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Abstract. This paper deals with a special Hermite-Fejér interpolation
process based at the zeros of generalized Freud polynomials which are

orthogonal with respect to the weight w(x) = |x|αe−|x|β , x ̸= 0, α >
−1, β > 1. We prove its uniform convergence for functions belonging to
a suitable space of functions equipped with a weighted uniform norm.
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1. Introduction

Let w(x) = |x|αe−|x|β , x ̸= 0, α > −1, β > 1, be a generalized Freud
weight and let {pm(w)}m be the corresponding sequence of polynomials with
positive leading coefficients and orthonormal in IR w.r.t. the weight w. The
zeros of pm(w) are symmetrical with respect to the origin and lie in the
interval

(
−am

(
1− c

m2/3

)
, am

(
1− c

m2/3

))
, where c > 0 and am := am(w) ∼

m
1
β is the so-called Maskar-Rakmanov-Saff number (M-R-S number). We

denote by xk, k = 1, 2, . . . ,
⌊
m
2

⌋
, the positive zeros of pm(w) and by x−k,

k = 1, 2, . . . ,
⌊
m
2

⌋
, the corresponding negative ones (⌊a⌋ stands for the largest

integer smaller than or equal to a ∈ IR+). We assume that m is even, then

−am

(
1− c

m2/3

)
< x−m

2
< . . . < x−1 < x1 < . . . < xm

2
< am

(
1− c

m2/3

)
.

The Hermite-Fejér polynomial based at these zeros has the form

Fm(w, f, x) =

m
2∑

k=−m
2

l2k(x)vk(x)f(xk),
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where f is a continuous function on the real axis IR (f ∈ C0(IR)),

lk(x) =
pm(w, x)

p′m(w, xk)(x− xk)

are the fundamental Lagrange polynomials and

vk(x) = 1− 2 l′k(xk)(x− xk).

The operator Fm(w) has been considered in [7] and [9] when the para-
meter α of the weight w is null. The error estimates proved in such papers
were improved by J. Szabados in [15] and by V.E.S. Szabó in [16]. Recently
in [5, 6, 3, 4] the case α ̸= 0 has been studied assuming that the interpolated
functions are uniformly continuous in IR. However this represents a strong
limitation.

In this paper, following a procedure adopted in the last years for several
approximation processes with exponential weights (see, for example, [10, 11,
13, 12, 1, 2], we introduce a simpler interpolant of Hermite-Fejér-type that
we will denote by F ∗

m+2(w, f). We will prove the uniform convergence of the
sequence {F ∗

m+2(w, f)}m to the function f in suitable spaces of functions
equipped with a weighted uniform norm. The results are new and include
those ones existing in the literature.

2. Main results

Also using an idea of J. Szabados, we consider the Hermite-Fejér interpolation
polynomial based on the zeros {xk}k=−m

2 ,...,m2
and the two extra points ±am.

Letting xm
2 +1 = am and x−m

2 −1 = −am, such a polynomial has the form

Fm+2(w, f, x) =
∑

|k|≤m
2 +1

ℓ2k(x)νk(x)f(xk),

where f ∈ C0(IR),

ℓk(x) = lk(x)
a2m − x2

a2m − x2
k

, k = −m

2
, . . . ,

m

2
, (2.1)

ℓ±(m
2 +1) =

am ± x

2am

pm(w, x)

pm(w,±am)
,

and

νk(x) = 1− 2 ℓ′k(xk)(x− xk). (2.2)

We have Fm+2(w, f) ∈ IP2m+2 and Fm+2(w, f, xk) = f(xk), |k| ≤ m
2 + 1.

Now we recall an important property of the exponential weights considered
here.

Letting u(x) = |x|γe−|x|β , γ > 0 not integer, β > 1, we introduce the
space of functions

Cu =

{
f ∈ C0(IR), lim

|x|→∞
x→0

f(x)u(x) = 0

}
, (2.3)
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with the norm

∥f∥Cu = sup
x∈IR

|f(x)|u(x) = ∥fu∥, (2.4)

and we will write ∥f∥A := supx∈A |f(x)|, A ⊂ IR. In Cu the Jackson theorem
holds true [14] and the M-R-S number am(u) related to u is equivalent to the

one related to the weight w, then am(u) ∼ m
1
β .

Now, for every polynomial Qm ∈ IPm (IPm denotes the set of all poly-
nomials of degree at most m) the following relations hold true [14]:

∥Qmu∥ ≤ C∥Qmu∥Im , Im =
[
−am,−c

am
m

]
∪
[
c
am
m

,am

]
, (2.5)

and

∥Qmu∥{x : |x|>(1+δ)am} ≤ Ce−Am∥Qmu∥, (2.6)

where δ > 0 and c, C,A are independent of m and Qm.
As a consequence of (2.6), for all f ∈ Cu and 0 < θ < 1 fixed, the weight

function u satisfies the following property:

∥fu∥ ≤ C
[
∥fu∥[−θam,θam] + EM (f)u

]
,

where C is independent of f , EM (f)u is the error of best approximation of f
in Cu and M = ⌊ θm

1+θ ⌋ ∼ m. Then ∥fu∥IR\[−θam,θam] is equivalent to the best

approximation and ∥fu∥[−θam,θam] is the dominant part of ∥fu∥. This fact
suggests us to apply the operator Fm+2(w) to a finite section of the function
f . Then, with j = j(m) defined as

xj = min{xk : xk ≥ θam}

and χj the characteristic function of the interval [−xj , xj ], we define

F ∗
m+2(w, f, x) = Fm+2(w,χjf, x) =

∑
|k|≤j

ℓ2k(x)νk(x)f(xk). (2.7)

By definition

F ∗
m+2(w, f, xi) = f(xi), |i| ≤ j,

and

F ∗
m+2(w, f, xi) = 0, |i| > j.

We introduce a second space of functions, Cū, defined as in (2.3)-(2.4)
with u(x) replaced by ū(x) = u(x) log(2 + |x|). Obviously Cū ⊂ Cu. Now
we show that F ∗

m+2(w) : Cū → Cu is a bounded map. We can establish the
following lemma.

Lemma 2.1. Assume that the parameters α and γ of the weights w and u
satisfy the condition

α > −1, γ > 0, 0 < γ − α < 1, (2.8)

then

∥F ∗
m+2(w, f)u∥ ≤ C∥fū∥[−xj ,xj ],

where C is independent of m and f ∈ Cū.
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In order to evaluate the error (f − F ∗
m+2(w, f))u, we point out that

the weight u has a zero at the origin. Thus the more suitable modulus of
smoothness in Cū is [14]

ω(f, t)∗ū = Ω(f, t)ū + inf
P∈IP0

∥(f − P )ū∥[−c am
m ,c am

m ],

being
Ω(f, t)ū = sup

0<h≤t
∥(∆hf)ū∥IR\[−c am

m ,c am
m ],

with

∆hf(x) = f

(
x+

h

2

)
− f

(
x− h

2

)
.

Using [14], it is easy to verify that

Em(f)ū = inf
P∈IPm

∥(f − P )ū∥ ≤ Cω
(
f,

am
m

)∗

ū
(2.9)

and

lim
m

ω
(
f,

am
m

)∗

ū
= 0.

Now, we can establish the convergence theorem

Theorem 2.2. Under the assumption of Lemma 2.1 on the parameters α and
γ, we get

∥(f − F ∗
m+2(w, f))u∥ ≤ C

[
ω
(
f,

am
m

logm
)∗

ū
+

am
m

logm∥fū∥
]
,

where C is independent of m and f .

Next remark completes the previous result.

Remark 2.3. In this paper, employing the two additional points±am together
with the “truncation”, we construct the operator F ∗

m+2(w) that is simpler
than Fm+2(w), since a smaller number of evaluations of the function is used,
and that, in addition, satisfies Theorem 2.2. The operator Fm+2(w) with or
without the additional points ±am and with or without the “truncation”,
by contrast, can converge for classes of functions more restricted than those
considered here.

For the sake of simplicity we chose the weight |x|αe−|x|β . However it

is possible to replace e−|x|β with e−Q(x), provided that the latter is a Freud

weight (see [8]) under the condition that Q′(x)
log(2+|x|) increases in [0,+∞).

3. Proofs

We recall some inequalities that will be useful in the sequel:∣∣∣∣∣p2m(w, x)w(x)

√
a2m − x2 +

a2m
m2/3

∣∣∣∣∣ ≤ C, am
m

≤ |x| ≤ am, (3.1)

1

|p′2m(w, xk)|w(xk)
∼ ∆2xk

√
a2m − x2

k, |k| ≤ m

2
, (3.2)
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∆xk ∼ am
m

∼ 1

m1− 1
β

, |k| ≤ j, (3.3)

and

|l′k(xk)| ≤ C
[
|xk|
a2m

+ β|xk|β−1 +
1

|xk|

]
. (3.4)

These inequalities can be deduced from [5, Theorem 3.6, p. 42].

Proof of Lemma 2.1. Using (3.1) and (3.2), we get

ℓ2k(x)u(x)

ū(xk)
≤ C

∣∣∣∣ xxk

∣∣∣∣γ−α (
a2m − x2

a2m − x2
k

) 3
2 ∆2xk

log(2 + |xk|)(x− xk)2
(3.5)

≤ C
∣∣∣∣ xxk

∣∣∣∣γ−α
∆2xk

(x− xk)2
,

am
m

≤ |x| ≤ am, (3.6)

being |k| ≤ j. Moreover, by definition (2.1) and (3.4), we have

|ℓ′k(xk)| ≤ 2|xk|
a2m − x2

k

+ |l′k(xk)|

≤ C
[

|xk|
a2m − x2

k

+
|xk|
a2m

+ β|xk|β−1 +
1

|xk|

]
.

Consequently, by definition (2.2),

|νk(x)| ≤ 1 + C
[

|xk|
a2m − x2

k

+
|xk|
a2m

+ β|xk|β−1 +
1

|xk|

]
|x− xk|

≤ 1 + C
[
1 +

1

|xk|
+ |xk|β−1

]
|x− xk|. (3.7)

Moreover, also in virtue of (3.7) and (3.3), it is easy to verify that

ℓ2d(x)u(x)

ū(xd)
|νd(x)| ≤ C, (3.8)

being xd a zero closest to x. Thus, recalling (2.7) and taking into account
(3.6) and (3.8), for am

m < |x| ≤ am,

u(x)|F ∗
m+2(w, f, x)| ≤

≤ C∥fū∥[−xj ,xj ]

 ∑
|xk|≤|xj |
k ̸=d−1,d,d+1

∣∣∣∣ xxk

∣∣∣∣γ−α
∆2xk

(x− xk)2
νk(x)

log(2 + |xk|)
+ 1

 . (3.9)
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Now we estimate the sum in (3.9). We first consider the case |x| > 2 and
write

u(x)|F ∗
m+2(w, f, x)| ≤ C∥fū∥[−xj ,xj ]

 ∑
|x1|≤|xk|≤1

+
∑

1<|xk|≤ |x|
2

+
∑

|x|
2 <|xk|<|xd−2|

+
∑

|xd+2|≤|xk|<|xj |


=: C∥fū∥[−xj ,xj ] [σ1(x) + σ2(x) + σ3(x) + σ4(x)] .

For |x1| ≤ |xk| ≤ 1, (3.7) becomes

|νk(x)| ≤ C |x|
|xk|

.

Then, taking also into account x − xk > x
2 , γ − α < 1, (3.3) and am

m < |x|,
we have

σ1(x) ≤ C
∑

|x1|≤|xk|≤1

∣∣∣∣ xxk

∣∣∣∣γ−α+1
∆2xk

(x− xk)2

≤ C|x|γ−α−1 am
m

∑
|x1|≤|xk|≤1

∆xk|xk|α−γ−1

≤ C
∑

|x1|≤|xk|≤1

∆xk|xk|α−γ ≤ C
∫ 1

−1

|t|α−γdt ≤ C.

We note that for 1 < |xk| ≤ |xj |, (3.7) becomes

|νk(x)| ≤ 1 + C|xk|β−1|x− xk|, β > 1, (3.10)

and, then,

σ2(x) ≤
∑

1<|xk|≤ |x|
2

∣∣∣∣ xxk

∣∣∣∣γ−α
∆2xk

(x− xk)2

[
1 + C |xk|β−1

log(2 + |xk|)
|x− xk|

]
.

Thus, using (3.3) and x− xk > x
2 , we get

σ2(x) ≤ C am
m

|x|γ−α−2
∑

1<|xk|≤ |x|
2

|xk|α−γ
∆xk

+
C

logm

∑
1<|xk|≤ |x|

2

∣∣∣∣ xxk

∣∣∣∣γ−α
∆xk

(x− xk)

≤ C +
C

logm

∫ x
2

1

∣∣∣x
t

∣∣∣γ−α dt

(x− t)

≤ C +
C

logm

∫ 1
2

0

yα−γ dy

(1− y)
≤ C +

C
logm

,
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being α− γ > −1. Moreover, taking into account (3.10), (3.3) and |x| ∼ |xk|,
we obtain

σ3(x) ≤
∑

|x|
2 <|xk|<|xd−2|

∆2xk

(x− xk)2

[
1 + C |xk|β−1

log(2 + |xk|)
|x− xk|

]

≤ C + C
∑

|x|
2 <|xk|<|xd−2|

∆xk

|x− xk|
|xk|β−1∆xk

log(2 + |xk|)

≤ C +
C

logm

∫ x−∆xd

x
2

dt

x− t
∼ 1

logm
log

x

2∆xd
∼ 1.

Finally, proceeding as done for the estimate of σ3(x), it results

σ4(x) ≤ C.

Summing up, taking into account (2.5),

∥F ∗
m+2(w, f)u∥ ≤ C∥F ∗

m+2(w, f)u∥Im ≤ C∥fū∥[−xj ,xj ], |x| ≥ 2,

The case |x| < 2 is simpler and we omit the details. �

In order prove Theorem 2.2, we need some further considerations. We
recall that if g is continuous with its first derivative, the Hermite polynomial
interpolating g and g′, based on the zeros xk, |k| ≤ m

2 + 1, is given by

Hm+2(w, g, x) =
∑

|k|≤m
2 +1

ℓ2k(x)νk(x)g(xk) +
∑

|k|≤m
2 +1

ℓ2k(x)(x− xk)g
′(xk)

=: Fm+2(w, g, x) +Gm+2(w, g, x).

Letting G∗
m+2(w, g, x) = Gm+2(w,χjg, x), the proposition that follows will

be useful to our aims.

Proposition 3.1. Assuming that the parameters α and γ satisfy (2.8), then,
for every g, g′ ∈ Cu, we have

∥G∗
m+2(w, g)u∥ ≤ C am

m
logm∥g′u∥[−xj ,xj ], (3.11)

where C is independent of m and f . Moreover, for every polynomial QM ∈
IPM , with M ≤ ⌊ θm

1+θ ⌋, 0 < θ < 1, we get

∥Hm+2(w, (1− χj)QM )u∥ ≤ Ce−Am∥QMu∥, (3.12)

where C and A are independent of m and QM .

Proof. In order to prove the inequality (3.11) we recall (3.6). Then, using
(3.3), we get

|G∗
m+2(w, g, x)|u(x) ≤ C am

m
∥g′u∥[−xj ,xj ]

∑
|k|≤j

∣∣∣∣ xxk

∣∣∣∣γ−α
∆xk

|x− xk|
.
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Since, by similar arguments to those used for the proof of Lemma 2.1, we
obtain ∑

|k|≤j

∣∣∣∣ xxk

∣∣∣∣γ−α
∆xk

|x− xk|
≤ C logm,

(3.11) easily follows. To prove (3.12) we limit ourself to show that

∥Gm+2(w, (1− χj)QM )u∥ ≤ Ce−Am∥QMu∥, (3.13)

being the estimate of ∥Fm+2(w, (1− χj)QM )u∥ similar.
Now, using (3.5), we get

|Gm+2(w, (1− χj)QM , x)|u(x) ≤

≤ C∥Q′
Mu∥[xj ,+∞)

∑
|k|>j

∣∣∣∣ xxk

∣∣∣∣γ−α (
a2m − x2

a2m − x2
k

) 3
2 ∆2xk

|x− xk|

≤ Cmτ∥Q′
Mu∥[xj ,+∞),

for some τ > 0. Finally, by (2.6) and the Bernstein theorem [8], we obtain

mτ∥Q′
Mu∥[θam,+∞) ≤ Cmτe−Ām∥Q′

Mu∥ ≤ Cm
1+τ

am
e−Ām∥QMu∥

≤ Ce−Am∥QMu∥
and (3.13) easily follows. �

Now we can prove Theorem 2.2.

Proof of Theorem 2.2. Let PN ∈ IPN , N =
⌊

M
logM

⌋
, M =

⌊
θm
1+θ

⌋
, be the

polinomial of best approximation of f ∈ Cū. We have

f − F ∗
m+2(w, f) = f − PN +Hm+2(w,PN )− F ∗

m+2(w, f)

= f − PN + F ∗
m+2(w, f − PN )

+ G∗
m+2(w,PN ) +Hm+2(w, (1− χj)PN ),

from which, using Lemma 2.1 and Proposition 3.1, we get

∥(f − F ∗
m+2(w, f))u∥ ≤ C

[
∥(f − PN )ū∥+ aN

N
∥P ′

N ū∥+ e−Am∥PN ū∥
]
.

Since
∥PN ū∥ ≤ 2∥fū∥,

recalling (2.9) we have

∥(f − PN )ū∥ ≤ Cω
(
f,

aN
N

)∗

ū
∼ ω

(
f,

am
m

logm
)∗

ū
,

and by [14, th 2.3, p. 291] we get

aN
N

∥P ′
N ū∥ ≤ C

[
ω
(
f,

aN
N

)∗

ū
+

1

N
∥fū∥

]
∼ ω

(
f,

am
m

logm
)∗

ū
+

am
m

logm∥fū∥,

the theorem follows. �
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