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Abstract Concern localization refers to the process of locating code units that match a
particular textual description. It takes as input textual documents such as bug reports and
feature requests and outputs a list of candidate code units that are relevant to the bug reports
or feature requests. Many information retrieval (IR) based concern localization techniques
have been proposed in the literature. These techniques typically represent code units and
textual descriptions as a bag of tokens at one level of abstraction, e.g., each token is a word,
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or each token is a topic. In this work, we propose a multi-abstraction concern localiza-
tion technique named MULAB. MULAB represents a code unit and a textual description
at multiple abstraction levels. Similarity of a textual description and a code unit is now
made by considering all these abstraction levels. We combine a vector space model (VSM)
and multiple topic models to compute the similarity and apply a genetic algorithm to infer
semi-optimal topic model configurations. We also propose 12 variants of MULAB by using
different data fusion methods. We have evaluated our solution on 175 concerns from 9 open
source Java software systems. The experimental results show that variant COMBMNZ-DEF

performs better than other variants, and also outperforms the state-of-art baseline called
PR (PageRank based algorithm), which is proposed by Scanniello et al. (Empir Softw Eng
20(6):1666–1720 2015) in terms of effectiveness and rank.

Keywords Concern localization · Multi-Abstraction · Text retrieval · Topic modeling ·
Data fusion

1 Introduction

Developers receive bug reports and feature requests through issue management systems
such as Bugzilla and JIRA daily. The amount of these reports are often too many for devel-
opers to handle (Anvik et al. 2005). For each of these reports and requests, developers need
to locate the code units that need to be modified to fix bugs or be extended to implement a
particular feature. Considering a large code base with thousands or even millions of files,
this task is a daunting one. Much manual effort needs to be spent to locate relevant code
units. Thus, an automated solution is needed.

Concern localization is a software maintenance process of locating code units that need
to be changed in response to a modification request, such as bug fixing or a new feature
request. Change requests are usually formulated in natural language, describing the prob-
lems or the solutions of the software system, while the source code also includes large
amounts of text such as comments and identifiers.

Recently, a number of approaches have been proposed to link bug reports and feature
requests to the corresponding code units, (e.g., Marcus and Maletic 2003; Wang et al. 2011,
2014; Le et al. 2015; Wang and Lo 2014; Xia et al. 2014; Zhou et al. 2012). The bug reports
and feature requests could be viewed as concerns,1 and the linking process of code units
to concerns is referred to as concern localization. Many past studies on bug localization,
feature location, etc. could be viewed as specific instances of concern localization.

Many existing studies characterize both concerns (e.g., feature requests or bug reports)
and code units as a bag (i.e., multi-set) of tokens at one abstraction level, e.g., Marcus
and Maletic (2003) and Wang et al. (2011). A textual document (i.e., feature request, bug
report, or code unit) is represented as a set of words that appear in it. Alternatively, a natural
language processing technique referred to as topic modeling (e.g., Blei et al. 2003) can be
applied to infer a set of topics that appear in the document. A topic is a distribution of words
and is a higher level abstraction of the original words. A set of topics can be inferred from
documents and these topics would represent these documents. Similarities of documents

1A concern is a concept, requirement, feature, or property related to a software system (Robillard andMurphy
2007). In this work, we focus on bug reports and feature requests which are subsets of concerns, but the
proposed approach could be used for generic concerns.
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can then be measured as the similarities of their representations (i.e., their set of words or
topics). The code units that are most similar to the input concerns are output to the end user.

Recently, Scanniello et al. propose a static concern localization approach named PR
which combines textual and structural information together (Scanniello et al. 2015). PR
extracts dependency among methods in a code base (based on direct references between
methods) and uses the PageRank algorithm (Kleinberg and Tomkins 1999) to rank meth-
ods based on their importance. The similarities between a concern and a code unit (i.e.,
a method) is then measured by multiplying the textual similarity computed by com-
paring the concern and the code unit using vector space modeling (VSM) (Salton and
Harman 2003) and the importance of the code unit estimated using PageRank. The
experiment results show that their approach leads to better retrieval performance than
several baseline approaches: one that uses textual information only and one that com-
bines textual and structural information on clustering (Scanniello and Marcus 2011).
In this paper, PR is a state-of-the-art baseline approach that we compare our proposed
approach with.

While many past studies only compare two documents at one abstraction level, in this
work, we compare documents at multiple abstraction levels. A word can be abstracted at
multiple levels of abstraction. For example, “AVL tree” in a document can be abstracted
to “binary tree”, “tree”, “graph”, “data structure”, and so on. Two documents might not
share “AVL tree” but they might both related to “binary tree”, “tree”, “graph”, or “data
structure”, and so on. By viewing a document at multiple levels of abstractions the similarity
or difference of two documents can be better assessed.

To represent documents in multiple abstraction levels, we leverage topic modeling. Topic
modeling (Blei and Lafferty 2007) maps words that appear in a document to topics. Each
word is assigned to one topic. The fewer the number of topics, the higher the abstraction
level. This is the case as a topic now represents more words. On the other hand, the larger
the number of topics, the lower the abstraction level. Thus, we can iteratively apply topic
modeling using different numbers of topics to create multiple abstraction levels. We can
then aggregate these abstractions to measure the similarity between a concern (e.g., a bug
report or a feature request) and a code unit. We apply an adaptive Latent Dirichlet Allocation
(LDA) with Genetic Algorithm (GA) (Panichella et al. 2013) to determine a near-optimal
configuration for LDA to tune the topic number of each abstraction level. Topic models have
recently been used in software textual retrieval and analysis to support software engineer-
ing tasks. However, previous research show that applying topic models on software artifacts
using the same settings as for natural language text did not always produce the expected
results, as text extracted from source code is much more repetitive and predictable as com-
pared to natural language text (Panichella et al. 2013; Oliveto et al. 2010; Arcuri and Fraser
2011; Hindle et al. 2012). So we need GA to determine the near-optimal topic number for
LDA when used in software engineering tasks. By using multiple abstraction levels, the
impact of the parameters of LDA and GA will be reduced.

In the literature, VSM has been shown to outperform many other information retrieval
(IR)-based techniques for concern localization (Wang et al. 2011; Rao and Kak 2011). In
this paper, we propose a new approach which combines VSM and multiple abstraction lev-
els; the multiple abstraction levels are built by LDA (tuned using genetic algorithms), which
is described in detail in Section 3.5. We refer to the resultant model as MULti-ABstraction
VSM (MULAB). We evaluate MULAB on 9 open-source software systems using infor-
mation from 175 past change requests which map to a total of 501 changed methods. To
demonstrate that the proposed multi-abstraction concept works, we propose 12 variants of
MULAB by using different data fusion methods (Wu 2012; Lucia et al. 2014) and choose
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the best one to compared with PR, the state-of-the-art proposed by Scanniello et al. (2015).
We address the following research questions.

1. RQ 1:What is the best variant and parameter setting of MULAB?
We find that when evaluated by both effectiveness and rank, COMBMNZ-DEF

(CombMNZ fusion method with normalization) performs the best among the 12 vari-
ants of MULAB. Then we investigate the best parameter (the height of the abstraction
hierarchy). Height L=6 performs better for COMBMNZ-DEF than other settings of
L. i.e., L=1, L=2, L=3, L=4, and L=5. But considering both performance and time
efficiency, height L=4 is the best choice for our experiment.

2. RQ 2: How much improvement could the best performing variant achieve over its
components (i.e., VSM and topic models)?

We find that when evaluated by effectiveness and rank, COMBMNZ-DEF performs
better than its 5 components (VSM model and 4 abstraction levels).

3. RQ 3: How effective is COMBMNZ-DEF compared with state-of-the-art approach?
We find that COMBMNZ-DEF outperforms PR on 7 among the 9 Java systems when

evaluated in terms of effectiveness and rank. Statistical tests show that the differences
are statistically significant and substantial.

4. RQ 4:What is the effect of varying the text used to represent a concern on COMBMNZ-
DEF’s effectiveness?

We find that COMBMNZ-DEF with default configuration (which uses text from both
summary and description fields to represent a concern) performs better than when only
text from summary and text from description are used independently, in terms of both
effectiveness and rank scores.

This paper extends our preliminary study which appears as an research paper of ICSME
2016 (Zhang et al. 2016). In particular, we extend our preliminary work in several direc-
tions: (i) In addition to following our previous method which combines VSM model and
multi abstraction levels by putting them into one vector, we propose 11 variants that per-
form the combination using 6 data fusion methods; (ii)We strengthen the experimental part
by adding a data set eclipse and investigating two additional research questions; these ques-
tions investigate: (1) the performance of the 12 methods (our original method and the 11
variants) to choose the best one, (2) if the best variant performs better than its components;
(iii) After getting the best performing variant, we have repeated experiments to answer the
three research questions appearing in our ICSME 2016 paper using the best performing vari-
ant. We have compared the effectiveness of the best performing variant against a recently
proposed state-of-the-art approach (Scanniello et al. 2015).

Our contributions, which form a super-set of those of our preliminary study, are as
follows:

1. We propose multi-abstraction concern localization. We represent a document (i.e., a
code unit, bug report, or feature request) at multiple abstraction levels.

2. We propose a technique MULAB that leverages multiple topic models to capture rep-
resentations of documents at different abstraction levels. MULAB employs an adaptive
LDA with genetic algorithm (LDA-GA) to tune the topic numbers of each abstraction
level. MULAB then uses these representations to compute the similarity between a
concern and a code unit.

3. We propose 12 variants of MULAB by using different data fusion methods.
4. We have evaluated the 12 variants of MULAB on 175 concerns from 9 Java soft-

ware systems, and choose a best performing variant. Results show that our best variant
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of multi-abstraction approach outperforms PR, which is a state-of-the-art approach
proposed by Scanniello et al. (2015), by a substantial margin.

Paper structure In Section 2, we briefly introduce LDA and GA. In Section 3, we present
the details of MULAB. We present our experimental results in Section 4. We review related
work in Section 6. We conclude and mention future work in Section 7. We discuss other
issues related to our approach in Section 5.

2 Preliminaries

2.1 Latent Dirichlet Allocation

A topic model (Blei and Lafferty 2007) views a document to be a probability distribution of
topics, while a topic is a probability distribution of words. In our setting, a document is a pro-
gram method in the code base or a concern, and a topic is a higher-level concept correspond-
ing to a distribution of words. For example, we can have a topic “Java Programming” which
is a distribution of words such as “variable”, “inheritance”, “class”, “method”, and so on.

Latent Dirichlet Allocation (LDA) is a well-known topic modeling technique proposed
by Blei et al. (2003), which has been widely used in software engineering (Panichella et al.
2013; Asuncion et al. 2010; Thomas 2011; Xia et al. 2017). LDA takes a document-by-term
matrix D as input, and outputs two matrices DT and T T , i.e., a document-by-topic matrix
and a topic-by-term matrix. The document-by-term matrix D is a term frequency matrix, in
which Dij represents the number of times that the j -th term (i.e., word) appears in the i-th
document. In the document-by-topic matrix DT , DTij represents the probability of the i-
th document to belong to the j -th topic. Generally, a document is considered to belong to
the topic with the highest probability. In the topic-by-term matrix T T , T Tij represents the
probability that the j -th term belongs to the i-th topic. Likewise, we assign a term to the
topic with the highest probability and then we can conclude what a topic is about by looking
up the terms it contains. After training, LDA can be used to infer the topic distribution of a
new document (in our case: a new concern). LDA takes several parameters: the number of
topics (K), and two hyper-parameters α and β. While the hyper-parameters are typically set
to be 50/K and 0.01 respectively following the suggestions by Blei et al. (2003), the values
of K needs to be carefully tuned.

There are several implementations for LDA in the literature. In our work, we use an
implementation based on collapsed Gibbs sampling. This approach typically achieves the
same accuracy as the standard LDA implementation while being faster in its execution (Grif-
fiths and Steyvers 2004; Wallach et al. 2009). Besides the three parameters, K , α, and
β introduced above, our Gibbs sampling implementation takes an additional parameter m

which specifies the number of Gibbs sampling iterations. By default, we set m to be 1,000.

2.2 Genetic Algorithms

A genetic algorithm (GA) is a stochastic search technique that mimics the process of natural
selection. Since its first introduction by Holland (1975) in the 1970s, genetic algorithms
have been widely used to generate solutions to optimization problems using techniques such
as mutation, selection, and crossover. The advantage of GA with respect to other search
algorithms is its intrinsic parallelism, i.e., having multiple solutions evolving in parallel to
explore different parts of the search space.
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The GA search starts with a population of randomly generated individuals, where each
individual (i.e., a chromosome) represents a random parameter configuration of the opti-
mization problem. Generally, the evolution of the whole population is an iterative process,
in which each iteration is called a generation. In particular, the population evolves through
subsequent generations and, during each generation, the individuals are evaluated based on
a fitness function that has to be optimized. The fitness function is used to evaluate the dif-
ferent parameter configurations by generating different fitness values. For creating the next
generation, new individuals (i.e., offsprings) are generated by: (1) applying a selection operator,
which randomly picks individuals based on the fitness function (individuals with higher fitness
values are more likely to be selected), (2) recombining, with a given probability, two indi-
viduals from the current generation using the crossover operator, and (3) modifying, with a
given probability, individuals using the mutation operator. The new generation of candidate
solutions is then used in the next iteration of the algorithm. Commonly, the algorithm termi-
nates when either a maximum number of generations have been produced, or a satisfactory
fitness level has been reached for the population. More details about GA can be found in a
book by Goldberg (1989), and we will show how we apply it in our algorithm in Section 3.3.

2.3 Score Normalization

In this work, we apply Zero-One score normalization (Wu 2012) before data fusion. This
method transforms scores from different abstraction levels into the same range i.e., zero to
one. The method works as follows. Let m be the total number of methods for each project,
and si denotes the score of the ith method, where 1 ≤ i ≤ m. Furthermore, let maxs denotes
the maximum score among all the methods, and mins denotes the minimum score among
all the methods. The normalized score of the ith method is calculated as follows:

s normi = si − mins

maxs − mins

2.4 Data Fusion

Data fusion methods proposed in the information retrieval community are used to integrate
normalized scores from different techniques. The goal of data fusion is to combine relevant
information from two or more data sources into a single one that provides a more accurate
performance than any of the individual data sources. In this work, we leverage six well-
known unsupervised data fusion methods in the domain of information retrieval, namely
CombANZ (Shaw and Fox 2014; Joseph 1997; Fox et al. 1992), Borda count (Aslam and
Montague 2001), Max, Min, CombMNZ (Shaw and Fox 2014; Joseph 1997; Fox et al.
1992), and CombSUM (Shaw and Fox 2014; Joseph 1997; Fox et al. 1992). We will
elaborate how these fusion methods work in Section 3.

3 MULAB

3.1 Overview

In Fig. 1, we present the overall framework of MULAB. Our framework takes as input
method corpus and concerns. Method corpus is a collection of textual documents where
each document corresponds to a method in the code base. Each document contains iden-
tifiers and words that appear in the source code, documentation (e.g., Javadoc), and
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Fig. 1 Overall Framework of MULAB

implementation comments of the corresponding methods. Concerns are a collection of tex-
tual documents where each document is either a bug report or a feature request. For each
bug report and feature request, we extract the text that appears in its title and description.
The output of our framework is a set of ranked methods for each concern.

Our framework contains four processing steps: preprocessing, topic number tuning, hier-
archy creation, and multi-abstraction retrieval. The purpose of the preprocessing step is to
convert methods and concern documents into a standard representation, i.e., a bag of words.
The preprocessed documents (i.e., methods and concerns) are then input to the topic number
tuning step. The topic number tuning step uses a genetic algorithm to determine a near-
optimal topic number of LDA for each abstraction level and these are input to the hierarchy
creation step. The hierarchy creation step applies a topic modeling technique a number of
times to construct an abstraction hierarchy. The abstraction hierarchy is a collection of
topic models with various settings, where each topic model is a level in the hierarchy. This
abstraction hierarchy is used by themulti-abstraction retrieval step. In this step, we enhance
a standard text retrieval technique based on VSM by leveraging the abstraction hierarchy,
then we can choose to use data fusion methods or not. The goal of the final processing step
is to compare a concern (a query) and a method (a document in the method corpus) by con-
sidering multiple abstraction levels. We elaborate the four processing steps in the following
subsections.

3.2 Preprocessing Step

We first perform text normalization by removing common Java keywords (e.g., public,
private, class, extends, etc.), and English stopwords. These words are deemed useless for
retrieving relevant code units (i.e., methods) for concerns as either they appear in most doc-
uments or they carry little meaning. We also normalize the text by excluding punctuation
marks and special symbols. Thus, we only retain some word tokens and number literals. Fur-
thermore, we break identifiers into smaller tokens following Camel casing convention that is
the naming convention adopted by most Java programs. By performing text normalization,
we standardize word tokens in Method Corpus with those that are used in Concerns.
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Next, we apply the Porter Stemming Algorithm2 to reduce English words into their root
forms. For example, “models”, “modeled”, “modeling” are all reduced to the same root
word “model”. We perform this step to standardize words of the same meaning but are
in different forms. At the end of this step, we forward preprocessed method and concern
documents to the topic number tuning step to determine best settings to infer topic models.

3.3 Topic Number Tuning Step

The parameter K of LDA, which is the number of topics, is an important parameter that
significantly determines LDA output. An improper value of K for each abstraction level
may affect the performance of our approach. Therefore, we use an adaptive LDA technique,
leveraging genetic algorithm (GA), to optimize the value ofK in each abstraction level. This
approach proposed by Panichella et al. is referred to as LDA-GA (Panichella et al. 2013).

At the beginning, a population of p randomly-generated chromosomes is initialized by
LDA-GA, where each of chromosome contains a random integer value corresponding to the
number of topics. Then, the population will evolve in n generations to search for an optimal
value of the number of topics. The population is evolved relying on a fitness function which
corresponds to the Silhouette coefficient. The Silhouette coefficient is a common evaluation
metric for measuring the goodness of a clustering result (Panichella et al. 2013; Rousseeuw
and Kaufman 1990; Sander et al. 1998; Hotho et al. 2002). In LDA-GA, documents are
clustered according to the topics inferred by LDA, where documents assigned to the same
topic are grouped in the same cluster. From these clusters of documents, three steps are
performed to compute the Silhouette coefficient:

1. Step 1: For a document di , we calculate the maximum distance from di to the other
documents in the same cluster, which is denoted as a(di). And we calculate the mini-
mum distance from di to the centroids of the other clusters not containing di , which is
denoted as b(di).

2. Step 2: Given a(di) and b(di), we can calculate the Silhouette coefficient s(di) for the
document di according to the following formula:

s(di) = b(di) − a(di)

max{a(di), b(di)}
3. Step 3: We compute the mean value of all s(di) as the overall Silhouette coefficient.

The range of the Silhouette coefficient is [−1, 1]. A larger value of the Silhouette coef-
ficient indicates a better clustering. When a high Silhouette coefficient is achieved for a
particular value of the number-of-topic parameter of LDA, it means that the particular
parameter value leads to a good result. The higher Silhouette coefficient is achieved using a
particular parameter value, the more likely the parameter value is kept in the genetic algo-
rithm (GA)’s evolution process. For each abstraction level, we perform LDA-GA once to
find a suitable number of topics.

The original implementation of LDA-GA is written in R and it runs rather slowly. Thus,
we reimplement LDA-GA approach on the top of Pyevolve,3 an evolutionary computation
framework. By default, we set p as 100 and n as 50 and Pyevolve’s crossover and mutation

2http://tartarus.org/martin/PorterStemmer/
3http://pyevolve.sourceforge.net/

http://tartarus.org/martin/PorterStemmer/
http://pyevolve.sourceforge.net/
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rate to be 0.09 and 0.02, respectively, as we empirically find that the values of these param-
eters do not make a big difference to the performance of our approach. For the mutation
operator, we use random mutation. For each gene, with a certain probability, it randomly
swaps the gene with another double value in the range of zero to one. For the crossover
operator, we use the single point crossover operator. This operator processes pairs of chro-
mosomes, for each pair, with a certain probability, it randomly picks a gene from a parent
chromosome and swaps that gene and the subsequent ones with corresponding genes from
the other parent chromosome. For each abstraction level, we execute LDA-GA to generate
an optimal value of number of topics. We set different search ranges for each abstraction
level. For example, let us assume that there are L levels in an abstraction hierarchy. For the
first level, we set the search range to be integers in the interval [2, D

L
] where D refers to the

total number of documents in the data set. We set the search range as such since we assume
there should be at least 2 and at mostD topics (i.e., each document belongs to its own topic).
Let us assume that we get an optimal result t1 for this range. For the second level, we set the
range to be integers in [t1, 2D

L
] and get the optimal number of topics t2. The process repeats

for the subsequent levels. Finally, for the Lth level, we set the search range in [tL−1,D],
and get the best number of topics tL for this last level. This set of L topic numbers is then
output to the hierarchy creation step.

3.4 Hierarchy Creation Step

In the hierarchy creation step, we apply LDA a number of times to create the abstraction
hierarchies with the number of topics inferred by the topic number tuning step. These L

abstraction levels form an abstraction hierarchy H . Topic models with fewer topics are
higher in the hierarchy while those with more topics are lower in the hierarchy. We refer
to the number of topic models contained in a hierarchy as the height of the hierarchy. At
the end of this step, we create an abstraction hierarchy which is used in the next step:
multi-abstraction retrieval.

3.5 Multi-Abstraction Retrieval

In this subsection, we discuss how to combine an abstraction hierarchy with a text retrieval
model (i.e., VSM). A retrieval method takes a query (i.e., a bug report) and returns a sorted
list of most similar documents in a corpus (i.e., methods).

In standard VSM, a document is represented as a vector of weights. Each element in
a vector corresponds to a word, and its value is the weight of the word. Term frequency-
inverse document frequency (tf−idf ) is often used to assign weights to words (Manning
et al. 2008). The following is the tf−idf weight of word w in document d given a corpus
(i.e., a set of documents) D, denoted as tf−idf(w, d,D):

tf−idf (w, d,D) = log(f (w, d) + 1) × log
|D|

|{di ∈ D|w ∈ di}|
where f (w, d) is the number of times word w appears in document d, and w ∈ di denotes
that word w appears in document di . Given a query document q, standard VSM retrieval
model would return the most similar documents in the corpus D. Similarity between two
documents is measured by computing the cosine similarity between the two documents’
vector representations (Manning et al. 2008).

To combine the abstraction levels and VSM, the basic method we used is combine
the topic distributions of the abstraction levels and standard VSM model into one vector
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(MULABbasic). We also investigate several data fusion methods to identify a better per-
forming strategy. We introduce MULABbasic and data fusion methods in the following
paragraphs.

3.5.1 MULABbasic

In MULABbasic, we integrate abstraction hierarchy into standard VSM by extending the
vector that represents a document. We added more elements to the vector. Each added ele-
ment corresponds to a topic of a topic model in the abstraction hierarchy, and its value is the
probability of the topic to appear in the document. The size of an extended document vector

is V +
L∑

i=1
K(Hi), where V is the size of the original document vector, L is the number of

abstraction levels in the hierarchy, and K(Hi) is the number of topics of the ith topic model
in the abstraction hierarchy H . Based on this representation, the similarity between a query
q and document d, considering a corpus D, calculated using cosine similarity, is as follows:

sim(q, d,D) =
V∑

i=1
tf−idf (wi, q,D) × tf−idf (wi, d, D) +

L∑

k=1

K(Hk)∑

i=1
θ

Hk
q,ti

× θ
Hk

d,ti

‖q‖ × ‖d‖
where

‖q‖ =
√
√
√
√

V∑

i=1

tf−idf (wi, q,D)2 +
L∑

k=1

K(Hk)∑

i=1

(
θ

Hk
q,ti

)2

and

‖d‖ =
√
√
√
√

V∑

i=1

tf−idf (wi, d,D)2 +
L∑

k=1

K(Hk)∑

i=1

(
θ

Hk

d,ti

)2

In the above equations, θ
Hk

d,ti
is the probability of topic ti to appear in the document d as

assigned by the kth topic model in the abstraction hierarchy H .
For example, assuming that a bug report br after text preprocessing has the

following 7 words: “source”(3), “control”(2), “activity”(2), “reduce”(2), “tool”(1),
“root”(1), “list”(1). We also have two methods m1 and m2. Each of them con-
tains 5 words: m1 ={“source”(7), “control”(4), “activity”(3), “root”(7), “list”(1)} and
m2 ={“source”(10), “control”(10), “reduce”(5), “tool”(4), “root”(6)}. The number in
parentheses is the number of times a word appears in a document. Let us assume that an
abstraction hierarchy of height 1 is used, and the topic model has 3 topics. Let us also
assume that there are 1000 methods, and terms inm1 andm2 do not appear in other methods.
Considering only the 7 words, the representative vectors of br , m1, and m2 are:

Vbr = [1.62, 1.29, 1.43, 1.43, 0.90, 0.81, 0.90, 0.26, 0.72, 0.02]
Vm1 = [2.44, 1.89, 1.81, 0.00, 0.00, 2.44, 0.90, 0.00, 0.99, 0.00]
Vm2 = [2.81, 2.81, 0.00, 2.33, 2.10, 2.28, 0.00, 0.57, 0.43, 0.00]

The first 7 entries in each vector are the weights of the 7 words computed using the tf−idf
formula, and the last 3 entries are the rounded probabilities θ

H1
d,ti

of topics 1, 2 and 3 respec-
tively in the documents. Finally, we calculate cosine similarities between bug report br and
methods m1 and m2. The results are sim(br,m1) = 0.82 and sim(br,m2) = 0.84. Thus,
m2 is more relevant to bug report br than m1.
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Table 1 An example of using
data fusion methods Method ID Sim1(VSM) Sim2 (Level1) Sim3 (Level2)

1 0.4 0.8 0

2 0.6 0.1 0.7

3 0 0.5 0.3

3.5.2 Data Fusion Methods

MULABbasic described in the last subsection integrates abstraction levels and standard
VSM into one vector to compute the similarity; in this subsection, we try to combine several
abstraction levels and standard VSM by using a number of data fusion methods. We inves-
tigate six well-known unsupervised data fusion methods: CombANZ (Shaw and Fox 2014;
Joseph 1997; Fox et al. 1992), Max, Min, CombMNZ (Shaw and Fox 2014; Joseph 1997;
Fox et al. 1992), CombSUM (Shaw and Fox 2014; Joseph 1997; Fox et al. 1992), and Borda
count (Aslam and Montague 2001). These six are classical data fusion methods mentioned
in the book Data Fusion in Information Retrieval (Wu 2012), which is an authoritative ref-
erence material on the topic. Among the six, Borda count is a ranking-based method, and
while the others are score-based methods.

We use the example shown in Table 1 to illustrate how each method works. Let us assume
that there are 3 methods and an abstraction hierarchy of height 2 is used. We calculate the
cosine similarity scores between concerns and methods by VSM model vector, level1 topic
distribution vector, and level2 topic distribution vector respectively. For each pair of concern
and method, we can calculate three scores using VSM and the topic models: Sim1 (simi-
larity calculated using VSM), Sim2 (similarity calculated using level 1 topic model), Sim3
(similarity calculated using level 2 topic model). Next, the following data fusion methods
are used to combine the similarity scores. As the ranking lists produced by each of the com-
ponents are typically different, data fusion methods are used to integrate the scores from
different components. Data fusion methods can reduce the weakness of each single compo-
nent by leveraging the strengths of other components (Xuan and Monperrus 2014; Ye et al.
2014; Xia and Lo 2017; Xia et al. 2015; Binkley and Lawrie 2014). By combining the scores
or ranks assigned to methods by different components, the most relevant ones are likely to
be ranked higher in the final ranking list.

1. CombANZ: This method combines the similarity scores by computing the average of
the non-zero scores. Let mj denotes the j th method and Si denotes the ith similarity
score. The ith similarity score assigned to methods mj is denoted as Si(mj ). Sup-
pose there are n set of similarity scores and nej

denotes the number of non-zero scores
assigned to mj , CombANZ calculates the new score for mj as follows:

Score(mj ) = 1/nej
×

n∑

i=1

Si(mj )

Example Based on Table 1, the set of new similarity scores of Method 1 to 3 would be
{ 1.22 , 1.4

3 , 0.8
2 } = {0.6, 0.47, 0.4}.

Before using CombANZ, we can choose to do Zero-One score normalization or not, then we
have two variants based on CombANZ: COMBANZ-DEF (normalization), COMBANZ-NO

(nonnormalized).
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2. Max: This method combines the similarity score sets by selecting the maximum one as
the final score of each method in project.

Example Based on Table 1, the set of new similarity scores of Method 1 to 3 would be
{0.8, 0.7, 0.5}.

Before using Max, we can choose to do Zero-One score normalization or not, then we have
two variants based on Max: MAX-DEF (normalization), MAX-NO (nonnormalized).

3. Min:Min combines the similarity score sets by selecting the minimum one as the final
score of each method in project.

Example Based on Table 1, the set of new similarity scores of Method 1 to 3 would be
{0, 0.1, 0}.

Before using Min, we can choose to do Zero-One score normalization or not, then we
have two variants based on Min: MIN-DEF (normalization), MIN-NO (nonnormalized).

4. CombMNZ: CombMNZ combines the similarity scores by multiplying the summation
of all scores for a given method with the number of non-zero scores assigned to the
method. Let mj denotes the j th method and Si denotes the ith similarity score. The
ith similarity score assigned to methods mj is denoted as Si(mj ). Suppose there are n

set of similarity scores and nej
denotes the number of non-zero scores assigned to mj ,

CombMNZ calculates the new score for mj as follows:

Score(mj ) = nej
×

n∑

i=1

Si(mj )

Example Based on Table 1, the set of new similarity scores of Method 1 to 3 would be
{1.2 × 2, 1.4 × 3, 0.8 × 2} = {2.4, 4.2, 1.6}.

Before using CombMNZ, we can choose to do Zero-One score normalization or
not, then we have two variants based on CombMNZ: COMBMNZ-DEF (normalization),
COMBMNZ-NO (nonnormalized).

5. CombSUM: This method combines different similarity score sets by simply summing
up their scores. This method assumes that the similarity scores produced by VSM and
abstraction hierarchy are equally important.

Example Based on Table 1, the set of new similarity scores of Method 1 to 3 would be
{1.2, 1.4, 0.8}.

Before using CombSUM, we can choose to do Zero-One score normalization or
not, then we have two variants based on CombSUM: COMBSUM-DEF (normalization),
COMBSUM-NO (nonnormalized).

6. Borda count: Borda count converts the similarity scores that are assigned to each
method by VSM and abstraction hierarchy into ranks – methods with higher scores
would obtain smaller ranks. For each method, Borda count sums up the ranking points
of a method computed using VSM and topic models. The ranking point of a method
is defined as the substraction of the method’s rank in the list from the total number of
methods in the project.
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Let mj denotes the j th method and ri(mj ) denotes the rank of method mj produced
by ith similarity score set. Also, letM denotes the number of methods and n denotes the
number similarity score sets. Borda count calculates the new score for program element
mj as follows:

Score(mj ) =
n∑

i=1

(M − ri(mj ))

Example Table 2 shows the ranking points for each method in Table 1 given by VSM and
abstraction hierarchy. Based on the summation of their ranking points, the set of new scores
for Method 1 to 3 would be {3, 4, 2}.

When using Borda count, whether we do Zero-One score normalization or not, the
calculated ranking points are the same, so we only have one variant: BORDA.

4 Experiment and Analyses

In this section, we evaluate the effectiveness of the 12 variants of MULAB and compare it
with other approaches.

4.1 Dataset

We use datasets from 9 open source Java software systems (including two versions of one
of these systems, namely jEdit) for our experimentation. In the datasets, there are totally
175 concerns which map to 501 methods. The Java systems are the same as those used by
Scanniello et al. (2015). In our experiment, the content of a concern is the textual description
retrieved from the title and description of a bug report or a change request.

Each Java method is treated as a document, and all of the Java methods form a corpus.
Table 3 shows the statistics of the data sets used in the experiment after preprocessing.
The first column shows the names of the software systems and the URLs of their official
web pages. The analyzed version of each system and the number of classes are reported in
the second and third columns, respectively. The total number of methods in each system is
shown in the fourth column, while the fifth column presents the number of concerns used in
the study. The number of relevant methods is shown in the sixth column. A short description
of each system is presented in the last column.

4.2 Evaluation Metrics

Concern localization takes a bug report and a collection of methods as input, and returns a
ranked list of these methods. We use two performance metrics to evaluate a concern local-
ization solution: effectiveness and rank, which are commonly used for concern localization

Table 2 Example of ranks and
ranking points given by Sim1
(VSM), Sim2 (Level1), and Sim3
(Level2)

Method ID Ranks Ranking points

1 2, 1, 3 1, 2, 0

2 1, 3, 1 2, 0, 2

3 3, 2, 2 0, 1, 1
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studies (Scanniello et al. 2015; Scanniello and Marcus 2011; Gay et al. 2009; Poshyvanyk
et al. 2007) and used to evaluate our baseline approach PR.

Effectiveness refers to the position of the first relevant method in the returned ranked list.
Once such a method is reached, developers can determine what other methods need to be
changed by analyzing the relationships between the methods. Rank refers to the positions of
all the relevant methods in the returned ranked list. For each data set, we report the positions
of all the relevant methods of all the concerns when rank is used as a yardstick. Effectiveness
and rank nicely complement each other; in fact, effectiveness gives us a best case scenario
when an ideal user is performing a concern localization task. Conversely, rank indicates the
total effort needed to identify all relevant methods for a given concern by following the
ranked list (i.e., a worst case scenario). The lower the effectiveness and rank values, the
better a concern localization technique is.

4.3 Research Questions

Research Question 1: What is the best variant and parameter setting ofMULAB?

Motivation In this research question, we want to investigate the effectiveness of the 12
variants of MULAB: MULABbasic, COMBANZ-NO, COMBANZ-DEF, BORDA, MAX-
NO, MAX-DEF, MIN-NO, MIN-DEF, COMBMNZ-NO, COMBMNZ-DEF, COMBSUM-
NO, COMBSUM-DEF, and choose the best performing variant. Then we also investigate
the best parameter considering a range of model height for the best performing variant.

Approach To answer this research question, we report the results obtained by applying
the 12 variants of MULAB to our dataset mentioned in Section 4.1. The 12 variants of
MULAB takes in one parameterLwhich is the height of the abstraction hierarchy. First, we
set L to be 4, and compute the effectiveness and rank scores of the 12 variants for each con-
cern and calculate the number of concerns for which each of the approach outperforms (or
achieves the same scores as) the others. Second, we conduct an experiment with six differ-
ent hierarchy heights (i.e., L = 1, 2, 3, 4, 5 and 6). We then compare the results achieved by
the best performing variant using these different hierarchy heights in terms of effectiveness
and rank scores.

To check if the differences in the performance of two approach are statistically signifi-
cant, we apply the Wilcoxon signed-rank test (Wilcoxon 1945) at 95% significance level on
two paired data of all the 175 concerns. We also use Cliffs delta (δ) (Cliff 2014), which is
a non-parametric effect size measure that quantifies the amount of difference between two
approaches. The delta values range from -1 to 1, where δ = −1 or 1 indicates the absence
of overlap between two approaches (i.e., all values of one group are higher than the values
of the other group, and vice versa), while δ = 0 indicates the two approaches are com-
pletely overlapping. Table 4 describes the meaning of different Cliffs delta values and their
corresponding interpretation (Cliff 2014).

Table 4 Cliffs delta and the
effectiveness level (Cliff 2014) Cliffs Delta(|δ|) Effectiveness level

|δ| < 0.147 Negligible

0.147 ≤ |δ| < 0.33 Small

0.33 ≤ |δ| < 0.474 Medium

|δ| ≥ 0.474 Large
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Table 5 Overall data analysis results of 9 datasets on effectiveness and rank scores of 12 variants of
MULAB

Effectiveness Rank P-value

System #Wins #Loses #Draws #Wins #Loses #Draws Effectiveness Rank

MULABbasic 37 137 1 104 393 4 0.020 0.319

COMBANZ-NO 27 147 1 68 429 4 6.814e-07 2.351e-07

COMBANZ-DEF 29 145 1 89 408 4 4.773e-05 8.997e-05

BORDA 34 140 1 78 419 4 0.001 1.4e-10

MAX-NO 25 149 1 61 436 4 6.276e-09 4.891e-07

MAX-DEF 41 133 1 110 387 4 0.008 0.642

MIN-NO 45 129 1 100 397 4 0.0004 9.099e-12

MIN-DEF 35 139 1 70 427 4 0.0002 3.508e-13

COMBMNZ-NO 41 133 1 94 403 4 1.488e-05 1.104e-07

COMBMNZ-DEF 44 130 1 118 379 4 NA NA

COMBSUM-NO 33 141 1 76 421 4 7.281e-06 2.861e-07

COMBSUM-DEF 37 137 1 84 413 4 0.0005 0.004

#Wins = Number of concerns and methods for which a variant outperforms the others, #Loses = Number
of concerns and methods for which a variant loses from another variant, #Draws = Number of concerns
and methods for which all variants perform equally well. We also report the p-value of COMBMNZ-DEF

compared with other variants, thus there’s no values for COMBMNZ-DEF when compared with itself

Results Tables 5 presents the effectiveness and rank results of the 12 variants of MULAB,
we report the overall results of the 9 datasets here, and the detailed results will show in the
Appendix A. For each variant, we report the number of wins, loses, and draws for all the
9 Java systems. Wins, loses, and draws represent the number of concerns4 or methods5 for
which a variant performs the best, performs worse than another, and performs as well as
the others, respectively. “Draws” means the 12 variants achieve the same effectiveness/rank
score for the concern/method, and there is no best variant on this concern/method.

From the 12 tables, we can see that among the 175 concerns, MULABbasic performs the
best on 37 concerns, and 4 variants perform better than MULABbasic in terms of effective-
ness: MAX-DEF, MIN-NO, COMBMNZ-NO, and COMBMNZ-DEF, 1 variant performs
as well as MULABbasic: COMBSUM-DEF. MIN-NO performs the best among the 12
variants, which wins on 45 concerns. Among the 501 methods, when evaluated by rank,
MULABbasic wins on 104 methods, and 2 variants perform better than MULABbasic:
MAX-DEF and COMBMNZ-DEF. COMBMNZ-DEF performs the best among the 12
variants, which wins on 118 methods. When considering both effectiveness and rank,
MAX-DEF and COMBMNZ-DEF perform better than MULABbasic, and COMBMNZ-
DEF performs better than MAX-DEF. Wilcoxon sign-rank test shows that the difference in
the effectiveness scores of COMBMNZ-DEF compared with other variants are statistically
significant at p-value of < 0.05, and the difference in the rank scores of COMBMNZ-
DEF compared with other variants are statistically significant at p-value of < 0.05 except
MULABbasic and MAX-DEF.

4When effectiveness is used as a yardstick
5When rank is used as a yardstick
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Then, we conduct an experiment on COMBMNZ-DEF with six different hierarchy
heights (i.e.,L = 1, 2, 3, 4, 5 and 6). The experiment results are shown in Tables 6a, b and 7a,
b. For each hierarchy height, we report the number of wins, loses, and draws for each Java
system. Wins, loses, and draws represent the number of concerns6 or methods7 for which
a variant of COMBMNZ-DEF (with a given hierarchy height) outperforms the other vari-
ants, loses to another variant, and perform equally well as the other variants, respectively.
We also report the overall results in the last row.

Table 6a and b shows the data analysis results on effectiveness scores of COMBMNZ-
DEF with different hierarchy heights (L=1,2,3,4,5,6). From the table, we can see that
the variant of COMBMNZ-DEF with L set to 6 outperforms the others. Among the 175
concerns, COMBMNZ-DEF with L=6 performs the best on 53 concerns, COMBMNZ-
DEF with L=5 performs the best on 45 concerns, COMBMNZ-DEF with L=4 performs
the best on 48 concerns, COMBMNZ-DEF with L=3 performs the best on 28 concerns,
COMBMNZ-DEF with L=2 performs the best on 22 concerns, and COMBMNZ-DEF with
L=1 performs the best on 20 concerns. The effectiveness scores are the same for 13
concerns.

Table 7a and b shows the data analysis results on rank scores of COMBMNZ-DEF

with different hierarchy heights (L=1,2,3,4,5,6). From the table, we can see that the vari-
ant of COMBMNZ-DEF with L set to 6 outperforms the others. Among the 501 methods,
COMBMNZ-DEF with L=6 performs the best on 117 methods, COMBMNZ-DEF with
L=5 performs the best on 107 methods, COMBMNZ-DEF with L=4 performs the best on
109 methods, COMBMNZ-DEF with L=3 performs the best on 84 methods, COMBMNZ-
DEF with L=2 performs the best on 84 methods, and COMBMNZ-DEF with L=1 performs
the best on 73 methods. The ranks scores are the same for 41 methods.

Though COMBMNZ-DEF with L=6 outperforms the other five in terms of effective-
ness and rank, it needs longer time to train the model. Across the 9 data sets, we need
about 254 minutes to train the model COMBMNZ-DEF with L=4, and 402 minutes to
train the model COMBMNZ-DEF with L=6. We have performed a Wilcoxon signed-
rank test at 95% significance level and found that the difference in the training time is
significant with a p-value of < 0.001, which means the time efficiency of COMBMNZ-
DEF with L=4 is significantly better than COMBMNZ-DEF with L=6. Then we compare
the effectiveness and rank scores of COMBMNZ-DEF with L=4 and COMBMNZ-DEF

with L=6. Wilcoxon sign-rank test shows that the difference in the effectiveness scores
is not statistically significant at p-value of 0.076, the Cliff’s delta is 0.025, which cor-
responds to a negligible effect size. And Wilcoxon sign-rank test also shows that the
difference in the rank scores is significant at p-value of 0.001, but the Cliff’s delta is
0.018, which corresponds to a negligible effect size. So we can draw the conclusion
that the height L=4 is the best choice when considering both performance and time
efficiency.

6When effectiveness is used as a yardstick
7When rank is used as a yardstick
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Table 6 Data analysis results on effectiveness scores of COMBMNZ-DEF with different hierarchy heights
(L=1,2,3,4,5,6)

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws

(a) L=1,2,3

L=1 L=2 L=3

Art of illusion 1 7 0 1 7 0 2 6 0

aTunes 2 12 2 1 13 2 2 12 2

jEdit4.2 2 13 1 3 12 1 3 12 1

jEdit4.3 0 2 2 1 1 2 0 2 2

Cocoon 2 8 4 2 8 4 2 8 4

Derby 4 25 0 4 25 0 6 23 0

Lucene 2 19 3 2 19 3 3 18 3

OpenJPA 2 23 0 4 21 0 4 21 0

Eclipse 5 33 1 4 34 1 6 32 1

Overall 20 142 13 22 140 13 28 134 13

(b) L=4,5,6

L=4 L=5 L=6

Art of illusion 2 6 0 1 7 0 2 6 0

aTunes 4 10 2 4 10 2 5 9 2

jEdit4.2 5 10 1 6 9 1 4 11 1

jEdit4.3 2 0 2 1 1 2 2 0 2

Cocoon 3 7 4 3 7 4 4 6 4

Derby 9 20 0 7 22 0 10 19 0

Lucene 7 14 3 8 13 2 6 15 3

OpenJPA 8 17 0 7 18 0 10 15 0

Eclipse 8 30 1 8 30 1 10 28 1

Overall 48 114 13 45 117 13 53 109 13

#Wins = Number of concerns for which a variant of COMBMNZ-DEF outperforms the others, #Loses =
Number of concerns for which a variant COMBMNZ-DEF loses from another variant, #Draws = Number of
concerns for which all variants perform equally well

Research Question 2: How much improvement could the best performing variant
achieve over its components (i.e., VSM and topic models)?

Motivation We need to compare the best performing variant COMBMNZ-DEF with its
components (i.e., VSM and topic models) to show whether MULAB with a data fusion
method performs better than its constituent components. Answer to this research question
shows the benefit of COMBMNZ-DEF over its components.

Approach To answer this research question, we report the results obtained by applying
COMBMNZ-DEF to our dataset mentioned in Section 4.1, and we also report the results
of VSM model and each abstraction levels before using data fusion method CombMNZ, to
investigate the performance of each component. The method COMBMNZ-DEF takes in one
parameter L which is the height of the abstraction hierarchy. For this RQ, we set L to be
4. We compute the effectiveness and rank scores of COMBMNZ-DEF, VSM model and 4
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Table 7 Data analysis results on rank scores of COMBMNZ-DEF with different hierarchy heights
(L=1,2,3,4,5,6)

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws

(a) L=1,2,3

L=1 L=2 L=3

Art of illusion 1 11 0 2 10 0 2 10 0

aTunes 3 22 5 4 21 5 5 20 5

jEdit4.2 3 28 2 3 28 2 6 25 2

jEdit4.3 0 7 2 2 5 2 1 6 2

Cocoon 4 22 12 8 18 12 5 21 12

Derby 14 64 2 13 65 2 17 61 2

Lucene 20 79 13 19 80 13 15 84 13

OpenJPA 11 61 2 13 59 2 10 62 2

Eclipse 17 93 3 20 90 3 23 87 3

Overall 73 387 41 84 376 41 84 376 41

(b) L=4,5,6

L=4 L=5 L=6

Art of illusion 3 9 0 2 10 0 3 9 0

aTunes 7 18 5 8 17 5 9 16 5

jEdit4.2 9 22 2 8 23 2 10 21 2

jEdit4.3 4 3 2 3 4 2 3 4 2

Cocoon 7 19 12 7 19 12 8 18 12

Derby 19 59 2 19 59 2 20 58 2

Lucene 22 77 13 24 75 13 25 74 13

OpenJPA 16 56 2 15 57 2 16 56 2

Eclipse 22 88 3 21 89 3 23 87 3

Overall 109 351 41 107 353 41 117 343 41

#Wins = Number of methods for which a variant of COMBMNZ-DEF outperforms the others, #Loses =
Number of methods for which a variant COMBMNZ-DEF loses from another variant, #Draws = Number of
methods for which all variants perform equally well

abstraction levels (i.e., topic models) for each concern and calculate the number of concerns
for which each of the approach outperforms (or achieves the same scores as) the others.

Results Tables 8 presents the effectiveness and rank results of COMBMNZ-DEF, VSM
model, and 4 abstraction levels, we report the overall results of the 9 datasets here, and the
detailed results will show in the Appendix B. For each method,we report the number of wins,
loses, and draws for all the 9 Java systems. Wins, loses, and draws represent the number of
concerns8 or methods9 for which a method performs the best, performs worse than another,
and performs as well as the others, respectively. One approach wins on a concern when it
performs better than all other 5 approaches, and it loses on a concern as long as one or more
approaches perform better than it. So it normal that the number of #loses>#wins.

8When effectiveness is used as a yardstick
9When rank is used as a yardstick
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Table 8 Overall data analysis results of 9 datasets on effectiveness and rank scores of COMBMNZ-DEF and
its components

Effectiveness Rank P-value

System #Wins #Loses #Draws #Wins #Loses #Draws Effectiveness Rank

COMBMNZ-DEF 66 100 9 138 336 27 NA NA

VSM (Sim1) 23 143 9 52 422 27 0.075 0.022

level 1 (Sim2) 32 134 9 79 395 27 6.299e-06 0.0006

level 2 (Sim3) 23 143 9 61 413 27 0.0003 0.014

level 3 (Sim4) 37 129 9 101 373 27 0.002 0.001

level 4 (Sim5) 38 128 9 101 373 27 2.753e-05 7.092e-07

#Wins = Number of concerns and mothods for which COMBMNZ-DEF or a component outperforms the
others, #Loses = Number of concerns and methods for which COMBMNZ-DEF or a component loses from
another component, #Draws = Number of concerns for which all methods perform equally well. We also
report the p-value of COMBMNZ-DEF compared with its components

From the 6 tables, we can see that among the 175 concerns, COMBMNZ-DEF per-
forms the best on 66 concerns, which is better than its five components. Among the 501
methods, when evaluated by rank, COMBMNZ-DEF wins on 138 methods, which is also
better than its 5 components. So we can draw the conclusion that COMBMNZ-DEF out-
performs its 5 components (VSM model and 4 abstraction levels) in terms of effectiveness
and rank. Wilcoxon sign-rank test shows that the difference in the effectiveness scores of
COMBMNZ-DEF compared with other components are statistically significant at p-value
of< 0.05 except VSM, and the difference in the rank scores of COMBMNZ-DEF compared
with other components are statistically significant at p-value of < 0.05.

Research Question 3: How effective is COMBMNZ-DEF compared with
state-of-the-art approach?

Motivation We investigate the effectiveness of COMBMNZ-DEF and compare its results
with those by Scanniello et al. (2015) (PR, from here on). Answer to this research question
would shed light to whether and to what extent COMBMNZ-DEF improves over the state-
of-the-art approach.

Approach To answer this research question, we report the results obtained by applying
COMBMNZ-DEF and PR to our dataset mentioned in Section 4.1. COMBMNZ-DEF takes
in one parameter L which is the height of the abstraction hierarchy. For this RQ, we set L to
be 4. We compute the effectiveness and rank scores of COMBMNZ-DEF and PR for each
concern and calculate the number of concerns for which each of the approach outperforms
(or achieves the same scores as) the other.

To check if the differences in the performance of COMBMNZ-DEF and PR are sta-
tistically significant, we apply the Wilcoxon signed-rank test (Wilcoxon 1945) at 95%
significance level on two paired data of all the 175 concerns which corresponds to the effec-
tiveness and rank scores of two competing approaches respectively. We do not apply the test
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Table 9 Data analysis results on
effectiveness scores of
COMBMNZ-DEF and PR

Systems #Wins #Loses #Draws

Art of illusion 4 4 0

aTunes 9 6 1

jEdit4.2 8 8 0

jEdit4.3 3 1 0

Cocoon 8 2 4

Derby 24 5 0

Lucene 20 4 0

OpenJPA 17 8 0

Eclipse 21 18 0

Overall 114 56 5

#Wins = Number of concerns for
which COMBMNZ-DEF

outperforms PR, #Loses =
Number of concerns for which
COMBMNZ-DEF loses from
PR, #Draws = Number of
concerns for which both
approaches achieve the same
effectiveness scores

to each system as the numbers of concerns in some systems are small (e.g., 4 for jEdit4.3,
8 for Art of Illusion), it makes no sense to do the statistical test. We also use Cliffs delta
(δ) (Cliff 2014) to compare COMBMNZ-DEF with PR. The delta values range from -1 to
1, where δ = −1 or 1 indicates the absence of overlap between two approaches (i.e., all val-
ues of one group are higher than the values of the other group, and vice versa), while δ = 0
indicates the two approaches are completely overlapping.

Results Table 9 presents the analysis results of effectiveness scores of COMBMNZ-DEF

and PR. The second column represents the number of concerns on which COMBMNZ-
DEF achieves better effectiveness scores than PR, the third column indicates the number of
concerns on which PR performs better than COMBMNZ-DEF, and the last column shows
the number of concerns on which COMBMNZ-DEF and PR achieve the same scores. We
also report the overall results of the 9 systems in the last row. The results demonstrate that
COMBMNZ-DEF is more effective than PR on all but two of the Java systems. For two of
the Java systems (i.e., Art of Illusion, jEdit4.2), the results in Table 9 show that COMBMNZ-
DEF and PR perform equally well as they win on the same number of concerns. For Art
of Illusion, COMBMNZ-DEF performs better on 4 concerns and PR performs better on
another 4 concerns. For jEdit4.2, COMBMNZ-DEF performs better on 8 concerns and PR
performs better on another 8 concerns. We look into the concerns in these two Java systems,
find that PR performs better than COMBMNZ-DEF on the concerns which are short, and

Table 10 Data analysis results
on Rank scores of
COMBMNZ-DEF and PR

Systems #Wins #Loses #Draws

Art of illusion 6 6 0

aTunes 18 11 1

jEdit4.2 19 14 0

jEdit4.3 8 1 0

Cocoon 27 6 5

Derby 60 20 0

Lucene 82 30 0

OpenJPA 45 29 0

Eclipse 65 48 0

Overall 330 165 6

#Wins = Number of methods for
which COMBMNZ-DEF

outperforms PR, #Loses =
Number of methods for which
COMBMNZ-DEF loses from PR,
#Draws = Number of methods
for which both approaches
achieve the same rank scores
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contain a mix of code, URL, etc. COMBMNZ-DEF achieves a better performance when
the concerns are relatively long and there is no large semantic gap between concerns and
source code. Among the 175 concerns, COMBMNZ-DEF performs better on 114 concerns,
PR performs better on 56 concerns, and the two approaches achieve the same effectiveness
scores on 5 concerns. We have also performed a Wilcoxon signed-rank test and found that
the difference in the effectiveness scores is significant with a p-value of< 0.001. The Cliff’s
delta is 0.377, which corresponds to a medium effect size.

Table 10 presents the analysis results of rank scores of COMBMNZ-DEF as com-
pared with those of PR. The second column represents the number of methods on which
COMBMNZ-DEF achieves better rank scores than PR, the third column indicates the num-
ber of methods on which PR performs better than COMBMNZ-DEF, and the last column
shows the number of methods on which COMBMNZ-DEF and PR achieve the same scores.
We also report the overall results of the 9 systems in the last row. From the table, we
can see that for the 9 systems, COMBMNZ-DEF performs better than that of the PR. The
results demonstrate that COMBMNZ-DEF outperforms PR on all but one of the Java sys-
tems. For one of the Java systems (i.e., Art of Illusion), the results in Table 10 show that
COMBMNZ-DEF and PR perform equally well as they win on the same number of meth-
ods, COMBMNZ-DEF performs better on 6 methods and PR performs better on another 6
methods. We look into the methods in Art of Illusion, find that COMBMNZ-DEF performs
better when the methods are long, complicated, and contain more different words. But some
methods in Art of Illusion are very short and contain many repeated words, on which PR
achieves a better performance. Among the overall 501 methods, COMBMNZ-DEF performs
better on 330 methods, PR performs better on 165 methods, and the two approaches achieve
the same rank scores on 6 methods. A Wilcoxon signed-rank test shows that the difference
in the rank scores is significant with a p-value of < 0.001. The Cliff’s delta is 0.399, which
corresponds to a medium effect size.

Research Question 4: What is the effect of varying the text used to represent a
concern on COMBMNZ-DEF’s effectiveness?

Motivation By default, we use the text in the summary and description fields of bug
reports and change requests to represent a concern – which is the setting used for RQ1-3
and RQ5. In this research question, we investigate the performance of COMBMNZ-DEF

when we only use text in the summary field and text in the description field independently.
We want to investigate if our default setting is a better option.

Approach To answer this research question, we conduct an experiment with three kinds of
text to represent a concern: default (summary and description), summary only, description
only. COMBMNZ-DEF takes in one parameter L which is the height of the abstraction
hierarchy. For this RQ, we set L to be 4. We compare the effectiveness and rank scores
achieved by COMBMNZ-DEF using each of the three kinds of text.

Results The experiment results are shown in Tables 11 and 12. For each kind of text
(default, summary, or description), we report the number of wins, loses, and draws for each
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Table 11 Data analysis results on effectiveness scores of COMBMNZ-DEF with different kinds of text to
represent a concern

Default Summary Description

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 3 5 0 4 4 0 3 5 0

aTunes 7 8 1 4 11 1 6 9 1

jEdit4.2 8 6 2 4 10 2 5 9 2

jEdit4.3 2 2 0 2 2 0 2 2 0

Cocoon 10 2 2 4 8 2 6 6 2

Derby 10 19 0 15 14 0 9 20 0

Lucene 12 9 3 9 12 3 9 12 3

OpenJPA 10 15 0 10 15 0 9 16 0

Eclipse 16 22 1 14 24 1 11 27 1

Overall 78 88 9 66 100 9 60 106 9

#Wins = Number of concerns for which a kind of text performs the best, #Loses = Number of concerns for
which a kind of text performs worse than another, #Draws = Number of concerns for which all kinds of text
lead to the same score

Java system. Wins, loses, and draws represent the number of concerns10 or methods11 for
which a particular kind of text performs the best, performs worse than another, and performs
as well as the others, respectively. We also report the overall results in the last row.

Table 11 shows the data analysis results on effectiveness scores of COMBMNZ-
DEF using the three kinds of text to represent a concern. From the table, we
can see that the default setting outperforms the others. Among the 175 concerns,
default performs the best on 78 concerns, summary performs the best on 66 con-
cerns, and description performs the best on 60 concerns. The effectiveness scores are
the same for 9 concerns. So we can draw the conclusion that our default configura-
tion (i.e., use both summary and description) outperforms the other two in terms of
effectiveness.

Table 12 shows the data analysis results on rank scores of COMBMNZ-DEF using the
three kinds of text to represent a concern. From the table, we can see that the default setting
outperforms the others. Among the 501 methods, default performs the best on 200 methods,
summary performs the best on 172 methods, and description performs the best on 158 meth-
ods. The rank scores are the same for 21 methods. So we can draw the conclusion that our
default configuration (i.e., use both summary and description) outperforms the other two in
terms of rank.

10When effectiveness is used as a yardstick
11When rank is used as a yardstick
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Table 12 Data analysis results on rank scores of COMBMNZ-DEF with different kinds of text to represent
a concern

Default Summary Description

System #Wins #Loses #Draws #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 4 8 0 6 6 0 3 9 0

aTunes 13 15 2 9 19 2 11 17 2

jEdit4.2 16 15 2 8 23 2 10 21 2

jEdit4.3 4 5 0 3 6 0 4 5 0

Cocoon 20 13 5 9 24 5 15 18 5

Derby 29 51 0 36 44 0 22 58 0

Lucene 46 57 9 36 67 9 34 69 9

OpenJPA 30 44 0 25 49 0 25 49 0

Eclipse 38 72 3 40 70 3 34 76 3

Overall 200 280 21 172 308 21 158 322 21

#Wins = Number of concerns for which a kind of text performs the best, #Loses = Number of concerns for
which a kind of text performs worse than another, #Draws = Number of concerns for which all kinds of text
lead to the same score

4.4 Threats to Validity

Threats to internal validity relate to errors in our experiments. We have double checked our
implementations and all the experiment results. Hence, we believe there are minimal threats
to internal validity. Still, there could be errors that we did not notice.

Threats to external validity relate to the generalizability of our results. We have tried to
mitigate this threat by evaluating our approach on concerns from 9 open source software
systems, but there may still exist some other data sets on which our algorithm performs
not so well. The software systems we used in our empirical study were chosen primarily
because of the availability of data and previous studies. Data of these systems were manually
vetted and a part of these systems were also used in previous work (Scanniello et al. 2015;
Scanniello and Marcus 2011; Moreno et al. 2013; Haiduc et al. 2013). Admittedly, the
concerns that we investigate may not sufficiently represent all concerns from all systems.
Finally, our choice of baseline clearly impacts the results. As future work, we plan to study
more baselines.

Threats to construct validity refer to the suitability of our evaluation metrics. We use
effectiveness and rank which are also used by past software engineering studies to evaluate
the effectiveness of concern localization techniques (Scanniello et al. 2015; Scanniello and
Marcus 2011; Gay et al. 2009; Poshyvanyk et al. 2007). Thus, we believe there is little threat
to construct validity.

5 Discussion

5.1 Qualitative Analysis

In the last section, the experiment results show that COMBMNZ-DEF performs better than
other variants in terms of effectiveness and rank. In this subsection, we discuss the results
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further by answering the following questions. We randomly selected three issue reports as
illustrative examples to answer some of the questions. Among the three issue reports, two
are selected from jEdit4.2 (issue 993789 and 1275607) to show different results within
a project and another one is selected from OpenJPA (issue 2010) to represent a different
project. Table 13 shows for each issue report the positions of relevant files in the ranked list
and the similarity scores computed by the 5 components and the 12 variants of MULAB.

Why COMBMNZ-DEF outperforms the other variants?
COMBMNZ-DEF applies score normalization to the 5 components and uses COMBMNZ

as data fusion method. The following paragraphs provide reasons why each of these two are
good choices.

Benefit of score normalization: Some components may produce too big or too small
scores, which may impact the performance of data fusion. After normalization, the scores
of the components are all in range 0-1 which improves the effectiveness of variants that use
this step. From Table 13, we can see that the score normalization method can improve the
data fusion performance in most cases.

Benefit of COMBMNZ: COMBMNZ first sums up all scores for a given method to
balance the difference of the scores, second it multiplies the summation with the num-
ber of non-zero scores. There are two fusion methods that have similar computational
process with COMBMNZ: COMBSUM and COMBANZ. COMBMNZ can enhance the
impact of zero scores when compared with COMBSUM and COMBANZ. For COMB-
SUM, it just sums up all the scores and ignore the existence of zero scores; but zero
score may indicate that this method is not similar with the concern in some aspects. For
COMBANZ, it sums up all scores for a given method and divide the summation with
the number of non-zero scores. The division process will weaken the impact of zero
scores.

Table 13 The positions(similarity scores) in the ranked lists of the relevant methods of 3 issue reports when
using the 5 components and the 12 variants of MULAB

Algorithms Issue report 993789 Issue report 1275607 Isue report 2010

VSM (Sim1) 1(0.358) 144(0.077) 54(0.240)

level 1 (Sim2) 1(0.734) 286(0.073) 32606(0.008)

level 2 (Sim3) 157(0.033) 3992(0.007) 224(0.192)

level 3 (Sim4) 2(0.456) 203(0.027) 28(0.636)

level 4 (Sim5) 1775(0.003) 3547(0.003) 10(0.412)

MULABbasic 1(0.247) 266(0.029) 8(0.269)

COMBANZ-NO 1(0.317) 254(0.037) 2(0.298)

COMBANZ-DEF 1(0.618) 201(0.107) 2(0.534)

BORDA 39(24984) 1180(18748) 1186(174448)

MAX-NO 1(0.734) 540(0.077) 33(0.636)

MAX-DEF 1(1.000) 286(0.305) 59(0.882)

MIN-NO 1054(0.003) 2089(0.003) 2402(0.008)

MIN-DEF 1001(0.006) 2069(0.003) 4068(0.010)

COMBMNZ-NO 1(7.917) 237(0.933) 2(7.452)

COMBMNZ-DEF 1(15.456) 194(2.677) 2(13.340)

COMBSUM-NO 1(1.583) 242(0.187) 2(1.490)

COMBSUM-DEF 1(3.091) 197(0.535) 2(2.668)
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Table 14 The similarity scores of two methods compared with issue report 1275607 when using the 5
components, COMBANZ, and COMBMNZ

Method ID VSM level 1 level 2 level 3 level 4 COMBANZ COMBMNZ

1658 0 0.488 0.294 0.072 0.096 0.237(57th position) 3.797(106th position)

2573 0.363 0.290 0.105 0.009 0.413 0.236(58th position) 5.896(57th position)

To compare COMBMNZ and COMBANZ, we show an example in Table 14. We list the
similarity scores of two methods compared with issue report 1275607 when using the 5
components, COMBANZ, and COMBMNZ. We can see that method 1658 contains 4 non-
zero scores, and method 2573 contains 5 non-zero scores, but the average of non-zero scores
of method 1658 is a little bit bigger than method 2573. When using COMBANZ, method
1658 gets a higher position in the ranked list even though it contains a zero score. However,
when we use COMBMNZ, the multiplication step strengthens the effect of the zero score
for method 1658, and this causes method 2573 to get a higher position than method 1658 in
the ranked list.

Aside from COMBMNZ, COMBSUM, and COMBANZ, we also have BORDA, MIN

and MAX. BORDA, MIN, and MAX are easily impacted by a bad performing component.
For example, MIN chooses the smallest score and ignores others. Thus, if two methods
receive the same minimum score (outputted by a component), MIN cannot differentiate
which method is more similar to the concern. Consider issue report 2010, MIN chooses the
smallest scores 0.008 from the worst component (i.e., level 1) resulting in bad performance.
A similar argument explains the bad performance of MAX. For BORDA, a bad performing
component may return a very large rank C consider issue report 1275607 and 2010 in the
table.

Are MULAB performing better for certain subject systems more than others?
For each of the 9 datasets, the performance of MULAB is similar. MULAB just

performs a little better for dataset Cocoon.
Are MULAB components complementary in their results?
MULAB has several components: VSM and topic models learned using LDA. VSM only

consider the word frequency in the documents and ignore the semantic of words. On the
other hand, LDA can analyze the semantic of words, and abstract documents to different sets
of topics. After combining VSM and LDA, the model is optimized by considering both word
frequency and semantic. Consider the issue report 2010 shown in Table 13, if we only use
VSM, we can get the relevant method at the 54th position in the ranked list, and if we only
use a LDA(level 2), the relevant method is returned at the 224th position in the ranked list.
However, if we fuse the 5 components (VSM and 4 LDA models), MULABbasic can return
the relevant method at the 8th position in the ranked list, while COMBANZ, COMBMNZ,
and COMBSUM can return the relevant method at the 2nd position in the ranked list. This
demonstrates that MULAB components are complementary in their results.

What kinds of concerns are hard to localize by MULAB?
There exist some concerns for which MULAB cannot produce good results. Consider

issue report 2289 from OpenJPA. Figure 2 shows the title and description of issue report
2289. Figure 3 shows the relevant method that need to be modified to resolve the bug
described in issue report 2289. Table 15 shows the positions of this method in the ranked list
produced by the 12 variants of MULAB. From the Figs. 2 and 3, we can see that the text
in the description of issue report 2289 are mostly SQL statements, but the corresponding
method that needs to be modified is written in Java with some English comments. MULAB
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Fig. 2 Issue report 2289 from OpenJPA

cannot perform well for this (as shown in Table 15) and several other concerns for which
semantic gap between text in issue reports and their corresponding methods is large

5.2 Time Efficiency

The efficiency of the algorithm will affect its practical usage. Thus, in this subsection, we
investigate the time efficiency of MULAB with height 4. We use an Intel(R) Core(TM)
i7-6850K 3.60 GHz CPU, 64GB RAM server to run the experiments. We run MULAB
and report the average model training and test time. Model training time refers to the
time taken to tune the topic numbers and create hierarchy. Test time refers to the time
taken for MULAB to retrieve similar documents for each concern. The training time of
the 12 variants are the same, as we only need to train the model once. We notice that
the training time of MULAB are reasonable, e.g., on average, we need about 198 min-
utes to tune the topic numbers, 56 minutes to create hierarchy. The testing time of the 12

Fig. 3 Relevant method of issue report 2289



Empir Software Eng

Ta
bl
e
15

T
he

po
si
tio

ns
in

th
e
ra
nk
ed

lis
to

f
th
e
re
le
va
nt

m
et
ho
d
of

is
su
e
re
po
rt
22
89

of
12

va
ri
an
ts
of

M
U
L
A
B

M
U
L
A
B

b
a
s
ic

C
O
M
B
A
N
Z
-N

O
C
O
M
B
A
N
Z
-D

E
F

B
O
R
D
A

M
A
X
-N

O
M

A
X
-D

E
F

Po
si
tio

ns
39
26

13
94
8

66
83

23
68
3

72
41

34
18

M
IN
-N

O
M

IN
-D

E
F

C
O
M
B
M
N
Z
-N

O
C
O
M
B
M
N
Z
-D

E
F

C
O
M
B
S
U
M
-N

O
C
O
M
B
S
U
M
-D

E
F

Po
si
tio

ns
90
58

14
77
7

12
19
7

58
00

13
05
8

61
57



Empir Software Eng

variants are shown in Table 16, for each variant, we report the average testing time of a
concern in the second row, and for all the variants, the average time to retrieve similar doc-
uments for a concern is 2.38 seconds. Notice that the training phase can be done offline
(e.g., overnight) and the model does not need to be updated all the time. The model only
needs to be retrained when large numbers of code changes are made which leads to the
original model being no longer accurate. A trained model can be used to retrieve many
concerns.

6 Related Work

6.1 Concern Localization

Concern localization is an important and recurring step in maintenance of a software system.
We describe some past studies in the following paragraphs. Due to space limitations, our
survey is by no means complete.

Text analysis Wang et al. (2011) evaluate 10 information retrieval techniques and discover
that VSM has the best performance. Rao and Kak also investigate the use of LDA with
VSM (Rao and Kak 2011). However, in their approach, VSM is considered separately from
LDA. The results of the two are combined together using a weighted sum. The performance
of the resulting composite model is worse than that of VSM. In this work, we integrate LDA
and VSM by constructing a single unified vector and we use a hierarchy of topic models; the
resulting approach performs better than Scanniello et al.’s approach, which has been shown
to be better than VSM on the same dataset (Scanniello et al. 2015).

Text and static analysis To improve the accuracy of concern localization, a few hybrid
approaches have been proposed, which combine IR techniques with static program anal-
ysis. Zhao et al. (2006) present a two-phase approach to concern localization, which first
applies an IR technique to identify an initial set of feature-code-unit links based on the
textual description of the concerns and code units, and then enrich the initial links by
exploring program call graph. Similarly, Eaddy et al. (2008) employ pruned dependency
analysis to boost the recall of IR or dynamic-analysis-based approaches. Most recently,
Scanniello et al. (2015) propose a text retrieval-based concern localization technique which
considers the structural relationships between source code documents. They use a link
analysis algorithm PageRank to rank the document space and to improve concern local-
ization. The algorithm uses links (i.e., dependencies) among documents to organize them
into a hierarchical structure. With their technique, source code documents are automatically
ranked with respect to a textual query written by the developer, based on the dependen-
cies and the lexical similarities between the documents. We have shown that our approach
which relies only on textual contents of concerns and methods are able to outperform
the latest approach by Scanniello et al. on a benchmark dataset used by many prior
studies.

Text, static and/or dynamic analysis Aside from text and information gleaned using
static analysis, execution traces have been used to aid concern localization. Liu and Xu
(2007) apply IR-based filtering to rank the methods being executed in a single test scenario.
Dit et al. (2013) define a data fusion model for feature location that integrates differ-
ent types of information to locate features using IR, dynamic analysis, and web mining
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algorithms. Our technique does not consider execution traces since most bug reports and
change requests do not come with execution traces (Sun et al. 2011).

6.2 Search-Based Algorithms in Software Engineering

Search-based algorithms have been used to improve various software engineering activi-
ties. Harman and Jones propose the concept of search-based software engineering and they
demonstrate how to reformulate a SE problem as a search-based problem (Harman and
Jones 2001). Later, Harman et al. provide a review and classification of search-based soft-
ware engineering techniques (Harman et al. 2012). Many search-based algorithms have been
proposed in the literature; we highlight a number of them in the following paragraphs.

Li et al. use various search algorithms including greedy search, hill climbing, and genetic
algorithms for test case prioritization (Li et al. 2007). Canfora et al. construct a classification
model by using multi-objective genetic algorithm for cross-project defect prediction (Can-
fora et al. 2013). Wang et al. propose a search-based approach for clone detection (Wang
et al. 2013). A number of search-based algorithms have been proposed to generate test
cases that satisfy various criteria for various programs (Tonella 2004). Antoniol et al. apply
a genetic algorithm to allocate staff to project teams and to allocate teams to work pack-
age (Antoniol et al. 2004). Gold et al. reformulate concept binding problem (i.e., assigning
the most plausible concept for a source code segment) as a search problem to allow over-
lapping concept boundaries, and genetic and hill climbing algorithms are used to search for
solutions to this problem (Gold et al. 2006).

Mancoridis et al. use a search-based algorithm to group software modules into clus-
ters by minimizing cohesion and maximizing coupling (Mancoridis et al. 1999). Wang et
al. use a genetic algorithm to improve fault localization; their approach analyzes a set of
failing and correct execution traces to locate faulty basic blocks that are root causes of
bugs (Wang et al. 2011a). Goues et al. propose GenProg, which uses genetic algorithm to
automatically repair defects in software projects (Le Goues et al. 2012). Le et al. propose
HDRepair that mines bug fix patterns from version history and subsequently uses genetic
programming to evolve patches for new bugs based on mined fix patterns (Le et al. 2016b).
Le et al. propose to use program logic specifications to evolve a buggy implementation
until a correct patch is found via genetic programming and deductive verification (Le et al.
2016a). More recently, Panichella et al. use genetic algorithm to identify near optimal solu-
tions to customize various stages of an IR process (Panichella et al. 2016). The proposed
approach explores what kinds of character pruning, identifier splitting, stop word removal,
stemming, term weighting, and IR techniques are best to be used. Lohar et al. present a
novel approach to trace retrieval, which utilizes a machine-learning engine to search for the
best configuration given an initial training set of validated trace links (Lohar et al. 2013).
Wang et al. introduce desktop and parallelised cloud-deployed versions of a search-based
solution that finds suitable configurations for empirical studies (Wang et al. 2013). Xia
et al. propose an accurate change classification technique named collective personalized
change classification (CPCC), which leverages a multi-objective genetic algorithm (Xia
et al. 2016b). They also utilize genetic algorithm to do cross-project defect prediction; in
particular, they propose a hybrid model reconstruction approach, named HYDRA, which
contains two phases: genetic algorithm (GA) phase and ensemble learning (EL) phase
(Xia et al. 2016a).

In this work, similar to the above approaches, we also utilize a search-based algorithm.
However, we address a new problem, namely multi-abstraction concern localization. The
approach by Panichella et al. (2016) only considers one level of abstraction.
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7 Conclusion and Future Work

Existing concern localization studies characterize both concerns and code units as a bag of
tokens at one abstraction level. In this study, we propose a multi-abstraction concern local-
ization technique named MULAB which combines a hierarchy of topic models with VSM.
We use genetic algorithm to estimate a near-optimal configuration of the topic models. Our
experiments on 175 concerns from 9 open-source software systems show that our approach
performs better than PR, the state-of-art approach recently proposed by Scanniello et al.
(2015), when evaluated in terms of effectiveness and rank. In the future, we plan to per-
form a deeper analysis on cases where our multi-abstraction approach does not work well,
and improve the effectiveness of our proposed approach further. We also plan to merge
our approach with other advanced text mining solutions, e.g., paraphrase detection, deep
learning, etc., for more optimal performance. What’s more, we plan to investigate some
intermediate data sources like API documents and knowledge from online forums to help to
bridge the semantic gap between issue reports and their corresponding source code methods.
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Appendix: A

Following tables show the detailed experiment results of Research Question 1, each table
presents the effectiveness and rank scores of 1 among the 12 variants of MULAB. For each
variant, we report the number of wins, loses, and draws for each Java system. Wins, loses,
and draws represent the number of concerns12 or methods13 for which a variant outperforms
the other variants, loses from another variant, and performs as well as all the other variants,
respectively. We also report the overall results in the last row.

Table 17 Data analysis results on effectiveness and rank scores of MULABbasic

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 1 7 0 1 11 0

aTunes 5 11 0 11 19 0

jEdit4.2 5 11 0 6 27 0

jEdit4.3 2 2 0 4 5 0

Cocoon 8 6 0 20 18 0

Derby 1 28 0 9 71 0

Lucene 5 18 1 24 84 4

OpenJPA 1 24 0 11 63 0

Eclipse 9 30 0 18 95 0

Overall 37 137 1 104 393 4

12When effectiveness is used as a yardstick
13When rank is used as a yardstick
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Appendix: B

Following tables show the detailed experiment results of Research Question 2, each table
presents the effectiveness and rank scores of COMBMNZ-DEF, VSMmodel, and 4 abstrac-
tion levels. For each method, we report the number of wins, loses, and draws for each Java
system. Wins, loses, and draws represent the number of concerns14 or methods15 for which
a method performs the best, loses from another method, and performs as well as all the other
methods, respectively. We also report the overall results in the last row.

Table 18 Data analysis results on effectiveness and rank scores of COMBANZ-NO

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 3 5 0 3 9 0
aTunes 3 13 0 4 26 0
jEdit4.2 2 14 0 5 28 0
jEdit4.3 1 3 0 1 8 0
Cocoon 7 7 0 15 23 0
Derby 1 28 0 4 76 0
Lucene 5 18 1 15 93 4
OpenJPA 4 21 0 9 65 0
Eclipse 1 38 0 12 101 0
Overall 27 147 1 68 429 4

Table 19 Data analysis results on effectiveness and rank scores of COMBANZ-DEF

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 1 7 0 2 10 0
aTunes 1 15 0 3 27 0
jEdit4.2 3 13 0 6 27 0
jEdit4.3 1 3 0 1 8 0
Cocoon 7 7 0 16 22 0
Derby 4 25 0 10 70 0
Lucene 7 16 1 24 84 4
OpenJPA 1 24 0 4 70 0
Eclipse 4 35 0 23 90 0
Overall 29 145 1 89 408 4

14When effectiveness is used as a yardstick
15When rank is used as a yardstick
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Table 20 Data analysis results on effectiveness and rank scores of MULABBorda

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 1 7 0 1 11 0
aTunes 3 13 0 4 26 0
jEdit4.2 1 15 0 2 31 0
jEdit4.3 3 1 0 5 4 0
Cocoon 3 11 0 10 28 0
Derby 7 22 0 15 65 0
Lucene 8 15 1 16 92 4
OpenJPA 2 23 0 6 68 0
Eclipse 6 33 0 19 94 0
Overall 34 140 1 78 419 4

Table 21 Data analysis results on effectiveness and rank scores of MAX-NO

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 1 7 0 1 11 0

aTunes 4 12 0 8 22 0

jEdit4.2 3 13 0 5 28 0

jEdit4.3 1 3 0 1 8 0

Cocoon 4 10 0 13 25 0

Derby 5 24 0 11 69 0

Lucene 1 22 1 8 100 4

OpenJPA 1 24 0 3 71 0

Eclipse 5 34 0 11 102 0

Overall 25 149 1 61 436 4

Table 22 Data analysis results on effectiveness and rank scores of MAX-DEF

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 2 6 0 2 10 0

aTunes 1 15 0 2 28 0

jEdit4.2 5 11 0 10 23 0

jEdit4.3 1 3 0 2 7 0

Cocoon 6 8 0 14 24 0

Derby 5 24 0 17 63 0

Lucene 8 15 1 22 86 4

OpenJPA 6 19 0 18 56 0

Eclipse 7 32 0 23 90 0

Overall 41 133 1 110 387 4
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Table 23 Data analysis results on effectiveness and rank scores of MIN-NO

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 0 8 0 2 10 0

aTunes 2 14 0 3 27 0

jEdit4.2 3 13 0 4 29 0

jEdit4.3 2 2 0 3 6 0

Cocoon 4 10 0 15 23 0

Derby 8 21 0 13 67 0

Lucene 7 16 1 18 90 4

OpenJPA 11 14 0 15 59 0

Eclipse 8 31 0 27 86 0

Overall 45 129 1 100 397 4

Table 24 Data analysis results on effectiveness and rank scores of MIN-DEF

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 0 8 0 0 12 0

aTunes 3 13 0 6 24 0

jEdit4.2 1 15 0 2 31 0

jEdit4.3 1 3 0 1 8 0

Cocoon 5 9 0 13 25 0

Derby 4 25 0 7 73 0

Lucene 9 14 1 17 91 4

OpenJPA 4 21 0 9 65 0

Eclipse 8 31 0 15 98 0

Overall 35 139 1 70 427 4

Table 25 Data analysis results on effectiveness and rank scores of COMBMNZ-NO

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 3 5 0 3 9 0

aTunes 5 11 0 6 24 0

jEdit4.2 2 14 0 5 28 0

jEdit4.3 1 3 0 1 8 0

Cocoon 8 6 0 16 22 0

Derby 2 27 0 10 70 0

Lucene 5 18 1 21 87 4

OpenJPA 6 19 0 10 64 0

Eclipse 9 30 0 22 91 0

Overall 41 133 1 94 403 4
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Table 26 Data analysis results on effectiveness and rank scores of COMBMNZ-DEF

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 1 7 0 3 9 0

aTunes 2 14 0 4 26 0

jEdit4.2 4 12 0 8 25 0

jEdit4.3 1 3 0 1 8 0

Cocoon 7 7 0 16 22 0

Derby 10 19 0 19 61 0

Lucene 7 16 1 23 85 4

OpenJPA 3 22 0 19 55 0

Eclipse 9 30 0 25 88 0

Overall 44 130 1 118 379 4

Table 27 Data analysis results on effectiveness and rank scores of COMBSUM-NO

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 2 6 0 2 10 0

aTunes 4 12 0 5 25 0

jEdit4.2 1 15 0 5 28 0

jEdit4.3 1 3 0 1 8 0

Cocoon 7 7 0 16 22 0

Derby 2 27 0 5 75 0

Lucene 5 18 1 18 90 4

OpenJPA 5 20 0 9 65 0

Eclipse 6 33 0 15 98 0

Overall 33 141 1 76 421 4

Table 28 Data analysis results on effectiveness and rank scores of COMBSUM-DEF

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 1 7 0 2 10 0

aTunes 2 14 0 4 26 0

jEdit4.2 3 13 0 5 28 0

jEdit4.3 1 3 0 1 8 0

Cocoon 7 7 0 16 22 0

Derby 6 23 0 11 69 0

Lucene 7 16 1 24 84 4

OpenJPA 2 23 0 8 66 0

Eclipse 8 31 0 13 100 0

Overall 37 137 1 84 413 4
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Table 29 Data analysis results on effectiveness and rank scores of COMBMNZ-DEF

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 3 5 0 5 7 0

aTunes 5 10 1 13 15 2

jEdit4.2 6 10 0 11 20 2

jEdit4.3 1 3 0 2 7 0

Cocoon 3 8 3 6 21 11

Derby 15 14 0 29 50 1

Lucene 10 10 4 28 76 8

OpenJPA 9 16 0 22 51 1

Eclipse 14 24 1 22 89 2

Overall 66 100 9 138 336 27

Table 30 Data analysis results on effectiveness and rank scores of VSM model(Sim1)

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 1 7 0 2 10 0

aTunes 3 12 1 3 25 2

jEdit4.2 1 15 0 2 29 2

jEdit4.3 0 4 0 0 9 0

Cocoon 0 11 3 2 25 11

Derby 5 24 0 8 71 1

Lucene 3 17 4 10 94 8

OpenJPA 4 21 0 10 63 1

Eclipse 6 32 1 15 96 2

Overall 23 143 9 52 422 27

Table 31 Data analysis results on effectiveness and rank scores of abstraction level 1 (Sim2)

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 2 6 0 3 9 0

aTunes 2 13 1 4 24 2

jEdit4.2 1 15 0 4 27 2

jEdit4.3 2 2 0 3 6 0

Cocoon 4 7 3 8 19 11

Derby 6 23 0 15 64 1

Lucene 5 15 4 18 86 8

OpenJPA 5 20 0 13 60 1

Eclipse 5 33 1 11 100 2

Overall 32 134 9 79 395 27
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Table 32 Data analysis results on effectiveness and rank scores of abstraction level 2 (Sim3)

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 0 8 0 1 11 0

aTunes 1 14 1 2 26 2

jEdit4.2 1 15 0 2 29 2

jEdit4.3 2 2 0 4 5 0

Cocoon 1 10 3 2 25 11

Derby 5 24 0 10 69 1

Lucene 5 15 4 12 92 8

OpenJPA 3 22 0 9 64 1

Eclipse 5 33 1 19 92 2

Overall 23 143 9 61 413 27

Table 33 Data analysis results on effectiveness and rank scores of abstraction level 3 (Sim4)

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 1 7 0 3 9 0

aTunes 3 12 1 5 23 2

jEdit4.2 4 12 0 7 24 2

jEdit4.3 1 3 0 2 7 0

Cocoon 3 8 3 6 21 11

Derby 6 23 0 18 61 1

Lucene 7 13 4 24 80 8

OpenJPA 5 20 0 13 60 1

Eclipse 7 31 1 23 88 2

Overall 37 129 9 101 373 27

Table 34 Data analysis results on effectiveness and rank scores of abstraction level 4 (Sim5)

Effectiveness Rank

System #Wins #Loses #Draws #Wins #Loses #Draws

Art of illusion 2 6 0 2 10 0

aTunes 2 13 1 4 24 2

jEdit4.2 4 12 0 6 25 2

jEdit4.3 0 4 0 1 8 0

Cocoon 2 9 3 4 23 11

Derby 7 22 0 20 59 1

Lucene 6 14 4 20 84 8

OpenJPA 7 18 0 18 55 1

Eclipse 8 30 1 26 85 2

Overall 38 128 9 101 373 27
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