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Abstract. This paper deals with a special Hermite-Fejér interpolation
process based at the zeros of generalized Freud polynomials which are
orthogonal with respect to the weight w(z) = |x|°‘67‘”‘ﬁ, z#0, a>
—1, B > 1. We prove its uniform convergence for functions belonging to
a suitable space of functions equipped with a weighted uniform norm.
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1. Introduction

Let w(z) = \x|a6_‘x|ﬂ, x #0, a > —1, B > 1, be a generalized Freud
weight and let {p,,(w)},, be the corresponding sequence of polynomials with
positive leading coefficients and orthonormal in R w.r.t. the weight w. The
zeros of p,,(w) are symmetrical with respect to the origin and lie in the
interval (—am (1 — #) , Um (1 — ﬁ)% where ¢ > 0 and a,, := am(w) ~
m?¥ is the so-called Maskar-Rakmanov-Saff number (M-R-S number). We
denote by xp, k = 1,2,..., L%J, the positive zeros of p,,(w) and by z_p,
k=1,2,..., L%J , the corresponding negative ones (|a| stands for the largest
integer smaller than or equal to a € RT). We assume that m is even, then

c c
—am(l—m)<x_%<<$_1<$1<<$%<ayn(l—m)

The Hermite-Fejér polynomial based at these zeros has the form

m

F(w, f2) = Y li(@)vg(@) f (),
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where f is a continuous function on the real axis R (f € C°(R)),

B P (W, )
() = o )@ — )

are the fundamental Lagrange polynomials and
vp(x) =1 =2 1) (zx) (z — z)-

The operator F,,(w) has been considered in [7] and [9] when the para-
meter « of the weight w is null. The error estimates proved in such papers
were improved by J. Szabados in [15] and by V.E.S. Szabé in [16]. Recently
in [5, 6, 3, 4] the case a # 0 has been studied assuming that the interpolated
functions are uniformly continuous in IR. However this represents a strong
limitation.

In this paper, following a procedure adopted in the last years for several
approximation processes with exponential weights (see, for example, [10, 11,
13, 12, 1, 2], we introduce a simpler interpolant of Hermite-Fejér-type that
we will denote by F}, o (w, f). We will prove the uniform convergence of the
sequence {F}, o(w, f)}m to the function f in suitable spaces of functions
equipped with a weighted uniform norm. The results are new and include
those ones existing in the literature.

2. Main results

Also using an idea of J. Szabados, we consider the Hermite-Fejér interpolation

polynomial based on the zeros {xk}kf,fn ,,,,, m and the two extra points +a,,.
Letting Tmiq = am and r_m_1 = —a,,, such a polynomial has the form
Fria(w, f,x) Z G (xyvi () f (1),
|k‘§ m +1

where f € C°(R),

a2 — 2? m m
Zk(z):lk(x)a%l_xi, k:—E,...,g, (2.1)
’ _an T pm(w,)
£(p+1) © 20  Pm(w, tam)’
and
vi(x) =1 -2 0 (z1)(x — o). (2.2)

We have Fyq2(w, f) € Popyo and Fo(w, fo) = f(a), |k < %5 + 1.
Now we recall an important property of the exponential weights considered
here.

Letting u(x) = \x|”’e*|“"ﬁ, ~v > 0 not integer, 8 > 1, we introduce the
space of functions

|| —o0
z—0

:{feCO( ), limf(@)u(x) = } (2.3)
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with the norm

[flle, = sup [f(x)u(z) = [[ful, (2.4)

zcR
and we will write || f||a :=sup,c4 |f(z)], A C R. In C, the Jackson theorem
holds true [14] and the M-R-S number a,(u) related to u is equivalent to the
one related to the weight w, then a,,(u) ~ me.

Now, for every polynomial @,, € P, (IP,, denotes the set of all poly-
nomials of degree at most m) the following relations hold true [14]:

|Qumull < ClQmullz,, T = [~am,—e22| U [e2™ 0], (25)
m m
and
1@mtllz : o)>1+6)am} < Ce™ | Qumull, (2.6)
where 0 > 0 and ¢,C, A are independent of m and Q,,.

As a consequence of (2.6), for all f € C, and 0 < 8 < 1 fixed, the weight
function u satisfies the following property:

Ifull < € [Ilfulli-0apm .00, + Err(fu]
where C is independent of f, Ey(f), is the error of best approximation of f
in C, and M = L1+9J ~ m. Then ||fu||]R\[ D 0ar,] 1S €quivalent to the best
approximation and || ful|[—ga,,,6a,,] is the dominant part of ||fu|. This fact
suggests us to apply the operator F,2(w) to a finite section of the function
f. Then, with j = j(m) defined as
xz; =min{zy : xp > Oan}

and x; the characteristic function of the interval [f:z:j, :cj] we define

Fro(w, f,2) = Frnga(w, X5 f, 7) Z 62 Zp). (2.7)
|kI<j
By definition
F7tl+2(w?f?xi) :f(xz)a ‘Z| S]v
and
F7»;l+2(wvfaxi):0a |Z‘ >j'

We introduce a second space of functions, Cy, defined as in (2.3)-(2.4)
with wu(z) replaced by u(x) = u(z)log(2 + |z|). Obviously Cz C C,. Now
we show that F), o(w) : Cy — Cy is a bounded map. We can establish the
following lemma.

Lemma 2.1. Assume that the parameters a and v of the weights w and u
satisfy the condition

a>-1, v>0, 0<vy—a<l, (2.8)
then

1o (w, flull < Cllftll(—z; 0,1,
where C is independent of m and f € Cy.
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In order to evaluate the error (f — Fy  o(w, f))u, we point out that
the weight u has a zero at the origin. Thus the more suitable modulus of
smoothness in Cy is [14]

W5 = bt b~ PYal o o
prelP, mCm
being

Q(f,t)a = (Ahf)ﬂ||]l{\[_cu7¢7ca7m]a

sup ||
0<h<t

Ahf(x)—f<x+g> f<x;L>

Using [14], it is easy to verify that
A\ *
i= i — Pl < - .
Bu(f)a= ing I~ Pyl < Cw (7,2 (2.9

pelP,, m

with

and
s (1 22) =0

u
Now, we can establish the convergence theorem

Theorem 2.2. Under the assumption of Lemma 2.1 on the parameters o and
v, we get

* am o am _
I(f = Frgalw, )ull <€ [w (£, 52 logm) + =™ logm|| ]|,
where C is independent of m and f.
Next remark completes the previous result.

Remark 2.3. In this paper, employing the two additional points +a,, together
with the “truncation”, we construct the operator F};  ,(w) that is simpler
than F,,12(w), since a smaller number of evaluations of the function is used,
and that, in addition, satisfies Theorem 2.2. The operator Fy, 2(w) with or
without the additional points +a,, and with or without the “truncation”,
by contrast, can converge for classes of functions more restricted than those
considered here.

For the sake of simplicity we chose the weight |a:|°‘e_“”|ﬂ. However it
is possible to replace e~1e1” with e~ Q) provided that the latter is a Freud

weight (see [8]) under the condition that log%% increases in [0, +00).

3. Proofs

We recall some inequalities that will be useful in the sequel:

<C <l <an  (31)
m

Cl2
P, w)w(a)y o, — a2 +

! m
P2 (w, zp) |w(xy) Tryfag, — x|k < 5 (3.2)
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a 1
Az ~ -2 ~ kl <4 3.3
Tk m mliﬁ, | |_]7 ( )
and
1
I <c|lzl p-iy |, 3.4

These inequalities can be deduced from [5, Theorem 3.6, p. 42].

Proof of Lemma 2.1. Using (3.1) and (3.2), we get

2 Y=o s 2 9N\ 5 2
G@ul) |z (“;ﬂ ;”2) Az = (35)
u(xy) Tk a? — a3 log(2 + |zk|)(x — x)
Tma A2
< el S Y ] < am, (3.6)
Tk (x —2x)2” m

being |k| < j. Moreover, by definition (2.1) and (3.4), we have

2|z

1G(@e)] < —5— 5 + ()]
agn_xi
T x 1
m k m k‘

Consequently, by definition (2.2),

|k £ B—1 1
@l < e[ G2 B g e
1
< 14C [1 + ol + |xk|51] |z — 2. (3.7)
T

Moreover, also in virtue of (3.7) and (3.3), it is easy to verify that

0 gx)u x)

ey lva(z)| < C, (3.8)

being x4 a zero closest to z. Thus, recalling (2.7) and taking into account
(3.6) and (3.8), for 4= < |z| < am,,

m

u(a:)|F;‘H2(w, fﬂ $)| <

T A2y vi(x)
(x — z1)? log(2 + |zx)

T

Ty

<Cllfulliwya | D

[EFARNERY
k#d—1,d,d+1




6 Maria Carmela De Bonis and Giuseppe Mastroianni

Now we estimate the sum in (3.9). We first consider the case |x| > 2 and
write

IN

Clfallceay | > + D

le1|<lzel<1 1<)z, )< izl

> X

Ll <|pa_s| [Ttz <lzr]<|a;]
= Cllfull—, 251 lo1(z) + 02(2) + 03(2) + 04 ()]

For |z1| < |zk| <1, (3.7) becomes

w(@) | o (w, f, )]

+

|z|
v <C—-
vk ()] P

Then, taking also into account © —xp > §, v —a < 1, (3.3) and &= < |z|,
we have

y—a+1 2
T Az
ERERD S A
o1 | <z l<1 | O (& = o)
a
< Clgy—o1Im a—vy—1
< Clz| - > Aagfay
|z1|<|zk|<1
< C Y Amglal 7<c/ |t 7dt < C.

|z |<|zk|<1

We note that for 1 < |zx| < |z;|, (3.7) becomes

lve(z)| < 1+Clagl? Yo — x|, B>1, (3.10)
and, then,
x |7 A2y |z Pt
oa(z) < — — = 1+C———|z—=x
I V= o e Ll
1<y <12
Thus, using (3.3) and  — zx > §, we get
a _
< c%m)pn—a-? =y
oo(z) < Cm|gc| Z |2k Ay
1<z <12
C z |77 Axy
f s O
logm T (x —xp)
1<]ze|< 2L
C / zr-e dt
< c+ 2|
logm J; |t
1
< i <cr S
logm logm
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being o — > —1. Moreover, taking into account (3.10), (3.3) and |z| ~ ||,
we obtain

A2$k ‘$k|ﬁ_1
< E: Sl ) U DU el ] S
73(@) < <x—xk>2[ Cioa@ + )
Bl <o <|za—2l
A B-1A
< Cc+cC Z Tk |ﬂfk\ Tk

|z — x| log(2 + |2x])

2l <lap|<|za—2]

C e-Ara gy 1 T
< C ~ 1 ~ 1.
- + logm /g r—t logm 8 2Az4

Finally, proceeding as done for the estimate of o3(z), it results
oa(x) <C.
Summing up, taking into account (2.5),
[ E e (w, Flull < CIES o (w, Flullz,, < Cllfull—a;m,  |z] =2,
The case |z| < 2 is simpler and we omit the details. O
In order prove Theorem 2.2, we need some further considerations. We

recall that if g is continuous with its first derivative, the Hermite polynomial
interpolating g and g¢', based on the zeros zy, |k| < % + 1, is given by

Hpio(w,g,z) = Y G@w@)gla)+ Y G@) (@ —zi)g (@)
k<% +1 bl< % +1
= Fm+2(1U,979€)+Gm+2(wa9795)~
Letting G}, o(w,9,2) = Gmi2(w, X9, ), the proposition that follows will

be useful to our aims.

Proposition 3.1. Assuming that the parameters o and v satisfy (2.8), then,
for every g, ¢’ € Cy, we have

. a
G 2(w, g)ull < C—=Tlogml|g'ull{—a, (3.11)

xj]a

where C is independent of m and f. Moreover, for every polynomial Qp; €

Py, with M < ij_’g], 0<6<1, we get

12w, (1= x;)Qur)ull < Ce™ ™| Qarull, (3.12)

where C and A are independent of m and Q.

Proof. In order to prove the inequality (3.11) we recall (3.6). Then, using
(3.3), we get

e Aa:k

% a
Grrpa(w,g,2)ul@) < CZgul( ) Y T,

|k <j

T
Tk
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Since, by similar arguments to those used for the proof of Lemma 2.1, we

obtain
>

|k|<j

A.l?k
| — x|

xz |7

< Clogm,

Ty
(3.11) easily follows. To prove (3.12) we limit ourself to show that

|G mya(w, (1 = x;)Quar)ul| < Ce™A™|Qarul, (3.13)

being the estimate of || Fyy42(w, (1 — x;)Qar)ul| similar.
Now, using (3.5), we get

|Gm+2(w7 (1 - Xj)QI\/Iv x)\u(x) S

3
y—a s 9 2\ 2 2
T az, —x A“xy
< ClQhvulliw, o) D, | (m )
[z m)‘k|>j T a?n—xi | — 2|
< 7|1 Qyull ey oo)s

for some 7 > 0. Finally, by (2.6) and the Bernstein theorem [8], we obtain
m1+7'

IN

Cm"e A" | Qhul| < € e[ Qarul

m’ ||Q§\4u|| [0am,+0)
m

IA

Ce™ ™ | Qurul

and (3.13) easily follows. O

Now we can prove Theorem 2.2.

Proof of Theorem 2.2. Let Py € Py, N = { M J, M = L%J, be the

log M
polinomial of best approximation of f € Cy. We have
fﬁFn*L—&-Q(waf) = fﬁPN+Hm+2(waPN)7F;L+2(w7f)

= f=Pn+Fyo(w, f—Py)
G;kn+2(w’ PN) + Hm+2(w> (1 - Xj)PN)>
from which, using Lemma 2.1 and Proposition 3.1, we get
. . aN _ Ami o —
1(f = Freaw, )ull < €[ = Pw)aall + S [Pl + ¢4 | Pl |

Since

_|_

[Pyall <2 ful,
recalling (2.9) we have

*

_ anN * Gm
_ < 2Ny >m
I(f — Pn)all < Cw (f, N)a w(f, - logm)a,
and by [14, th 2.3, p. 291] we get
an ;o ( (IN>* 1 _
2N < 2N il
Wipal < ¢ o (1 %), + 5]
~ W (f, am log m) + dm log m|| fall,
m a m

the theorem follows. O
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