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Abstract—The free vibration characteristics of a cantilever 

tapered Timoshenko beam is analyzed in this study. First, the 

strain displacement relationship for the Timoshenko beam is 

formulated and used to derive the kinetic and strain energies in 

explicit analytical form. Second, Lagrange’s variational principle 

is used to derive the governing differential equation of motion 

and the associated boundary conditions. Third, the Rayleigh-Ritz 

Method (R-R) is applied to the equation of motion and the 

boundary conditions to form a set of algebraic equations from 

which the frequency equation is derived. Next, a numerical 

algorithm implemented in the software package Mathematica is 

used to compute the natural frequencies. Also, the variation of 

the natural frequencies of vibration with respect to variations in 

the taper ratio and also the slenderness ratio is studied. The 

results obtained from the Timoshenko theory are compared with 

results obtained in literature to demonstrate the accuracy and 

relevance of the their application. 
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I. INTRODUCTION 

Elements offshore structures having the form of a column, 
wind turbines, aircraft propellers and turbo machinery are 
usually modeled as flexible beams. The dynamic behavior of 
these structures change significantly from their for axial force. 
This effect is due to the position the axial force which tends to 
vary the bending rigidity and hence, influences their natural 
frequencies of vibration. 

For non-uniform beam are the most typical examples that 
can be reduced to a Timoshenko beam variable cross-section. 
By using this theory, free vibration frequencies have been 
obtained by many authors, employing finite element 
techniques.  

Sigh and other [1-5] developed the eingen-problem 
formulation and solution technique which allow determination 
of the free vibrations of transversely vibrating beam having 
variety cross sections. For example, To [2] examined a beam 
with varying cross-section, for various boundary conditions, by 
using a cubic-linear interpolating function. For a cantilever 
uniform beam with a tip mass at the free end Abramovich et al. 
[3] and Cleghorn et al. [4] extended the analysis to eccentric 
masses. If the cross-section is supposed to vary according to a 
continuous law, Laura et al. [5] proposed an FEM-like 
algorithm. Auciello [6] used cell discretization metod(CDM) 
for determinate of free vibration of  non-uniform beam for tip 
masse. Whereas, Auciello et al. in [7]  presented the 

approximate analysis general solution of the vibration 
Timoshenko beam. 

Esmailzadeh et al. [8] presented the exact, analytical 
solution of the vibration of Timoshenko beam subjected a two 
position to axial force.  

In this paper, real discretization method (Rayleigh-Ritz)  
analysed a developed a study the instability behaviour of 
beams with axial force. Two sets of governing equations for 
transverse vibration of non-uniform Timoshenko beam 
subjected to axial load. The first set, the axial force is 
tangential to the axis of the beam. In the other set, the axial 
load have been taken normal to the normal to the shearing 
force and thus normal to the cross-section. Axial force 
tangential to the axis of the beam and axial force normal to the 
shearing force; Figure 1. 

 

Figure 1.  Timoshenko beam model; a) axial force tangential to the axis of 
the beam; b) axial force normal to the shearing force. 

Referring to the Figure 1, it can be easily show the 
Hamilton’s equation is used to derive the governing differential 
equation of motion.  

II. FORMULATION OF THE PROBLEM 

If the Timoshenko model is assumed to be valid, then the 
displacements can be written as: 

 
 2 1 2 1( , ) ( , ) 0 , u

T
x x t u x t  (1) 
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where 1( , )x t
is the rotation of the cross section, which 

turn out to be different from the rotation θ of the neutral axis, 
so that the difference 
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gives the additional rotation due to the shear deformation. 
According to (1) the strain components are given by: 
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If the derivative with respect to x1 is written as an apex, the 
Hooke law for isotropic material gives the corresponding stress 
components; 

 

.σ Dε  (4) 

The equation of motion are derived via Hamilton’s 
principle 
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where δT, δU and δV  are the variations of kinetic energy, 
strain energy and the potential energy of the beam associated 
with an initial axial tension load . 

The kinetic energy of the beam is given as: 
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and is rewritten using eqns (3) and integrating over the 
cross section, as 
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where ρ is the mass density. For cantilever beam with tip 
mass, let us consider the case of the cantilever beam with a tip 
mass and rotatory inertia. Obviously we have to add in (6) the 
rate of kinetic energy due to the rotatory inertia: 
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The strain energy is given as  
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and the potential energy axial load (P): 
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Case a) Axial force tangential to the axis of the beam. 

In this case it is assumed the axial force is tangential to 
slope of the beam. For Bress-Timoshenko beam theory the eqn 
(4) can be written as, [8]: 
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where A is the cross sectional area, I is the moment of 
inertia, E is the Young modulus, G is the shear modulus, and k 
is the shear factor. 

Eqn. (8) can be written as: 
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Case b) Axial force normal to the shearing force. 
Eqn (4) can be written as 
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By substituting Eqs (12) into Eqs (8), The strain energy is 
given as 
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  (13)  

In the hypothesis of separation of variables, u2(x,t) and 

( , )x t an can be written as follows 

 2 2( , ) ( )cos , ( , ) ( )cos u x t u x t x t x t     (14)    (8) 

so, the kinetic energy is 
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III. DISCRETIZATION MODEL 

In the approximate formulation the transversal 
displacements are assumed to be linear combination of n 
independent functions which satisfy the boundary equations. If 
functions Φi and Ψi are chosen respecting the geometrical 
constraints the displacements can be written  

 2 1 1 1 2( ) , ( ) ,T Tu x x Φ q Ψ q  (16)  (9) 

where 1( )i x  and  1( )i x  are orthogonal functions and 

 1 2q q q
T

is the generalized displacements vector.  

The approximate solution is developed by substituting the 
displacement distribution (eqn 16) into Hamilton’s principle. 
Substituting (14) in eqs. (11,13) leads to the below bending 
strain energy. In both cases, the can be written as: 

Case a) Strain energy eq. (11) 
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In matrix form: 
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Case b) Strain energy eq (13) 
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and 
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The potential energy axial load (P) can be rewriter as: 
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While, the kinetic energy: 
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The kinetic energy due to the tip mass can be written as: 
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where 
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Obviously, the matrix Mb and Mm are symmetric and 
positive definite. 

At last, in general the functional in (5) is written: 

Case a) 
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Case b) 
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In general, imposing the conditions (5) we get following 
homogeneous system in the unknown q: 

 

2( ) , K M q 0  (25) 

which in turn leads to the frequency equation 

 

2det( ) 0 K M , (26)  

where M=Mb+Mm. 
As already said, the shape functions must obey the only 

geometric boundary conditions, so that it will be possible to 
write: 
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where nu and nφ are the geometric conditions which must be 
imposed on the vertical displacements and rotations, 
respectively. The coefficients ai and bi can be determined 
imposing the boundary conditions, whereas the higher order 
functions can be sought by means of the Gram-Schmidt [10-11] 
iterative method. 

The geometric boundary conditions at the ends of the beam 
can be specified as follows; 
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IV. NUMERICAL EXAMPLES 

In order to test the above suggested method, some 
numerical examples have been performed, for a beam with 
arbitrarily varying cross section, with area and moment of 
inertia given by the general relationships: 
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where A0 and I0 are the cross sectional area and moment 
of at the abscissa x1=0. It is also usual to introduce the 
following non-dimensional parameters: 
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whereas the free vibration frequencies are usually written 
as: 
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As a first comparison, let us consider the tapered beams 
with α=0,2 , subjected to axial forces as studies by  
Esmailzadeh and Ohadi  [8]. The Poisson coefficient is equal to 
0.25, E/G=2.6, the cross section is assumed to be rectangular, 
and consequently the shear factor is given by k=5/6. In the 
following we have used 6 polynomial trial function in order to 
approximate both displacements and rotations, so that the 
resulting problem has 12 degrees of freedom. The frequency 
coefficients Ωi (i=1-4) have been calculated for an clamped 
carrying tip mass; μ=0,6. The results are given in Tab.I 
together with some results presented by Lee et al [9], which 
verifies the developed computer program for the non-uniform 
beams. The full agreement with the exact frequencies is quite 
evident, small discrepancies can be noticed only for the higher 
frequencies, but the error turns out to be than 0.1‰ . 

In Tab.II are reported Pc critical buckling load parameter for 
cantilever beam with a tip mass; μ=0,6, α=0 and α=0.2.   

TABLE I.  FIRST FOUR FREQUENCY OF A LINEARLY THICKNESS. 

=0,6         

=0,2 r=0,04       [8] Present 
Present 

r=0,1 

P   Case b Case b Case b 

0  1,85 1,8509 1,773 

   14,44 14,4354 11,4183 

   40,07 40,0733 26,7927 

   74,24 74,2989 44,1279 

The influence of the axial load on the natural frequencies 
for r=0.1 is shown in table III. The comparison of the results 
presented in Tab. II with the corresponding values taken from 
reference [8] shows good agreement and, therefore, verifies 
both the formulation and the developed computer program. 

TABLE II.  FIRST FOUR FREQUENCY VS (PC)   

=0,6           

=0,2 r=0,04 [8]  Present 

P   Case 1 Case 2 Case 1 Case 2 

0,006* 
k*G/(r

2
)  1,18 1,18 1,1824 1,1822 

P=1,2019  13,74 13,73 13,7395 13,7346 

   39,36 39,33 39,3627 39,3346 

   73,51 73,43 73,5704 73,4919 

0,008* 
 

  0,8377 0,8374 
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k*G/(r
2
) 

P=1,6025      13,4989 13,4924 

       39,1224 39,0852 

       73,3257 73,2208 

 A comparison of Tables I and 2 reveals that, as anticipate, 
the compressive axial force reduces all modes of natural 
frequencies of the beam. The reduction of the frequencies is 
small passing from the case a) in case b).  

TABLE III.  FIRST FOUR FREQUENCY VS (PC); r=0,1. 

=0,6   
  

=0,2 r=0,1 Present  

P   Case 1 Case 2 

0,006*k*G/(r
2
)  1,6859 1,6852 

P=1,2019  11,3101 11,2956 

   26,6839 26,6353 

   44,0199 43,9257 

0,008*k*G/(r
2
)  1,6551 1,6543 

P=1,6025  11,2737 11,2543 

   26,6476 26,5826 

   43,9838 43,8581 

In Tab. IV the non-dimensional critical loads are given, 
which have been used to obtained the previous pictures. The 
results obtained for case a) and case b). 

TABLE IV.  CRITICAL BUCKLING LOAD (PC). 

 
Pc - case a Pc - case b 

r    

0,01 2,0218 2,4655 2,0218 2,4655 

0,02 2,0130 2,4598 2,0132 2,4599 

0,03 2,0099 2,4504 2,0100 2,4506 

0,04 1,9999 2,4368 1,9994 2,4376 

0,05 1,9866 2,4208 1,9869 2,4212 

0,06 1,9708 2,4008 1,9713 2,4011 

0,07 1,9524 2,3777 1,9530 2,3783 

0,08 1,9318 2,3515 1,9326 2,3524 

0,09 1,9089 2,3222 1,9099 2,3234 

0,1 1,8839 2,2910 1,8852 2,2920 

It can be seen that the critical bucking loads decrease for 
increase parameter r. The influence of the paper ratio α seems 
to be relevant for the cantilever beam.  

 

Figure 2.  Critical buckling load (Pc) for various r; non-uniform beam. 

It can be seen that the critical buckling loads of the uniform 
beam are greater than those of the non-uniform one, as 
expected, since the stiffness of the uniform beam is now 
higher. On the other hand, the mass of the uniform beam is also 
greater than that of a tapered beam. Variation of the buckling 
load (Pc) for various parameter r are presented in Figure 2. 

V. CONCLUSION 

A numerical technique has been presented for the analysis 
of non-uniform Timoshenko cantilever beam under axial force. 
The validity and accuracy of the technique have been verified 
through several numerical examples. The axial force effects 
considered in two different positions was analysed. Thus, this 
study demonstrates the reliability and convenience of the 
application of the Timoshenko theory. The natural frequencies 
are in excellent agreement with published results. Though for 
comparison purposes, the natural frequencies are kept accurate 
to the fourth decimal places, the precision of the natural 
frequencies can be increased and made as high as desired. The 
advantage of the procedure used is the generality of polynomial 
functions which only need to satisfy the essential conditions. 
The numerical examples have been completely carried through 
by means of the powerful symbolic software. 
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