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Abstract—In the present study, the dynamic behavior of 

cantilever column having a tip rigid body and subjected to the 

action sub-tangential forces.  The solution of the problem is 

obtained through the Lagrange’s approach and assuming as 

“CDM” discretization method [1,2]. The procedure, applied to 

cantilever column, is an alternative method to the usual FEM and 

Rayleigh-Ritz  methodologies used in literature. The structures is 

reduced to a set of rigid bars linked together by means of elastic 

constraints. The system is reduced to a discrete problem to many 

parameters of freedom (MDOF) and you can study it using the 

usual theorem of classical mechanics. Evaluation schemes for 

flutter and divergence loads of non-conservative system are 

described and the static buckling loads and natural frequencies 

of beam-columns are compared through numerical examples. 

Finally, the influences of the tip rigid body on the dynamic  

behavior of the beam. The work ends with the analysis of a few 

numerical examples and results are compared with the ones 

obtained from authors mentioned in bibliography. 

Keywords- Cantilever beam, Lagrange’s approach, “CDM” 

method, subtangential force 

I. INTRODUCTION 

There have been considerable number of papers on the 
dynamic stability of columns subjected to non-conservative 
forces. It is well known that if the type of instability is 
divergence, the critical loads of the system can be determined 
by the static approach while the critical loads for flutter should 
be determined using the dynamic criterion. The elastic 
instability of elastic non-uniform Euler-Bernoulli column (E-B) 
subjected to a tangential force has been examined by many 
instigators [3-8]. Chen [4] found that if a cantilever beam is 
subjected to a partially tangential force, then the instability 
mechanism for the beam is divergent if the tangency 
coefficient is less than or equal to values ηc . For uniform beam 
ηc=0.5. Recently, Auciello [8], study the instability behaviour 
of beams with variable cross section subjected to sub-tangential 
non-conservative follower forces, and the solution is 
numerically attained by using a Rayleigh-Ritz method. Instead, 
Marzani et al. [9], study the instability behaviour of beams with 
variable cross section subjected to sub-tangential non-
conservative follower forces, and the solution is numerically 
attained by using a Differential Quadrature Method (DQM) 
procedure. 

The dynamic stability of cantilevered columns having a 
rigid body at the tip, as a solid rocket motor to produce a 

tangential thrust, was first studied both theoretically and 
experimentally by Sugiyama  et al [10]. Rao and Rao [11] 
examined the application of the static and dynamic stability 
criterion for obtaining the critical force of cantilevered columns 
subjected to a sub-tangential force.  

Most of the studies so far made have been related to the 
column with large slenderness ratio. For tapered beam, short 
elastic columns and column with tip mass the parameters may 
be important in the stability analysis of the system. The aim of 
the present paper is to investigate the dynamic stability of a 
cantilever Euler-Bernoulli column having a tip rigid body an 
subjected to a sub-tangential force by using “CDM” 
discretization. The effect of non-conservativeness of the sub-
tangential follower force and the tip mass parameters is fully 
discussed. 

II. STATEMENT OF PROBLEM 

Consider an elastic cantilever column having a tip rigid 
body and subjected to a sub-tangential force P. The direction of 
the force is specified by ηθ as show in Fig.1, where θ is the 
angle of inclination of the tangent at tip end. When α=0, the 
direction of the acting force is vertical, i.e. the force is 
conservative. When α=1, it is tangential to the tip end, i.e. the 
force is purely non-conservative ; Beck type column [5].  

The structure is reduced to a set of rigid bars linked 
together by means of elastic constraints, and consequently a 
stiffer structure than the real one is obtained. The beam is 
supposed to be divided into t rigid bars, linked together by 
means of elastic elements which allow relative rotation. 
Therefore, the structures is reduced to a finite-degree of 
freedom system (MDOF); the rotations of  the ith rigid bar (φi). 
All the possible configurations are functions of the following 
vector: 

  (1) 

and the vertical components of the nodal displacements are 
given by the following expressions:  
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In matrix form, being A the displacements matrix, it is 
possible to write: 

 . (2) 

 

Figure 1. “CDM” discretization of a cantilever columns having a tip rigid 

body and subjectedto a subtangential force.  

The axial components of the nodal displacements are given by 
the following expressions: 
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in matrix form: 
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where Dl is the diagonal matrix of the terms L/t, 

Similarly, the relative rotations between the two faces of 
the elastic cells are given by: 

  

and in matrix form:  

 .Bc  (5) 

The rectangular matrices A and B have t+1 rows and t 
columns, and each term can be calculated according to Fig.1; 
where: 
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Quite often it is possible to neglect both the axial and the 
shear deformation effects, limiting oneself to the bending 
deformations. In such hypothesis, at each “cell”, the following 

relation between the relative rotation i  
and the moment Mi 

can be written, as follows: 
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(6) 

where E is the Young modulus and I is the inertia cross 
sectional area. 

III. LAGRANGE’S EQUATIONS 

The Lagrange’s equations for free vibration of a distributed 
parameter are given by  
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  (14) 
where n is the total number of modal coordinates and T, U 

are respectively the kinetic and the potential energy and Qi
 
the 

coefficients of the force non-conservative; Clough et al. [11]. 

The partial derivatives of T with respect to the generalized 
coordinates are needed. 

A. Strain Energy 

The strain energy is given by the bending strain energy, at 
i-th cells abscissa, the following linear relationship is supposed 
to hold: 
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where Mi are the bending moment at the i-th cell abscissa. It 
is also: 
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Put Kf the diagonal matrix of the terms kfi, the strain energy 
of the whole structures is equal to: 
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B. Kinetic Energy 

In order to deduce the kinetic energy of the structure, let us 
suppose that the distributed mass of the rigid bar will be 
concentrated at the nodal point of the rigid segments.  

Therefore, the mass distribution becomes: 
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The kinetic energy also be expressed as a function of the 
Lagrangian coordinates; we have: 
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where ( , )t tJ is the diagonal matrix of the terms;  
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C. Axial force  

The elastic energy and the work by conservative forces of 

the system can be written as: 
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The other, non-conservative part of the applied loads gives 

rise to the following virtual work;[12]: 
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Writing the previous expressions in terms of Lagrangian 
coordinates we have: 
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L
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where W is the diagonal matrix 

  0 1,..... 1; 1i tW i t W    . (15) 

Most different cases can be faced, according to the η value.  
When η=0, the direction of the force is vertical, i.e. the force is 
conservative. When η=1, it is tangential to the tip end, i.e. the 
force is purely non-conservative. Thus the parameter η can 
also be referred to as the non-conservativeness parameter. 

Put         ( )l D W , square matrix:  
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the equation of motion (7) can be written as  
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(16) 

and the free vibration frequencies are calculated as the 
eigenvalue problem imposing 
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(17) 

From a computational point of view, the presence of 
unsymmetrical matrices leads to complex conjugate solutions, 
and an iterative approach seems to be the simplest solution 
algorithm. The stability of the system under consideration is 

determined by the sign of real part σof the complex eigenvalue  

( 1)i i      .  If σ0 ,the system is stable; if σ 0 and 

ω0 , the system is statically unstable, i.e., divergence type 

instability; if σ 0 and ω, the system is dynamically unstable, 

i.e., flutter type instability; if σ0, it has the critical follower force 
pc  arises. 

Two different cases can be faced, according to the η value. 
If η<ηc the normalized critical load pc corresponds to Ω1=0, and 
it can be deduced using the static criterion.  

The condition: 

 

  
det[ ] 0,nN K K  (18) 

 

gives the solutions pi and the critical load is pc=p1. 

As η increases, a threshold value ηc is reached, beyond which 

the structure loses stability by flutter, and the static criterion is 

no longer applicable.  At η>ηc the solutions pi of equation (12) 

turn out to be complex, and the critical load must be calculated 

using eqn. (12), corresponding to the coalescence of the first 

two free vibration frequencies. 
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IV. NUMERICAL RESULTS AND DISCUSSION 

- Nondimensional analysis 

In order to compare the results with those reported in the 
literature it is useful to introduce the functions G(x) and H(x) 
that define, in general terms, the geometric characteristics of 
the structure 

 0 0( ) ( ), ( ) ( ),A x A G x I x I H x   (18,19) 

 
where A0=π and I0=π/4, are respectively the area and 

moment of inertia of the section at x = 0.  

Introducing the following parameters 
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- Uniform beam 

As a first example, for t=100, the column with constant 
cross section has been studied, subjected to a sub-tangential 
load, α=0: G(x)=H(x)=1. 

Using eqn. (18) the critical load is given, for different 
parameter value η< ηc. At η=0 we have two different value P1 
and P2, whereas the difference P1-P2 diminishes with increasing 
η, and at η =ηc=0.5 the two values coalesce. The columns have 
two divergence instability force for η<η1, and divergence ad 
flutter instability force for  η1<η<ηc, and only one flutter 
instability force for η>ηc. In the case of  E-B uniform column 
(α=0), the boundary values non-conservativeness parameters, 
η1=0,3543 and ηc=0,5. To verify the accuracy of the numerical 
calculation applied, the critical force obtained for a specific 
parameter η of the present paper was compared with the values 
reported by reference.  

In Table I, the critical loads Pc for η< ηc are presented and 
compared with the results by Chen [4] and Auciello [8].  

TABLE I.  COMPARISON OF CRITICAL FORCE (η<0,5).  

 
In order to check the results of the η>0,5, in Table II are 

given the critical load and the instability is the type flutter. The 
dynamic criterion is followed, and the axial load is found, such 
that the first two frequencies coalesce, Ω1=Ω2. For η > 0.5 the 

critical load must be calculated using eqn. (12), corresponding 
to the coalescence of the first two free vibration frequencies. 
For the values of non-conservative parameter η=1, Beck 
column, the critical force are  Pc=2.0315  approach (R-R) and 
Pc=2.0306 (CDM); Fig. 2.  

TABLE II.  DEPENDENCE OF CRITICAL FORCE (η>0,5).  

 Chen [4] Auciello [8] Present “CDM” 

 PC  PC  PC 

0,51 1,627 0,732 1,6267 0,7315 1,6262 0,7303 

0,52 ----- ------ 1,6274 0,7456 1,6267 0,7453 

0,55 1,632 0,788 1,6321 0,7876 1,6315 0,7862 

0,60 ----- ----- 1,6473 0,8445 1,6466 0,8441 

0,70 ----- ----- 1,7009 0,9359 1,7000 0,9357 

0,80 1,782 1,009 1,7815 1,0085 1,7812 1,0075 

1,00 2,032 1,118 2,0315 1,1161 2,0306 1,1157 

 
It is seen that the CDM approach lead to lower bound that 

Rayleigh-Ritz method; Auciello [13].The comparison of the 
results has shown a good agreement. 

 

 
Figure 2. Effect of the non-conservative parameter for η=0,0-1.0.  

A. Effect of tip rigid body 

In order to demonstrate the effect of the tip rigid body of 
the column on the critical force, in Table II are reported the 
critical force for four cases of parameters μ and various non-
conservative η.  

TABLE III.  EFFECT OF TIP RIGID BODY ON THE CRITICAL FORCE (Η>0,5).  

μ η=1 η=0,8 η=0,7 η=0,6 

0 2,0315 1,7813 1,7000 1,6468 

0,01 1,9916 1,7629 1,6894 1,6420 

0,1 1,7815 1,6701 1,6390 1,6260 

1 1,6421 1,6674 1,6864 1,7115 

10 1,8399 1,8635 1,8772 1,8928 

100 1,9706 1,9800 1,9853 1,9913 

 
For the values η<0,5, the increase of the mass of tip rigid 

body does not affect the change of the critical force, and the 

 Chen [4] Auciello [8] Present (t=100) 

 P P P P  

0 0,240 0,2499 2,2499 0,2499 2,2495 

0,20 0,337 0,3369 2,0151 0,3369 2,0148 

0,30 ------ 0,4109 1,8469 0,4108 1,8466 

0,3543 ------ 0,4649 1,7236 1,4690 1,7293 

0,40 ------ 0,5362 1,6071 0,5362 1,6069 

0,45 ------ 0,6519 1,4279 0,6480 1,4278 

0,48 ------ 0,7644 1,2671 0,7644 1,2670 

0,49 0,829 0,8291 1,1868 0,8291 1,1867 

0,50 1 1 1 1 1 
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type of instability is divergence for all the values of the mass 
ratio μ. This is obvious because the divergence limit is not 
affect by mass. For η>0,5 as shown in Fig.3, however, the type 
of instability of the column is flutter.  

  

Figure 3. Effect of the mass of the tip rigid body on flutter force Pc for 

η=0,6-1.0.  

- Tapered  beam 

Let us consider here a linear circular tapered cantilever 
beam of length L clamped at ξ=0. The cross-section of the 
beam varies with geometrical tapered parameter α:  

    
2 4

( ) 1 , ( ) 1G H        (21) 

 
In the divergence region η<ηc, the static criterion is 

followed, and the axial force pc is found. The corresponding 
data for α=-0,5, ..0,5, are given in the Fig. 4. 

 
Figure 4. The nondimensional P vs the parameter η for various 

coefficients α.  

The first two critical load coefficients Pc are given for 
various values of the sub-tangential coefficient η, and the 
limiting value ηc defines the passage from divergence to flutter; 

TABLE IV.  VALUE ηC FOR VARIOUS PARAMETERS α 

 
α=-0,5 α=0  

 
α=0.25       α=0,5 

ηc 0,3425 0,5 0,5560 0,6014 

Pc 0,2937 1 1,4970 2,0896 

V. CONCLUSIONS 

In this paper the stability and dynamic analysis of 
cantilever beam in presence of a sub-tangential  force. It has 
been shown that the proposed approach (CDM), when used 
together, can be of great interest in the study of the dynamic 
behaviour of beams subjected to sub-tangential force, at least in 
all the cases in which closed-form solution are not available. 
From the numerical results obtained, the following conclusions 
can be drawn; 

 As to standard uniform column (α=0) the instability-
type of the critical force is divergence for the non-
conservative parameter η<0,5, regardless of the 
existence of the tip rigid body. The columns have two 
divergence forces for η<η1, and divergence and flutter 
forces for η1<η<ηc, and only one flutter force for η>ηc. 

 It is confirmed that the effect of the tip rigid body 
parameter is negligibly for η<ηc. For the values of the 
non-conservativeness parameter η>ηc, however, the 
type of instability of the column is flutter. 
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