the movements and forces acting on the 
sphere. 

Along the transverse direction and for a low velocity, 
it is interesting to note a behaviour of the system similar 
to the case of the streamwise direction with higher 
fluctuations of displacements and forces for h*= 0, 
whereas for high velocities, it evolves in the opposite 
manner. In fact, for h*=0, the strong distortion of the 
free surface above the sphere reduces the displacements 
and force fluctuating components and influences the 

body to induce a random movement. In the case of h*= 
3.97 and h*= 2, we instead note a considerable increase 
of fluctuating components and a repeatable trend with 
sinusoidal functions, which is typical of the resonance 
condition already observed in the literature by several 
authors.  

Finally, an additional interesting result is the 
significant values assumed by the vortex fluid force, 
which as discussed, could provide an important 
contribution to the analysis of this type of phenomenon. 
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