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Regular Expressions (REs) are ubiquitous in database and programming languages. While many
applications make use of REs extended with interleaving (shuffle) and unordered concatenation
operators, this extension badly affects the complexity of basic operations, and, especially, makes
membership NP-hard, which is unacceptable in most practical scenarios.

In this paper we study the problem of membership checking for a restricted class of these extended
REs, called conflict-free REs, which are expressive enough to cover the vast majority of real-world
applications. We present several polynomial algorithms for membership checking over conflict-free
REs. The algorithms are all polynomial and differ in terms of adopted optimization techniques,
and in the kind of supported operators. As a particular application, we generalize the approach in
order to check membership of XML trees into a class of EDTDs which models the crucial aspects of
DTDs and XSD schemas.

Results about an extensive experimental analysis validate the efficiency of the presented member-
ship checking techniques.
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1 INTRODUCTION

Regular expressions are ubiquitous in database and programming languages. They represent
a fundamental programming tool for identifying and extracting data from text, and are
the basis over which mainstream schema and query languages for semistructured data
are built. Given the important role they have always played in computer science, regular
expressions have been the subject of research activities for decades. More recently, the
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research community has focused renewed efforts in studying families of regular expressions
extended with counting and interleaving operators, that find many applications in processing
and querying textual as well as tree- and graph-shaped data [1, 9, 11, 29, 30, 34, 43]. A
counting operator T [m..n] specifies a minimum (m) and a maximum (n) number of repetitions
of a given regular expression T, while an interleaving operator T;&T; shuffles the words of T;
and T,. The addition of these operators to plain regular expressions enhances the flexibility of
the language, as it allows one to define exponentially more succinct regular expressions, but
also has an impact on the complexity of decision problems. One problem whose complexity is
strongly affected by the presence of these operators is membership checking, that is checking
whether a word can be generated by a given regular expression.

More precisely, given a class R of regular expressions, the membership problem for R is
that of checking whether a word w belongs to the language generated by an expression e in
R. The problem is polynomial in the size of w and of e when R is just the class of standard
regular expressions with union, concatenation, and Kleene star, which we denote as RE [31],
and is still polynomial when intersection N is added to the operators. When interleaving
comes into play, however, membership becomes at least NP-hard: indeed, as proved by Mayer
and Stockmeyer in [36], membership is NP-complete for RE(&), i.e., RE extended with
interleaving, and remains NP-hard when only the combinations of & and concatenation, &
and union, & and Kleene star are considered. This shows that the NP-hardness of membership
with interleaving is quite robust.

Another operator that has been studied in the literature is unordered concatenation (%). It
has been first used in SGML (Standard Generalized Markup Language) [28], and later in a
limited form in XML Schema [22], the main XML schema language. Unordered concatenation
can be seen as a restricted form of interleaving: while the expression T;&T, contains all
the words obtained by shuffling words in T} and T, the expression T1%T; is equivalent to
Ty- T, + T,- Ty, where + and - denote, respectively, union and concatenation. Of course, this
rewriting is not of practical interest in the n-ary case (T;%. .. %7, produces an exponential
explosion of the corresponding union type). Another difference from & is that % is not
associative. As shown by Hovland in [30], membership is NP-complete for regular expressions
using counting and unordered concatenation.

Our contribution. In this paper we study the membership problem for a restricted class of
regular expressions with counting, interleaving and unordered concatenation, and show that
this class admits membership checking in linear time. The family of regular expressions that
we consider contains those expressions where no symbol appears twice (single-occurrence),
and where repetition is only applied to single symbols; Kleene star is generalized to counting
constraints such as a [1..#] and a[2..5]. We introduced this class of regular expressions, called
conflict-free, in [20, 25] and exploited it to lower the complexity of inclusion [16-19]. As
shown in [8, 15], the two main restrictions behind conflict-freedom (single-occurrence and
single-symbol repetition) characterize the vast majority of regular expressions defined by
users in practice.

Our approach is based on the translation of each conflict-free regular expression into a set
of constraints through a linear-time translation algorithm. By relying on this translation,
our membership checking algorithms verify if a word belongs to the language generated
by a regular expression by verifying if it satisfies the constraints describing the expression.
These algorithms are based on the implicit representation of the constraints using a tree
structure, and on the parallel verification of all constraints, using a residuation technique.
The residuation technique transforms each constraint into the constraint that has to be
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Linear Time Membership in a Class of R.E. with Counting, Interleaving and Un. Conc. 3

verified on the rest of the word after a symbol has been read; this residual constraint is
computed in constant time. The notion of residuation is strongly reminiscent of Brzozowski’s
derivative of REs [14].

In this paper we present four membership algorithms for conflict-free regular expressions.
The first one, called MEMBER, assumes that operators of regular expressions are all binary,
and excludes unordered concatenation (which needs an n-ary representation as it is not
associative), hence applying to conflict-free expressions with interleaving (&) and counting
(#) only.! For each regular expression T the algorithm builds in linear time a binary tree
reflecting its parse tree and whose nodes are labeled with constraints associated to T to be
residuated, while leaves correspond to unique symbols occurring in it. The algorithm requires
a bottom up visit of the tree for each symbol in a word w checked for membership, and
has O(|T| + |w| = depth(T)) time complexity. The design and study of this algorithm revealed
that a kind of stability property holds: once a given symbol a has been parsed, there is no
need to redo a bottom-up visit of the tree when the symbol is met again, except for one
specific case where the new occurrence of the symbol makes membership checking fail. We
prove stability for the binary algorithm and exploit it to develop a new linear membership
algorithm MEMBERSTAB that runs in O(|T| + |w|).

We then consider the case where operators in regular expressions are n-ary operators, and
this time we include unordered concatenation, hence considering conflict-free expressions in
RE(#, &, %). In this setting of flat regular expressions, we define new constraints, prove their
soundness and completeness, and define the associated residuation technique. We used these
constraints to define the membership algorithm MEMBERFLAT. This algorithm can deal with
unordered concatenation, and runs in O(|T| + |w]| * depth(T)) time, which is formally the same
as the complexity of the base MEMBER algorithm, but it is in practice much better, since
the factor depth(T) is usually much lower for flat expressions than for binary expressions.
We then identify a stability property for the new family of flat constraints, and use it to
define a membership algorithm MEMBERFLATSTAB with linear complexity O(|T| + |w]).

We then extend our approach to the validation of XML trees against XML schemas
(Extended DTDs) that use conflict-free regular expressions only, producing an algorithm
that runs in time O(|T| + |w| = depth(T)), where w is the XML tree, T is the XML schema,
and depth(T) is the maximal depth of all the regular expressions that appear in the schema.

Finally, we perform an experimental study of our algorithms. We would have liked to
compare them with standard automata-based approaches, but this was not possible since
we found no tools supporting both counting and interleaving, with the notable exception
of Anders Mgller’s automaton library [37]. However, this library maps regular expressions
with counting and interleaving into DFAs incurring in an exponential blow up of the size
of automaton, hence it cannot deal with the size of our test suite. Hence, we compare our
algorithm with an alternative baseline approach based on Brzozowski’s derivatives [14] for
expressions in cf-RE(4, &) and cf-RE(#, &, %). The results of our experiments are coherent
with the theoretical analysis, showing that the MEMBERFLATSTAB is indeed superior to the
simpler variants, and order of magnitudes faster than the baseline.

Paper Outline. The paper is organized as follows. In Section 2 we describe the type and
constraint languages we are using, and show how types can be represented in terms of
constraints. In Section 3, then, we illustrate the basic principles of our residuation technique.

IWe use RE(#, &) to denote the class of unrestricted regular expressions with interleaving and counting;

furthermore, given a class of regular expressions R, cf~R will denote the subclass of conflict-free regular
expressions in R.
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In Sections 4 and 5 we describe four algorithms based on the residuation technique of Section
3. In Section 6 we show how our algorithms can be applied to XSD schemas. In Section 7,
then, we validate our algorithms with an extensive experimental analysis. In Section 8 we
describe related work. In Section 9, finally, we draw our conclusions.

2 TYPE AND CONSTRAINT LANGUAGE

This section offers preliminary definitions and related properties that we introduced in [20]
and form the basis of our membership algorithms.

2.1 The Type Language

We follow the terminology of [20], and use the term type instead of regular expression.
We consider the following type language with counting, disjunction, concatenation, and
interleaving, for words over a finite alphabet X; we use e for the empty word and for the
expression whose language is {€}, while a [m..n], with a € X, contains the words composed by
Jj repetitions of a, with m < j < n.

Tu= €| almn] | T+T | T-T | T&T

More precisely, we define N, = N U {*}, and extend the standard order among naturals
with n < % for each n € N,. In every type expression a[m..n] we have that m € (N \{0}),
n € (N, \{0}), and n > m. Specifically, a[0..n] is not part of the language, but we use it
to abbreviate (€ + a[1..n]). The operator _[m..n] generalizes Kleene star, but can only be
applied to symbols. Unbounded repetition of a disjunction of symbols, i.e., (a; + ...+ ay)*,
can be expressed as ((a; [0..x])& ... &(ay, [0..%])).

Word concatenation w;- wy and language concatenation L;- L, are standard. The shuffle,
or interleaving, operator wi&w; is defined as follows.

Definition 2.1 (v&w, L1&Ly). The shuffle set of two words v, w € 3*, or two languages
Ly, L, € X%, is defined as follows; notice that each v; or w; may be the empty word €.

v&w =g {vrwicUpwy | U U =0, W Wy =W,
v; €XF, w; €X%, n>0 }
Li&Ly  =dger  UweLy, wyeL, W1&w2
Example 2.2. (ab)&(XY) contains the permutations of abXY where a comes before b and
X comes before Y:
(ab)&(XY) = {abXY,aXbY,aXYb,XabY,XaYb,XYab}

Definition 2.3 (S(w),S(T), Atoms(T)). For any word w and for any type T:

(1) S(w) is the set of all symbols appearing in w;
(2) Atoms(T) is the set of all atoms a [m..n] appearing in T;
(3) and S(T) is the set of all alphabet symbols appearing in T.

Semantics of types is defined as follows.

el = {el
[a[m.n]] = {w|S(w)=/{a}, lwl>m, |w|<n}
[[Tl + Tg]] = [[Tl]] U [[Tz]]
[T T.] = [T [T2]
[L&T] = [L]&[T]
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We will use ® to range over - and & when we need to specify common properties, such as:
[F @)= [e@T] = 1]

In this system, no type is empty. Some types contain the empty word e (are nullable),
and are characterized as follows.

Definition 2.4 (N(T)). N(T) is a predicate on types, defined as follows:

N(e) = true
N(a [m..n])

N(T+T’) = N(T)or N(T)
N(T®T') = N(T)and N(T’)

LEMMA 2.5. € € [T] iff N(T).

= false

PrOOF. Trivial: it directly follows by induction from Definition 2.4. o
We define now the notion of conflict-free types.

Definition 2.6 (Conflict-free types). A type T is conflict-free if for each subexpression
U+V)or (UV): S(U)NSV)=0.

Equivalently, a type T is conflict-free if, for any two distinct subterm occurrences a [m..n]
and a’ [m’..n’] in T, a is different from a’.

REMARK 1. The class of grammars we study is quite restrictive, because of the conflict-free
limitation and of the constraint on Kleene-star. However, similar, or stronger, constraints,
have been widely studied in the context of DTDs [10] and XSD schemas, and it has been
discovered that the vast majority of real-life expressions do respect them.

Conflict-free REs have been studied, for example, as “duplicate-free” DTDs in [38, 45], as
“Single Occurrence REs” (SOREs) in [6, 1], as “conflict-free DTDs” in [3, 4]. The specific
limitation that we impose on Kleene-star is reminiscent of Chain REs (CHARESs), as defined
by Bex et al. in [6], which are slightly more restrictive. That paper states that “an examination
of the 819 DTDs and XSDs gathered from the Cover Pages (including many high-quality XML
standards) as well as from the web at large, reveals that more than 99% of the REs occurring
in practical schemas are CHARFEs (and therefore also SOREs)”. Barbosa et al., on the basis
of a corpus of 26604 content models from xml.org, measure that 97,7% are conflict-free,
and 94% are conflict-free and simple, where simple is a restriction much stronger than our
Kleene-star restriction [3]. Similar results about the prevalence of simple content models had
been reported by Choi in [15].

Hereafter, we will silently assume that every type is conflict-free, although some of the
properties we specify are valid for any type.

We show now how the semantics of a type T can be expressed by a set of constraints. This
alternative characterization of type semantics will then be used for membership checking.

2.2 The Constraint Language

The semantics of conflict-free types can be fully captured by a set of constraints on words.
To illustrate the intuition behind this, consider the type T = ((a[1..3]- b[2..2]) + ¢ [1..%]),
which can be represented by the following constraints: abc™ Aupper(abc) A a?[1..3] Ab?[2..2] A
c?[l.x]Aa B b AV Ba " Aa<bAra<cAc<aAb<cAc<b. Constraints express the
following properties of each word w in [T]: the constraint abc® indicates that w must have
at least one symbol in {a, b, ¢}, while the upper bound constraint upper(abc) indicates that
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each symbol of w must be in {a, b, c}. The constraint a?[1..3] indicates that if a is in w then
a must appear at least once and at most three times, and we have similar constraints for
b and c. The constraint a < b indicates that it is never the case that one occurrence of b
appears after an occurrence of a. The couple a < ¢ and ¢ < a indicates mutual exclusion
between a and ¢, since no order would be compatible with both constraints, and similarly
for the pair b < ¢ and ¢ < b. Finally, a* & b* and b* = a* respectively say that, if a occurs
in w, then b is in w too and vice-versa. As shown in [20] these constraints exactly capture
the semantics of T, and constraints can be extracted in polynomial time from the type.

Constraints are expressed using the following logic, where a,b € ¥ and A,B C 3, m € (N\{0}),
ne (N, \{0}), and n > m:

F z= A* | A B* | a?[m..n] | upper(A) | a<b | FAF | true

Satisfaction of a constraint F by a word w, written w |= F, is defined as follows.

w |= a?[m..x] < if a appears in w, then it appears at least m times

w |= a?[m..n] & if a appears in w, then it appears at least m times
(n# %) and at most n times

there is no occurrence of a in w that follows an occurrence
of b in w (hence, both a and b may be missing)

wlEkEa<b

)

wlEA" & (S(w)NA)#0,ie., some a € A appears in w
wEA*B®>B" o wlEAt orwl=B*
w |= upper(A) © S(w)CA
wEFAF, © wlEFandwllF

w |=true & always

We use the following abbreviations:

A" B" =4 A"®B'AB = A"
a<>b =g (a<b)A(b<a)
A<B =def /\ a<b
acA,beB
A<>B =g /\ a<>b
acA,beB

false =g O0F
A” =def At = 0F
The next propositions specify that A <> B encodes mutual exclusion between sets of
symbols, and that A~ denotes the absence of any symbol in A.

PROPOSITION 2.7. w E a <> b & w |t ({a})t A {b}F), which means that a and b are
mutually exclusive in S(w).

ProOOF. Trivial. O
PROPOSITION 2.8. w=A<>B © wlt (A" ABY)

PrROOF. By definition of A <> B and by Proposition 2.7, we observe that w = A <> B
means that for each a € A, b € B it is the case that {a,b} € S(w); hence, if one element of A
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is in w no element of B may be there, and vice versa. This is the same property expressed
by w [ A* A B*. o

PROPOSITION 2.9. w A~ © wlE A"

PROOF. Trivial. m]

2.3 Constraint Extraction

We can now define the extraction of constraints from types.
We start with those constraints whose definition is flat, since they only depend on the
leaves of the syntax tree of T. Flat constraints formalize the following observations:

e lower-bound: unless T is nullable (i.e., unless N(T)), w must include one symbol of
S(T);

e upper-bound: no symbol a ¢ S(T) may appear in w;

e cardinality: if a symbol in S(T) appears in w, it must appear with the right cardinality.

Hereafter we abbreviate the constraint (S(T))*, that requires the presence of one symbol
from type T, with S*(T).

Definition 2.10 (Flat constraints).

*(T) if not N(T
Lower-bound: SIF(T)  =aef {S (T) if not N(T)

true if N(T)
Cardinality: ZeroMinMax(T) =gr Aa[m..nJeatoms(T) a7[M..1]
Upper-bound: upperS(T) =g upper(S(T))

Flat constraints: FC(T) =afr SIf(T) A ZeroMinMax(T) A upperS(T)

We add now the nested constraints, whose definition depends on the internal structure
of T. Nested constraints formalize the properties that we list below. All nested constraints
depend on the fact that T is conflict-free. The quantification “for any w € [C[T]]...” that we
use below means “for any w € [T’] where T’ is any type with a subterm T...”. All properties
are quite obvious if one ignores the “for any C[_]” quantification. This context quantification
is a consequence of the fact that types are conflict-free, and expresses the fact that any
nested constraint that holds for a subterm of the type also holds for the whole type. These
are the properties:

e co-occurrence: for any w € [C[T) ® T»]]:
— unless T; is nullable, if a symbol in S(T;) is in w, then a symbol in S(T3) is in w as
well;
— unless T; is nullable, if a symbol in S(T3) is in w, then a symbol in S(T7) is in w as
well;
e order: for any w € [C[T;- Tz]], no symbol in S(T;) may follow a symbol in S(T3);
o czclusion: for any w € [C[T; + T]], it is not possible that w has a symbol that belongs
to both S(T;) and S(T3).

Co-occurrence is not obvious because of the double condition ‘unless T, is nullable’ and ‘if
a symbol in S(T;) is in w’. Consider a word w in [(T} ® T) + T3]. If a symbol of Ty is in w,
then w has been generated by T} ® T,, rather than by the context _+ T3. Since it comes from
[T; ® T»], then a symbol of T, should appear in w, unless T, is nullable. This is captured by
the co-occurrence constraint.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article . Publication date: November 2017.



:8 Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani

In the formal definition that follows, If ;. (S*(T1) & S™(T2)) denotes true when N(T3), and
(S(T1))* B (S(Ty))" otherwise, that is, if T, is not nullable then (S(T1))" &= (S(T3))*. The
relation ‘T’ subterm of T’, used in the definition of NC(T), is the standard subterm relation
and is reflexive. Observe that the exclusion constraints are actually encoded by means of
order constraints.

Definition 2.11 (Nested constraints).

Co-occurrence:
CC(M®T) =ar Ifr,(S(T1) B ST (T) A If,(ST(T2) = ST(Th))
CC(T) =g true in any other case

Order/exclusion:
OC(T1 +Ty) =af S(Th) <> S(Tp)
OC(T1 Ty) =af S(T1) <S(T2)
OC(T) =g true in any other case

Nested constraints:
NC(T) =def /\Ti subterm of T (CC(TI) A OC(TI) )

As a consequence of the above definition, nested constraints have the following property,
which may also be used as an alternative definition of nested constraints.

PROPOSITION 2.12 (NC(T)).
(i) NC(T1 + ) = (S(Th) <> S(Tz)) ANC(Ty) A NC(T3)
(ii) NC(T1&T3)

If 1, (S (T1) & ST (T2)) A If 1, (ST(T2) & ST(Th)) ANC(Ti) ANC(T2)
(i) NC(T1- T;) = (S(T) < S(T2))A
If1,(S™(Th) & S™(T2)) A f1,(S™(T2) = ST(T1)) ANC(Ti) ANC(T2)
(iv) NC(e) = NC(a[m..n]) = true

PROOF. Property (i) derives from CC(Ty + T) = true, and (ii) from OC(T;&T,) = true.
Properties (iii) and (iv) directly follow from Definition 2.11. O

By definition, when either A or B is “0”, both A < B and A <> B are true, hence the order
constraint associated to a node where one child has S(T;) = 0 is trivial; this typically happens
with a subterm T + €.

Ezample 2.13. Consider the type T = ((a + €)&b[1..5])- (¢ + d[1..x]), where we use a to
abbreviate a[1..1]. The application of the extraction rules to this type yields the conjunction
of the following constraints (see Figure 1):

e CC:a* & b" A ab* & cd™, where ab* and cd™ stand for {a, b}* and {c,d}", respectively
e OC:c<>d A ab<cd

e Flat:
abedt A Lower-bound
a?[1..1] Ab?[1..5] Ac?[1..1] Ad?[1..x]A Cardinality
upper(abcd) Upper-bound

The following theorem (that we proved in [20]) states that constraints provide a sound
and complete characterization of type semantics.
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Table 1. Computing the residual of a nested co-occurrence constraint.

Condition | aeA a€B a€eA a€B acA
Constraint | At = B | A= B" | At © Bf | A" © BT | A"
Residual Bt true Bt At true

Table 2. Computing the residual of a nested order constraint.

Condition |a€A |aeB |acA a€B acA
Constraint | A< B|A<B|A<>B|A<>B| A~
Residual A<B| A B~ A false

THEOREM 2.14. Given a conflict-free type T, it holds that:
well]l & wEFCT)ANCT)
PRrROOF. See proof of Theorem 16 in [20]. ]

This theorem allows us to reduce membership in T to the verification of ¥ C(T) A NC(T).

3 BASIC RESIDUATION ALGORITHM

We first present an algorithm to decide membership of a word w in a type T in time
O(|w| = depth(T)), where depth(T) is defined as depth(e) = depth(a[m..n]) = 1, depth(T; ® T,) =
1 + max(depth(Ty), depth(T;)), with @ € {+, -, &}. The algorithm verifies whether the word
satisfies all the constraints associated with T, through a linear scan of w. The basic observation
is that every symbol a of w transforms each constraint F into a residual constraint F’, to
be satisfied by the subword w’ that follows the symbol. We write F 5 F to specify that
F is transformed (or residuated) into F” by a. Residuation is defined in Tables 1 and 2 for
co-occurrence and order constraints, respectively. In all the cases not covered by Tables 1
and 2, we have that F 5 F. We apply residuation to the nested constraints only, since flat
constraints can be checked in linear time by just counting the occurrences of each symbol in
the word.

Residuation F -5 F’ is extended from symbols to words F ¢ F” in the obvious way':

FS*F
aw, a w
F—>*F’ 4 F—F AN F =>*F"
Observe that, by construction, residuation is a total function, that is, for every F and w,

there always exists a unique residual constraint F’ such that F S p

When a word has been read up to the end, the residual constraint is satisfied iff it is
satisfied by e, that is, if it is different from A* or false. This is formalized by the relation
F |V G, defined below, with G € {true, false}, where G, again, is uniquely determined by F
and w.

Definition 3.1 (F ¥ G).
FlYtrue &g (Fo'F A €efEF)
F |Y false ©g4or (F Z5FOA € [ F’)

The following lemma specifies that residuation corresponds to the semantics of our
constraints.
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LEMMA 3.2 (RESIDUATION). w |= F iff F | true.

PrROOF. We first prove that aw |= F iff F S5F A w = F’.

We reason by cases on F and a. Let us first consider F = A* = B*.

By definition of aw |= A* = B*, if a belongs to A, then aw = A* = B* iff w = B*.

If a belongs to B, then aw |= A" = B* holds.

Finally, if a does not belong to either A or B, then aw = A" = B* iff w |= A" & B*.

These are exactly the residuation rules for A* = B* in Table 1 - the identity rule for the
case when a does not belong to either A or B is implicit, since F % F holds for any case not
explicitly covered in the table.

The analysis of all the other constraints is equally trivial.

By induction, property aw = F < (F S5F A w [= F’) and Definition 3.1 imply that

wEF & (F3F A elF)
O

Residuation yields a membership algorithm of complexity O(|w|+|NC(T)|): for each symbol
a in w, and for each constraint F in NC(T), we read a and substitute F with the residual F’
such that F = F’. As a consequence of the previous lemma, a word w is in T iff no false or
A" is in the final set of constraints.

However, we can do much better than O(|w| = INC(T)|). First of all, we do not build the
constraints, but we keep them, and their residuals, implicit in a tree-shaped data structure
with size O(|T|). The structure initially corresponds to the syntax tree of T, that is, the tree
that can be built by parsing T, encoded as a set of nodes and a Parent[] array, such that,
for each node n, Parent[n] is either null (for the root) or a pair (n,,direction), where n, is
the parent of n, while direction is left if n is the left child of n,, and is right if it is the right
child (Figure 1).

The constraints, and their residuals, are encoded using the following arrays, defined on
the nodes of T:

e CCJJ: for each node n of T, such that A; and A; are, respectively, the symbols in the left
and right descendants of n, CC[n] is a symbol in the finite set {&,=, <, L*, R*, true}
that specifies the status of the co-occurrence constraint for n, as follows:

— ©:encodes AT © AyF;

— B: encodes AT = A7

— < encodes Ayt = At

— L*: encodes the residual constraint A7;
— R*: encodes the residual constraint AJ;
— true: encodes the constraint true.

e OC]J]: for each node n, such that A; and A, are, respectively, the symbols in the left
and right descendants of n, OC[n] specifies the status of the order constraint for n,
and may assume the following values:

— <: encodes A; < Ay;

— <>: encodes A; <> Ay;

— L7: encodes the residual constraint A;~;

— R7: encodes the residual constraint A;™;

— false/true: encodes the constraint false or true.

We also need the following arrays defined on the symbols in X:
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Parent cCc OC NodeOfSymbol

1]_ |- 1| |< a 8

211 lgft 2 | > b 5 Min Max
3|1 |right | 3 <> ¢ 6 a 171
41 2| left 4 d 7 b TTE
52 right | 5 T
6| 3| left 6 Nullable iR
713 |right | 7 | false ‘

8 | 4| left 8

9|4 |right | 9

Fig. 1. Syntax tree for T = ((a + €)&b [1..5])- (c + d*), and the corresponding algorithmic representation;
the two nullable nodes have a double line in the picture.

e NodeOfSymbol[]: NodeOfSymbol[a] is the only node n, associated with a type a[m..n],
for some m and n, and is null if no such node exists?;

e Min[]/Max[]: Min[a] and Max[a], when different from null, encode a constraint
a?[Min[a]..Max[a]], and are used for flat constraints only;

e Nullable: Nullable is not an array, but is just a boolean that is true iff T is nullable.

Table 3 reports the constraint symbols that are initially associated with a node n that
corresponds to a subterm T’ of the input type T. The co-occurrence constraint depends on
the nullability of T} and T;. The last line is just a small optimization, where we directly write
true rather than A* © 0%, and is typically applied to nodes T; + €.

After the constraint representation has been built, the MEMBER algorithm (Figure 3) reads
each character a from the input word w, scans the ancestors of a [m..n] in the constraint tree,
residuates all the constraints in this branch, and keeps track of all the resulting A* constraints.
At the end of w, it checks that all the A* constraints have been further residuated into
true — the generation of a false causes an immediate failure. It also verifies that each symbol
respects its cardinality constraints, using the Count[] array to record the cardinalities, and
the CardinalityOK function to verify the constraints. This final check is clearly linear in w.

2Recall that a symbol appears at most once in each conflict-free type.
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12 Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani

Table 3. Initialization of constraint annotations.

T’ | N(Ty) [ N(Ty) | CC[n] [ OC[n] |
T1-T2 | true | true true <
T1-T2 | true | false = <
T1-T2 | false | true < <
T1-T2 | false | false =3 <
T1&T2 | true | true true true
T1&T2 | true | false = true
T1&T2 | false | true = true
T1&T2 | false | false S true
T1+T2|S(T1) #0 A S(T;) #0 | true | <>
T1+T2 | S(T1) =0 v S(T;) =0 | true | true

Example 8.8. Consider again the type T = ((a + €)&b[1..5])- (¢ + d*) from Example 2.13.
Its syntax tree is reported in Figure 1.

Assume we read a word bbac. Figure 2 illustrates the evolution of tree constraints, together
with evolutions of T nested constraints (indicated in Example 2.13), while the word is
parsed. When b is read, the value of Count[b] is set to 1. The node 5 is retrieved from
NodeOfSymbol[b], and its ancestors (2,right) and (1,left) are visited. The constraint CC[2]
is =, the direction of b is right, hence the constraint becomes true. The constraint CC[1] is
©, the direction is left, hence it becomes R*. Node 1 is also pushed into ToCheck, since the
algorithm must eventually check that every R or L* has been residuated to true. Finally,
OC[1] is not affected. When the next b is read, Count[b] becomes 2 (we will ignore Count[]
for the next letters), and its ancestors are visited again, but this time none of them is
changed. When a is read, CC[2] is true, hence is not affected, CC[1] is R*, hence is not
affected, and OC[1] is also not affected. When c is read, its ancestors (3,left) and (1,right)
are visited. OC[3] becomes R~ and OC(1] becomes L7, so that the tree is now the one
represented in the bottom (on the right hand-side) in Figure 2.

The algorithm now verifies that Count[] respects the cardinality constraints and that
every A" node pushed into ToCheck has been residuated to true; since both checks succeed,
it returns true. If the word had been bbacbh ... instead, the algorithm would now find a b,
visit nodes (2,right) and (1,left), and, finding a L™ in node 1, would return false immediately.

THEOREM 3.4 (COMPLEXITY). Member(w,T) runs in time O(|T| + |w| * depth(T)).

PROOF. The constraint tree can be built in time O(|T]).

For every symbol a in w, the algorithm executes an inner loop, where only the nodes in
the path from the node of a to the root of the type are visited. For each node in this path, a
constant number of unit time operations is executed. As the length of the path is at most
depth(T), the body of the algorithm has O(|w| * depth(T)) time complexity.

The final check on ToCheck scans at most |T| nodes, while CardinalityOK can be evaluated
in linear time. The overall time complexity of the algorithm, hence, is O(|T|+|w|*depth(T)). O

THEOREM 3.5 (SOUNDNESS). Member(w,T) yields true iff we[T].

PROOF. Since, by Theorem 2.14, w € [T] & w | FC(T) A NC(T), to show that
Member(w,T) is sound, it suffices to prove that Member(w,T) returns true if and only if w
satisfies both the flat and the nested constraints of T. A constraint F is affected by a symbol
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CC=R*, OC=<

Initial tree after b and after bb

b b b b
at B bt S true = true abt o cdt S cdt S cdt

after bba after bbac

constraints unchanged cdt S true  ab <cd > ab™

Fig. 2. The evolution of the tree for T = ((a + €)&b [1..5])- (c + d*) while parsing bbac.

a only if a appears in F, hence, only if the node of T that corresponds to F has an a[m..n]
descendant. Hence, for each symbol of w, our algorithm residuates all the nested constraints
that are affected. The final test exists n in ToCheck with (CC[n] # True) verifies whether
any A" constraint remains at the end, while every false residual causes the algorithm to
immediately return false. For the flat constraints, the test in line 6 (if Node OfSymbol[a] is
null) excludes that w [£ upperS(T). When w = upperS(T), we have that w £ SIf(T) iff w
is empty and N(w) is false; this is checked in line 3 (if IsEmpty(w) and not Nullable). We
exclude w [£ ZeroMinMax(T) in line 30 — if not CardinalityOK (Count[], Min[[,Maz([]). O

4 STABILITY

We are now ready to present our linear algorithm.

The MEMBER algorithm visits all ancestors of NodeOfSymbol[a] every time a is found in
w, which is redundant. Indeed, consider a node n such that A; and A, are, respectively, the
symbols in its left and right descendants. Whenever the constraint of n has been residuated
because a symbol of A; has been met, there is almost no reason to visit n again because
of a symbol from A; (and the same holds for Ay). For example, a constraint A7 is satisfied
by the first a € A;. A constraint A;* B A," or A;" & Ap" is residuated to Aj. A constraint
A; <> A, is residuated to A,~. None of them would be affected by a second symbol from A;.
There is only one exception: if the constraint is A; < A,, then, even after a symbol of A,
has already been seen, a symbol from A, transforms the constraint into A;~, and a further
symbol from A; cannot be ignored, as it will cause the algorithm to yield “false”.

Formally, we have the following stability property.

LEMMA 4.1 (STABILITY). Let F be a constraint of shape At 5 A,*, At © Ay, A) <> Ay,
or Ay < Ay, with Ay disjoint from A,. For each symbol a and words w and w’ the following
implications hold:

A;-stability

waw’, a
F - *F /\"(F=A1<A2 A F'ZAI_) AacA = Va'eAl.F’—>F’
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14 Dario Colazzo, Giorgio Ghelli, and Carlo Sartiani

MEMBER(w, T)

1 (Min[],Max[],NodeOfSymbol[],Parent[],CC[],0C[],Nullable) := EncodeType(T);
2 SetToZero(Count]));
3 if (IsEmpty(w) and not Nullable)
4 return (false)
5 forainw
6 if (NodeOfSymbol[a] is null)
7 return (false);
8 Count[a] := Count[a]+1;
9 for (n,direction) in Ancestors(NodeOfSymbol[al)
10 case (CCln], direction)
11 when (= or ©, left)
12 then CC|n] := R*;
13 push(n,ToCheck);
14 when (& or &, right)
15 then CCin] := L*;
16 push(n,ToCheck);
17 when (& or LT, left) or (= or R*, right)
18 then CC[n] := True;
19 else ;
20 case (OC|[n], direction)
21 when (<> or <, right)
22 then OC[n] :=L7;
23 when (<>, left)
24 then OC[n] := R~;
25 when (L™, left) or (R™, right)
26 then return(false);
27 else ;
28 if (exists n in ToCheck with (CC[n] # True))
29 return (false);
30 if (not CardinalityOK (Count[],Min[],Max[]))
31 return (false);
32 return (true);
ANCESTORS(n)
1 if (Parent[n] is null)
2 return (emptylist);

3 else return (Parent[n] ++ Ancestors([Parent[n]]));

Fig. 3. The basic residuation algorithm.

A,-stability
F"S*F A acA, = Va ed, FSF

PROOF. By cases on the shape of F.

Assume F has the form A;" 2 A" or A;* © A,*. To prove A;-stability, we first observe
that, if a € A;, then F iy implies that either F/ = A,™ or F’ = true. So, A;-stability follows
in the first case since A; N Ay = 0, while it trivially follows in the other case. A;-stability
follows by a similar reasoning.
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Assume F has the form A; <> A,. To prove A;-stability, we first observe that, if a € Ay,

then F =5 F’ implies that either F’ = A,™ or F’' = false. So, A;-stability follows in the first
case since A; N Ay = 0, while it trivially follows in the second case. Ay-stability for A; <> A,
and A; < A, follows by a similar reasoning.
The remaining case is that F has the form A; < A, and F’ # A;~. We can have that either
F' = A; < Ay or F’ = false. In both cases A;-stability follows.
m]

The algorithm MEMBERSTAB, described in Figure 5, exploits the above property. In a
nutshell, it ‘deactivates’ the edges along the paths that are visited, since they do not need
to be visited again, unless an A; < A, node is residuated to A;~, in which case the paths
below A; are re-activated. In greater detail, when we move the first time from a node n to
Parent[n], the link from n to its parent is set to null, so that, when we arrive to n for the
second time, its ancestors are not visited again. We say that the uplink from n to its parent
is deleted. However, the child n is saved in ToRestore[Parent[n]], so that the ToRestore array
contains, reversed, all the links that have been deleted. It is worth noticing that, for each
node m, ToRestore[m] includes at most a left child m; and a right child m, with parent links
set to null, and that RestoreUpLinks(m) undoes these uplink deletions, and is eventually
recursively called on m; and m;.

The ToRestore structure is needed because a constraint A; < A, may be affected by a
second symbol from A, after it has been residuated into A;~ by a symbol from A,. Hence,
when A; < A, becomes A;~, we undo any uplink deletion that took place inside A;. Observe
that all the restored uplinks now converge to the first child of a A;~ constraint; hence, if any
of them is traversed again, a failure will immediately follow.

To illustrate, consider Figure 4 showing the evolution of the tree for T = a- (b- ¢) while
parsing bbcb. When the first b is read, the edge (4, 3) is traversed, the constraints associated
to node 3 are residuated, and the edge is deactivated and saved in ToRestore[3]. Then (3, 1)
is traversed, the constraints of 1 are residuated, and, since an L~ constraint is generated
for node 1, RestoreUpLinks(1) is evaluated to restore the edges in the left-hand side subtree
of node 1, but no edge is actually restored as that subtree has not been visited yet; hence,
after RestoreUpLinks(1) has been completed, the edge (3,1) is still deactivated. When the
second b is read, no edge is traversed since (4,3) is not active. When c is read, the traversal
stops at node 3, the constraints at 3 are residuated, and RestoreUpLinks(3) is evaluated, thus
restoring the edge (4,3); then (5,3) is deactivated and saved into ToRestore[3]. Now, when
the third b is read, the just restored edge (4, 3) is traversed, and the algorithm returns false,
since node 3 is marked with L™. The edge (4,3) has been traversed three times: with the first
b (deactivation), when ¢ has been read (reactivation by RestoreUpLinks(3)), and finally when
the last b has been read. After the third traversal, the algorithm returned false.

THEOREM 4.2 (SOUNDNESS). MemberStab(w,T) yields true iff we[T].

PrOOF. The algorithm dynamically splits the edges of the parse tree of T in two sets: the
active edges that are stored in the Parent[] array and the inactive edges that are stored in
the ToRestore[] array. Any time a link goes out the Parent/] array (line 14) it moves into
the ToRestore[] array (line 34), and vice versa (function RestoreUpLinks[[). We must hence
prove that any time a symbol does not affect a constraint because of an inactive link, that
constraint was actually stable with respect to that symbol.

The path up from a symbol a to a constraint F crosses an inactive link only at a node n
that is above a and is below F, and only if n has already been reached, meaning that another
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CC=L*, OC=L"
a : CC=R*", OC=<
b @ c
Initial tree After b: residuation and edge discarding
After bb: no action

CC=L* OC=L"

e CC=true, OC=1"

After bbc: the (4,3) edge is restored
After bbcbh: return false

Fig. 4. The evolution of the tree for T = a- (b- ¢) while parsing bbcb.

symbol in S(n) has been used, hence all the constraints above F are now stable with respect
to any symbol in S(n), unless F derives from A; < A,. Consider now any F’ that derives from
A; < A; and has a shape A;~. This is the only constraint that is not stable with respect
to a symbol that comes from A; after another symbol from A; has been met: indeed, any
symbol from A; must be processed, and it will cause the algorithm to return false. This
happens since any time a constraint A; < A; is residuated to A;~, the algorithm restores all
the deleted uplinks that are found inside A; (line 26). O

PROPOSITION 4.3 (LINEAR COMPLEXITY). MemberStab(w,T) has O(IT| + |w|) complexity.

PROOF. The algorithm has a set-up phase of cost |T|, as in the base algorithm. Then, for
every symbol a of the word, we increment the counter of a and we follow the not-yet-deleted
uplinks inside T, performing constant-time operations for each link, with the only exception
of link restoration, that has constant cost for each restored link. Every link is traversed at
most three times: at the first traversal it is deleted and saved; the second traversal is during
a restoration phase, when it is traversed in the parent-to-child direction and restored, and
in this phase, we only restore nodes that are below the left hand side of an L™ constraint.
Hence, if one link is traversed again after these two visits, then a failure arises, so that no
link can be traversed more than three times. Hence the phase of word-checking has a total
O(Jw|) component related to character scanning and counter maintenance plus a total O(|T|)
component that is related to the less than 3 traversals of each link inside T. The final steps,
where ToCheck is verified and CardinalityOK is invoked, are both linear in min(|T|, |w]) -
they only involve a constant-time operation for each distinct character in S(T) N S(w).

O
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MEMBERSTAB(w, T)

1 (Min[],Max[],NodeOfSymbol[],Parent[],CC[],OC[], Nullable, Symbol[]) := EncodeType(T);
2 SetToZero(Count]));
3 SetToEmpty(ToRestore[]);
4 if (IsEmpty(w) and not Nullable)
5 return (false);
6 for ainw
7 if (NodeOfSymbol[a] is null)
8 return (false);
9 Count[a] := Count[a]+1;
10 n:=(NodeOfSymbol[a]);
11 while (Parent[n] is not null)
12 child := n;
13 (n,direction) := Parent[n];
14 Parent[child] := null;
15 case (CC|n], direction)
16 when (= or &, left)
17 then CCln] := R*; push(n,ToCheck);
18 when (& or &, right)
19 then CCln] := L*; push(n,ToCheck);
20 when (& or LT, left) or (= or R*, right)
21 then CC[n] := True;
22 else ;
23 case (OC|[n], direction)
24 when (<, right)
25 then OC[n] :=L;
26 RestoreUpLinks(n)
27 when (<>, right)
28 then OC[n] :=L";
29 when (<>, left)
30 then OC[n] := R~;
31 when (L7, left) or (R™, right)
32 then return (false);
33 else ;
34 ToRestore[n] := append((child,direction), ToRestore[n]);
35 endwhile
36 if (exists n in ToCheck with (CC[n] # True))
37 return (false);
38 if (not CardinalityOK(Count[],Min[],Max[]))
39 return (false);
40 return (true);
RESTOREUPLINKS(n)
1 for (nc,direction) in ToRestore[n]
2 Parent[nc] := (n,direction);
3 RestoreUpLinks(nc);
4  ToRestore[n]:=();

Fig. 5. Basic residuation algorithm with stability.
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5 FLAT MEMBERSHIP ALGORITHM

In the literature a third form of language product has been studied, apart from concatenation
and interleaving. It is called unordered concatenation, denoted with %, whose semantics is
defined as follows, where S, is the set of all permutations of {1...n}.

wE [[Tl%Tg% . %Tnﬂ — dreS,.we [[Tzr(l)' T,r(z)~ R Tﬂ(n)]]

Unordered concatenation has been studied by Hovland in [30], and differs from shuffling. As
an example, acb € [(a- b)&c], but acb ¢ [(a- b)%c]]. The % operator is not associative, hence
it is quite unnatural to combine it with binary type operators and binary constraints.

For this reason, in this section we introduce a ‘flat’ version of our system, that is, a version
that includes % and is based on n-ary operators.

5.1 Flat constraints

We now define flat types and n-ary constraints. Flat types obey the following grammar:
Tu:= € |lammn] | Ti®...0T; | i+...+T;

where ® ranges over {-, & %}, m€ (N\{0}), n € (N, \{0}),n>m and j > 2.

The semantics for Ty-...- T, T1&...&T, and T; + ... + T,, derives unambiguously from
the binary case, since all binary operators are associative (Section 2), while semantics of
T1%...%T, is defined as already indicated above.

Constraints are extended with a new n-ary constraint for % types. Hence, they are defined
as follows, where a € ¥ and A, A; C %, m,j € (N\{0}), n € (N, \{0}), and n > m:

F = %{A1,...,Aj} | A* | A= B* | a?[m..n] | upper(4) | a<b| FAF | true

Semantics of % constraints is defined as follows.

wlE %{A,..., Ay} © dresS, wl A,,(l) <...< A,r(n)

We now introduce some abbreviations, reported below. The constraint Ay™ & {A*, ..., A"}
encodes a conjunction of n co-occurrence constraints with the same left hand side. The
constraint A; < ... < A, imposes an order on symbols from Ay, ..., A, with universal quan-
tification semantics: for each pair i < j, every symbol from A; must precede every symbol
from Aj, which holds trivially when the word contains no symbol from A; or no symbol from
A;. The constraint <>(A;,...,An) encodes pairwise mutual exclusion: one symbol from A;
precludes presence of any symbol from any other set A;, since the two symbols would violate
one order constraint or the other one. The constraint A; < %{A,,...,A,,} fixes the first set
in the permutation, that is, it is satisfied when A; < Azp) < ... < Ay(m) is satisfied for at
least one permutation x. Finally, we will abbreviate conjunctions as commas and we will
re-use the previously defined abbreviations, such as A™.

A0+ = {A1+,...,An+} =def (A0+ @Al-'—)/\ /\(A0+ lﬁAn*—)

At ) =gef true

A <...<A, Sdef  M<i<jzn Ai < Aj

<>(A1,...,Am) =g (A1 <...<Ap)ANAp<...<Ap)

A1 < %Az, ... A} =gf (A1 <(A2U...UAp)) A %{As,...,An}
Fi,...,Fy =dqr FIN...ANFy
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We can now generalize constraint extraction. A co-occurrence constraint expresses that, if
one symbol from the product occurs, then any factor that is not nullable must contribute a
symbol. The constraint is true when all factors are nullable. Order and exclusion constraints
for concatenation and union are obvious. The % constraint for the % operator is also natural:
since the unordered concatenation type is the union of the permuted ordered types, then
the constraint is the disjunction of the corresponding permuted order constraints. While flat
constraints ¥ C(T) are not affected, since they only depend on atoms, nested constraints
NC(T) need to be redefined. We still have

NC(T) =ar [\ (CCT)AOCT))
T; subterm of T

and:

CC(Mi®...0Ty) =af (Vie.nS(T)))" = { S*(T;) | not N(Ty) }
OC(Ty-...-Tp) =df S(T) <...<5(Ty)
OC(Ty +...+T,) =g <>(S(T1),...,S(Ty))
OC(T1%...%T,) =gf %{S(T1),...,S(Tn)}
In order to prove soundness and completeness of constraint extraction we need a couple of

easy properties. We use ® to indicate any n-ary operator, that is, one of {-, +, &, %}.

NOTATION 5.1 (wja). We indicate with wia the projection of w on symbols in A, that is,
the word obtained by removing from w every symbol that is not in A.

LEMMA 5.2 (PROJECTION). For any constraint F not including any formula upperS(A),
for any A:
B2 S(F) = (weFewplkF)

LEMMA 5.3 (BINARY). For any flat types Ty, ..., Ty:
wENCTH®...0T,)) = WENCI)DAWENCTL®...®8T,))
wENCT®...0T,) = (wsm ENCT) Awsme...e1,) FNC(L®...®T,))
We can now prove that flat constraints fully characterize flat types, as expressed by the
following property.
LEMMA 5.4. For any flat type T:
we[l] & wi=FCT) ANC(T)

PRrROOF. Throughout this proof, we will be using the projection Lemma 5.2 without
mentioning it, and the following corollary:

a) w |= ZeroMinMax(T; ® ... ® T,) © w |= ZeroMinMax(Ty) A ... A ZeroMinMax(T;,)
We first prove completeness: w € [T] < w [ FC(T) ANC(T). To this aim, we prove the
following property
wis(ry E ZeroMinMax(T) A SIf(T) ANC(T) = wis(r) € [T]

which implies the desired entailment since by w |= upperS(T) we have w = w)g(7).

We first consider the special case ws(r) = € which easily follows: e |= SIf(T) implies N(T),
hence € € [T], that is wis(r) € [T].

We now consider the case when ws(r) # €, reasoning by cases and by induction on the
size of the type. We use Lemma 5.3 to reduce the complexity of the proofs, in order to treat
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flat types as if they were binary: we will inductively reduce a type T; ® ... ® T,, to a type
T, ®...®T,, which is not truly a subterm of the first one, since the operators are n-ary, but
has a smaller size, hence can be used for an induction step.

Case T=T;1-...- Ty with n > 2.

By wis(r) = ZeroMinMax(T - ...- T,) and a), we have wisy | ZeroMinMax(T;) and
wis(r) |= ZeroMinMax(Ty . . - T,). By conflict-freedom of T we have wis(r;) = ZeroMinMax(T)
and ws(1,...1,) | ZeroMinMax(Ts- .. .- Ty).

By wis(ry E NC(T;-...- T;) and Lemma 5.3 we have wis(r,) F NC(T1) and wisr,....1,) F
NC(Tz-...-Tp).

By wis(r) E OC(Ti- .. .- T,) we have

wisr) | S(T1) < (S(Tz) V... U S(Ty)) (i)
while by Lemma 5.3 and ws(z;....1,) E CC(Ty-...- T,,) we have
WIS(Ty...T,) |E CC(Tz-...- Tp) (i1)
Now, let wisr) = aj...a, and distinguish the following two exhaustive, and mutually

exclusive cases:

(1) a € S(T])

(2) a1 € S(Ty-...-Ty)

In case (1), wis(ry) |= SIf(T1) is immediate. We have to prove that wis(r,...1,) = SIf(Tz. . :Ty).
If N(T-.. .. Ty,), then we are done. If =N(T-.. ..T,) then there exists 2 < i < n such that =N(T;).
By wis(r) = CC(T) and by a; € S(T) we have that wis(r) IF S(T;)*, hence wis(ry) S(T)*,
hence wis(r,....1,) | S(Tz- ... Ty)™, hence wisry....1,) = SIf(Tz- .. .- Ty).

Summing up, we have that w|s(r,) |= ZeroMinMax(T;) A SIf (Ti) A NC(T1), so by induction
we have wg(r,) € [T1]. Similarly, we have wis(r,...1,) F ZeroMinMax(T,- .. .- T,,) A SIf (T, .. .-
T,) ANC(T;-...-T,), hence W|S(Ty...T,) € IITZ ot Tnﬂ

From wisr) = S(T1) < (S(T2) U...US(T,)) we deduce that wis(ry....1,) = Wis(ny)® WIS(Ty...Tn)>
hence wis(ry € [Ti- ... Tn].

In case (2) we observe that, by wisiry E S(T1) < (S(Tz) U ... U S(T,)), we have that w
contains no symbol coming from T;. This implies N(T;) (suppose =N (Ty), then, by wisr) =
CC(Ty-...- Ty), we obtain that w |= S*(Ty), which is absurd). So we have wsr,) = € € [T1],
therefore we have [T+ ... T,] € [T1- ...- Tn]. By reasoning as for case (1) we obtain
W= W|S(Ty...T,) € IITZ et Tnﬂ - [[Tl et Tnﬂ

Case T=T1%...%T, with n > 2.

By the definition of nested constraint extraction, NC(U) =g Av’ subterm of v (CC(U") A
OC(U’)), it follows that the hypothesis wis(ry |= ZeroMinMax(T) A SIf(T) A NC(T) can be
rewritten into

wis(ry [ ZeroMinMax(T)ASIF(T)A%{S(Ty), . . ., S(Ty)YACC(T1% . . . %T) ANC(Ty)A. . .ANC(Ty)

We observe now that for any permutation = on {1,...,n}, we have (*) CC(T1%...%T,) =
CC(Tx1)* ... Trn)). This trivially follows from the fact that co-occurrence constraints
are order-independent. By definition of wisir) = %{S(T1),...,5(Ty)}, we have that wisir) =
S(Tr@)) < ... < S(Tr(n)) for a permutation = on {1,...,n}. For that =, by (*) we have
wis(ry F CC(Trq)- ...  Tr(n)). So by the initial hypothesis and by the definition of NC()
previously recalled, we have w|s(ry = ZeroMinMax(T) A SIf(T) ANC(Tr(1): - - - Tr(n))- Now, by
reasoning as in the previous case for T = Ti- .. .- T,, we obtain that wisr) € [Tr1)- - - . Te(m)l,
which concludes the case.
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Case T = T1&...&T, with n > 2.
By reasoning as for the - case, we have that:
® wis(ry) F ZeroMinMax(Ty) and wis(r,&...&T,) F ZeroMinMax(Tz& . . . &T,);
® wis(ry) |E CC(T1) and wis(r,&...41,) F CC(L& ... &T,);
® wisry) ENC(T) and wis(r,s...a1,) F NC(L&. .. &Ty).
Now, let wis(r,) = i and wig(n&...&1,) = W2. As for the- case, we obtain w; |= SIf(T;) and
wy |= SIf(T,& . . . &T,,). So the case follows by induction as in the previous case, by observing
that w € w;&w,.

Case T=Ty+...+ T, with n > 2.

By wis(r) E<>(S(T1),...,S(Ty)) we have that wisr) = ws(r,) for an i € {1,...,n}. Since
w|s(T;) is not empty, we have that wis(r,) |= SIf(T;). From wisr) |E NC(T) we have wisr,) =
NC(T;) by definition, and wys(r,) = ZeroMinMax(T;) by a), so by induction we can conclude
wiscr;) € [Ti], which proves the case.

Case T = a[m..n].
The case is easy as w # € and w |= SIf(T) with =N(T). So we have that ws) is not
empty and only contains the a symbol. By ws(r) = ZeroMinMax(T) we directly have that

wis(r) € [a[m..n]].

We now prove soundness:
we[T]= wk FCT) ANC(T)

We first prove w € [T] = w |= FC(T). Counsider first the SIf(T) constraint: if w = €, then
N(T), so SIf(T) is true. Otherwise w contains at least one symbol in S(T), hence w |= S(T)".
The other flat constraints are immediate by induction.

To prove w € [T] = w = NC(T) we proceed by structural induction and case distinction

on T. The case T = a[m..n] is trivial. We also assume that w # € as € trivially satisfies any
order and co-occurrence constraint.

T=Tq ... - Ty
By hypothesis and conflict-freedom we have (*) w = wy-...- w, with w; = ws(r,) and
w; € [T;], with i € {1,...,n}. So by induction we can assume w; |= NC(T;). So we must only

prove that w = OC(T) and w |= CC(T). w £ S(T7) < ... < S(T) directly follows by (*) and
conflict-freedom of T (sets S(T;) are pairwise disjoint). Concerning w |= (Uje1..nS(T3))" &
{ S*(T;) | not N(T;) }, for any i € {1,...,n} such that N(T) does not hold, by w; € [T;] we
have w; £ S(T;)*. So the case is proved.

T=T1%...%I, with n > 2.
By hypothesis we have that w € [T,;1)- ...- Trm] for a permutation 7 of {1,...,n}. So the
case follows by proceeding as above, and by the definition of the semantics of % constraints.

T=T1+...+T,.

W.l.o.g. we can assume w € [T;]. By conflict-freedom of T we have that S(w) N S(T;) = 0
for i # j. This implies w =<>(S(Ty),...,S(T,)). Moreover, by induction we can assume
w = NC(T;) as w € [T;]. We also have w |= NC(T;) for i # j, since w | NC(U) always holds
when S(w) N S(U) = 0 (this property can be easily proved by induction).

T=T1&...&Ty,. By hypothesis and conflict-freedom we have w € w1 & ... &w, with w; =
wiscr;) and w; € [T;], with i € {1,...,n}. So by induction we can assume w; = NC(T;). The
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Table 4. Residuals of constraints for flat types.

Condition Constraint Residual after a

acANacA; A+l=>{A1+,...,An+} A1+,...,Al‘_1+,Ai+1+,...,An+
acAANViagA; | AT AT, Ay A, AT

{IEAi AlJr,...,An+ A1+,...,Ai_1+,Ai+1+,...,An+
achj <>(A1,...,An) A7, LA Ajrr T, L AT
ach; A1, LA false

acAj,j>i A1, LA LA <L <Ay | AT, LA LA <L < Ay
acAj,j<i A7, ., Ai-1 A <... <A, | false

acA; %kef1...n} 1Ak} Aj < %kept...apngj1 1Ak}

acAj, AkesAr > Ai < TrgsutintAr) | AkesuiinAk s

jg(Sutil) Aj < Fkg(suti intAk)
achj,j€ S AkesAr A < %k¢(SU{i}){Ak} false

case is proved by reasoning as in the - case, with the exception that only w £ (Ujer. nS(T3))" =
{ S*(T;) | not N(T;) } needs to be proved. O

Constraints for flat types are residuated as follows (Table 4). A co-occurrence constraint
Ayt = {AT,. .., At} reduces to AT, ..., A, when a symbol from Ay is read which is not
in any A;: by definition, if a symbol in A, is found, any implied set must be satisfied as well.
This happens when the node is reached through a child that is nullable. If the symbol is
both in Ay and in Aj, then the residual is Ai*,...,Aj.1*, Aj ™, ..., Ap", since A;* has been
satisfied already. This is the case when the symbol is reached from a non-nullable child. A
constraint A;*,...,A," is residuated by deleting a set A; whenever a symbol from that set
is read.

Mutual exclusion constraint <>(Ay,...,A,) becomes A;~,...,Aj—1 ,Aj+1,..., A, after a
symbol in A; is read.

Order constraint A; < ... < A, specifies that, when a symbol from A; is read, with i > 1, no
symbol from A;...A;_; can be met anymore, and the order for A; ... A, must be respected,
hence it generates a conjunctive constraint A;~,...,A;—17,A; < ... < A,. This residuated
constraint is in turn residuated in a similar way when a symbol from A; with j > i is read:
more sets are moved in the forbidden prefix, and j becomes the first of the still allowed sets.
When a symbol from A;...A;_; is read, the constraint is violated. When a symbol from
A; is read, nothing happens. In Table 4 we only give the rules for the exclusion plus order
constraint, since the pure order constraint A; < ... < A, is just the special case when the
prefix set is empty.

The residuation of % constraints is tightly related to that of order constraints. When a
symbol from A; is read, %{A1,...,A,} is residuated to A; < %{A1,...,Ai—1,Ai+1,...,An}. If we
keep reading symbols from A;, the constraint is left unchanged; however, when we first meet a
symbol from Aj;, j # i, then we obtain a constraint of the form A;™, A; < %re(1, ... n),kei kzjlAx}
This constraint explicitly forbids any other symbol from A;, so that, if we read any of them,
the residuation returns false; symbols from A; are, instead, irrelevant, while symbols from
Ag (k #1, k # j) move A; to the forbidden part of the constraint.

As with binary constraints, residuation of n-ary constraints yields an algorithm to verify
whether a word satisfies a constraint.

LEMMA 5.5 (N-ARY RESIDUATION). For any n-ary constraint F: w |= F iff F " true.
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PROOF. We first observe that aw |= Fiff F5>F A wl= F’, reasoning by cases on F and
a, along the lines discussed in the text. Then we conclude that w |= F iff (F B0 F A e = F')
by induction on the length of w.

O

Observe that, by definition, the only constraints that are not satisfied by an empty word
are conjunctions that include some A* (we do not need to explicitly consider false, since
false is defined as 07").

LEMMA 5.6.
Fi,...,F,l¢ false & dief{1,...,n}dA F,=A"
Fi,....,F, ¢ true & Vie{l,...,n}VA F;#A"

5.2 The flat algorithm

In order to devise a membership algorithm based on n-ary constraints, we refine the data
structures of the binary residuation algorithm, as follows. Co-occurrence constraints are
represented by an array CC[] of records with the following fields: CC[n].kind € {=, A*, true},
CC[n].needed[] is an array of boolean values {true,false}, one for each child of n, and
C(C[n].neededCount € N. Informally, if we have a type T; ® T, ® T3, where T is the only
nullable child, we have a constraint SY(T; ® T, ® T3) = (S*(T3), S*(T3)), and we represent
it through a record cc® with “cc.kind=(=)", with cc.needed[]= [false, true, true], specifying
that S*(Ty) is “not needed” (since T; is nullable), while S*(T;) and S*(T3) are “needed”; we
also have cc.neededCount = 2.

The first time we meet any child i of a type 1 ® ... ® T; ® ... ® T,,, we switch the kind of
cc from (B) to (A™), and we set cc.needed[i] to false. For any other child i’ we meet, we will
also set its cc.needed[i’] value to false. Every time we switch a needed[] entry from true to
false, we also decrease the value of cc.neededCount, so that any constraint of kind (A*) is
satisfied when its cc.neededCount is down to zero.

Order constraints for a node n with m children are represented by the record OC[n] with
fields kinde{™ <, <>, %, %, A”, true}, current € {1...m}, and forbidden, which is an array of
m booleans, one for each child; the boolean array is only used for residuated % constraints,
and initially only contains false.

If we have a type Ty-. . : T, the corresponding record oc? has oc.kind=(~ <) and oc. current=1,
which corresponds to a constraint S(Ty) < ... < S(T,,,). More generally, oc.kind=(" <) with
oc.current=i, represents a constraint A;~,...,A;—1,A; <... < Ap, hence, when we meet a
symbol in S(Tj), if j < oc.current we return false, and otherwise we just update oc.current
to j.

A type Ty + - - - + Ty, is represented by a record oc with oc.kind=(<>), which is residuated
into oc.kind=(A~) and oc.current=i when a symbol in S(T;) is met, and yields false if, later
on, a symbol in S(T;/) is met with i’ # i.

A type T1%. .. %T,, is represented by a record oc with oc.kind=(%), which is residuated
into oc.kind=("%), oc.current= i when a symbol in S(T;) is met. If in a subsequent step a T;
symbol is met, with i # j, then we set oc.current= j and oc.forbiddenfi] takes true. In general,
if a T, symbol is met: if oc.current= h nothing happens, if oc.forbidden[h/= true then false is
returned, otherwise oc.forbiddenfoc.current] is set to true and oc.current is set to h.

3¢c denotes a generic record of CC[], e.g., CC[j].
40c denotes a generic record of OC[], e.g., OC[j].
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To sum up, we represent constraints, and their residuals, through the following two arrays,
where we assume that n is the node that corresponds to either a type T=T; ® ... T, or a
type T=T1 +...+Tp.

e CC[]: CC[n] is a record with fields kind, needed[], and neededCount. The meaning of
CC[] depends on the value of CC[n].kind, as follows:
— B: CC[n] represents a constraint

(Vier..mS(T))" 2 {S(Tk)) ™ - - > S(Te()) ™)
where j is CC[n].neededCount, and where {k(1),...,k(j)} enumerates the indexes i

such that CC[n].needed[i]=true.
— A*: CC[n] represents a constraint
S(Tra)) ™, -, STy ™
where j is CC[n].neededCount, and where {k(1),...,k(j)} enumerates the indexes i
such that CC[n].needed[i]=true.
e OCJ]: OC[n] is a record with fields kind, current, and, if n is a % type, forbidden[].
The meaning of OC[] depends on the kind field, as follows (j is assumed to range in

1...m with m > 1):
— T <: this is a constraint

A1_, . ,Aifl_,Ai <...< Am
where A; = S(T;), and i =CC[n].current. When i = 1, this constraint is just A; <
<A
— <>: this is a constraint <>(As,...,An,), where A; = S(T;);
— A7: this is a residual constraint
Al_’ o ’Ai—l_’Ai+1_9 e ’Am_

where A; = S(T;) and i =0C[n].current;
— %: this is a constraint %{A,...,A;} where A; = S(T});
— ~%: this is a residual constraint
AkesAr , Ai < Topg(suti) (Ak}
where A; = 5(T;), i =0OC([n].current, and S = {i | OC|[n].forbidden[i] = true}.

We present the MEMBERFLAT algorithm in Figure 7. For simplicity, we omit parts similar
to those of previously presented algorithms. In this algorithm Ancestors(n) returns a list of
pairs (father, pos), where father is the father node of n and pos is the relative position of n
in the list of children of father; this function is an n-ary generalization of the Ancestors(n)

function used in the binary algorithm.
The next example illustrates its behaviour.

Ezample 5.7. Consider the type T = (a%(b&c))- (d*)- (e + f +g) (Figure 6), where we use x
to abbreviate x [1..1] and x* to abbreviate x [1..x] + €.

The record OCT[3] is null since only one child of node 3 has a non-empty set of symbols.
Assume we read a word cbadddgdga. When c is read, nodes 6, 2, and 1 are visited (line 7),
and their corresponding constraints are residuated to: CC[6]=(A",[t, f],1) (lines 9 - 12),
OC[2]=("%,2,[f, f]) (lines 26 - 28), CC[2]=(A",[t, f],1) (lines 9 - 12), CC[1]=(A*,[f, f,1t],1)
(lines 9 - 12), OC[1]=("<,1) (lines 17 - 20). The constraint OC[1] is actually unaffected,
because both current and the child position pos are equal to 1 (lines 18 - 19). Nodes 6, 2 and
1 are inserted in ToCheck, since they now have an A* kind (line 11). When b is read, CC[6]
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CC = abcdefg" = {abc’, efg'},
(1 0C=abec < d< efg

CC=abc" = {a*,bc*) (4) OC=<>(ef 9

0OC=%(a, bc) dE

= {b*, ¢}

CC: kind, needed, nCount

Parent (pos) oAl 2 OC:_kind, current, forbidden
o= 2> [ |2 i<t

2]1]1 3 2| % Lf. f]

31112 4 3

41113 5 4| <> | -

Sl2]!t 6 5T |2 5

Fig. 6. Representation of T = (a%(b&c))- (d*)- (e + f + g).

becomes (true,[f, f1,0) (line 14), while other constraints in the path up to the root remain
unchanged (as we will see in the next section, due to stability). When a is read, CC[2]
becomes (true,[f, f1,0) (line 14), since its neededCount is 0, and OC[2]=("%,1,[f,t]) (lines
29 - 34). When d is read, 3 and 1 are visited; CC[1] is unaffected, since CC[1].needed[2]
is already false, while OC[1] becomes (- <,2) (lines 17 - 19), which means that symbols
from the first subtree are now forbidden. The next two d’s require two new visits to 3 and 1,
which have no effect. When g is read, OC[4] becomes (A~,3) (lines 21 - 23), CC[1] becomes
(true, [f, f,f1,0) (line 14), and OC[1] becomes (~ <,3) (lines 17 - 19). If the word ended
here, the algorithm would return true, since all nodes in ToCheck have now kind true. But
now a new d is read, which makes the algorithm stop with false (lines 17 - 20), because
pos (= 2) < OC[1].current (= 3).

THEOREM 5.8 (SOUNDNESS). MemberFlat (w,T) yields true iff we[T].

ProOOF. We first prove the left-to-right implication. As for MEMBER, each time a symbol
a in w is met, all the nested T constraints including a are residuated according to flat
constraints residuation rules (Table 4). If the main loop consumes all the symbols of w,
then we can conclude that all ordered constraints have been residuated to true. Then the
check of absence of nodes with C[n].kind # true ensures that also co-occurrence constraints
have been residuated to true. So by Lemma 5.5 we can conclude that w meets all T nested
constraints. Concerning flat constraints the reasoning is similar to that for the MEMBER
algorithm (Theorem 3.5). So we can conclude that if MEMBERFLAT(w,T) yields true then
all T constraints are met by w, and therefore we[T].

Now the right-to-left implication. If we[T], then w satisfies all T constraints. By Lemma
5.5 we have that any nested T constraint residuates to true, hence the algorithm successfully
parses all w symbols and successfully passes the final check for co-occurrence constraints
(if (exists n in ToCheck with (CC|n].kind # true))). Also, the algorithm successfully checks
other flat constraints. Hence we conclude that MEMBERFLAT(w,T) yields true.

[m]
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MEMBERFLAT(w, T)

1 (Min[],Max[],NodeOfSymbol[],Parent[],CC[],0C[],Nullable) := EncodeType(T);
2 SetToZero(Countl));
3 if (IsEmpty(w) and not Nullable) return (false);
4 forainw
5 if (NodeOfSymbol[a] is null) return (false);
6 Count[a] := Count[a]+1;
7 for (n,pos) in Ancestors(NodeOfSymbol[a])
8 case CCln].kind
9 when (=)
10 then CC[n].kind := A™;
11 push(n,ToCheck);
12 ResiduatePlus(CCln],pos);
13 when (A1)
14 then ResiduatePlus(CCln],pos);
15 else ;
16 case OC|[n].kind
17 when (7<)
18 then if (pos >= OC|n].current)
19 OC|n].current := pos;
20 else return (false);
21 when (<>)
22 then OC|n].kind := A7;
23 OCl|n].current := pos;
24 when (A7)
25 then if (pos # OC[n].current) return (false);
26 when (%)
27 then OC|n].kind := ~%;
28 OCl|n].current := pos;
29 when (7%)
30 then if (OC|n].forbidden[pos])
31 return (false);
32 elseif (pos#OC|n].current)
33 OC|n].forbidden[OC[n].current]:=true;
34 OC|n].current:=pos;
35 else ;

36 if (exists n in ToCheck with (CCln].kind # true)) return (false);
37 if (not CardinalityOK(Count[],Min[],Max[])) return (false);

38 return (true);

RESIDUATEPLUS(ccn, childPos)

1 if (ccn.needed[childPos])

2 cen.needed[childPos] := false;
3 cen.neededCount := cen.neededCount-1;
4 if (ccn.neededCount =0) cen.kind := true;

Fig. 7. Flat membership algorithm.

This version of the algorithm has O(|T| + |w| * flatdepth(T)) time complexity, where
flatdepth(T) is the depth of the type after all operators have been flattened. In practice,
flatdepth(T) is almost invariably smaller than three, even in the biggest XML types, since
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types usually get big because of a very wide choice of alternatives or a very long concatenation
of symbols, while a deep alternation of different operators is extremely unusual (see [5]).
Hence, this algorithm is in practice “almost linear” even before stability is considered.

THEOREM 5.9 (COMPLEXITY). MemberFlat(w,T) runs in time O(|T| + |w| = flatdepth(T)).

ProOOF. The algorithm comprises two nested for loops and a final scan on ToCheck. The
outer loop is executed once for each symbol in the word w; for each symbol a in w, the
inner loop explores the path from the node containing a to the root of the parse tree, and
executes a fixed number of unit time operations. As a consequence, the two nested loops
require O(|w| = flatdepth(T)) operations.

The control on ToCheck requires to scan at most |T| nodes, while CardinalityOK can be
evaluated in O(|T|) time. The encoding of T can be built in O(|T|). As a consequence, the
MemberFlat algorithm has O(|T| + |w| = flatdepth(T)) time complexity.

O

5.3 Exploiting stability
The algorithm MEMBERFLAT can be further optimized by exploiting stability, which still

holds for n-ary constraints. The resulting algorithm is based on the following stability lemma,
and is presented in Figure 8.

LEMMA 5.10 (N-ARY STABILITY). Let F be one of the following constraints

At {AY, . AT
<>(A1,...,Ap)

with A2 (A U...UA,), and Ar and A; pairwise disjoint when k # j.
For each symbol a, words w and w’, and i such that 1 <i < n, the following implication
holds: ) )
F'S“FracA; = VaeA . FSF

PROOF. By cases on the shape of F.
Assume F has the form A* = {A;",...,A,*"}. To prove A;-stability, with 1 < i < n,

we first observe that, if a € A;, then F Ry (recall that A; € A) implies that either
F' = Ai1+7 ce ,Aik+, with {Ailv e ,Aik} Cc {Al, [N sAi—lsAi+1s N ,An}, or F’ = true. SO, Ai-
stability follows in the first case since A;, N A; = 0, while is trivial in the second case.

Assume F has the form <>(Ay,...,Ay). Then F iy implies that either F/ = A;~,...,A;_1~
Aiy1,...,Ay” or F’ = false. So, A;-stability follows by definition of residuation in the first
case since A; N Ax = 0 with i # k, while is trivial in the other case.

[m}

The algorithm MEMBERFLATSTAB extends MEMBERFLAT with stability and is listed in
Figure 8. Every time the visit moves from a node ¢ to its parent p, the pointer Parent|c]
is deleted. In this way no node is reached twice from the same child, which, by stability,
would be useless, apart from the non-stable constraints. However, stability does not hold
for the A;™,...,AiLi,Ai < ... <Ay and A7, ... A7 Aj,, < %4 .,A;j,} constraints.
For these constraints the link from the children that correspond to the forbidden part are
reactivated every time the current focus is moved. As in the binary case, the reactivation of
the up-links must be recursively executed on all the descendants. To allow this reactivation,
every time the link from c to p is deactivated while moving from c to p, the pair (c, pos),
where pos is the position of ¢ among the children of p, is stored in ToRestore[p]. Hence, when

i+20 "
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p is required to restore its up-links, it can broadcast the same request to all the children
that deleted their up-links.

MEMBERFLATSTAB(w, T)

1 if (IsEmpty(w) and not Nullable) return (false);
2 forainw

3 if (NodeOfSymbol[a] is null) return (false);
4 Count[a] := Count[a]+1;

5 n:=(NodeOfSymbol[a]);
6 while (Parent[n] is not null)
7 child := n;

8 (n,pos) := Parent[n];
9 Parent[child] := null;
0

1 case CCln].kind

11 case OC[n].kind

12 when (7<)

13 then if (pos < OC|n].current)

14 return (false)

15 elseif (pos > OC|n].current)

16 restoreUpLinks(n);

17 OCln].current := pos;

18 when (<>) then ...;

19 when (A7) then .

20 when (%) then...;

21 when (%)

22 then if (OC|n].forbidden[pos])

23 return (false);

24 elseif (pos#OC|n].current)

25 restoreUpLinks(n);

26 OCin].forbidden[OC|[n].current]:=true;
27 OC|n].current:=pos;

28 else ;

29 ToRestore[n] := append((child,pos),ToRestore[n]);

30 endwhile

.y

RESTOREUPLINKS(n)

1 for (nc,pos) in ToRestore[n]
2 Parent[nc] := (n,pos);
3 RestoreUpLinks(nc)

4 ToRestore[n]:=();

Fig. 8. Flat membership algorithm with stability.

PROPOSITION 5.11 (LINEAR COMPLEXITY). MemberFlatStab(w,T) runs in time O(|T| +
[wl).

PrOOF. We reason as in Proposition 4.3. The algorithm has a set-up phase of cost O(|T]).
Then, for every symbol a of the word, we increment the counter of a and we follow the
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not-yet-deleted uplinks inside T, performing constant-time operations for each link, with
the only exception of link restoration, that has constant cost for each restored link. As in
Proposition 4.3, every link is traversed or restored at most three times, hence the total cost
of link traversal is O(|T|). The final steps are in O(min(|T|, |w|)) as in Proposition 4.3. O

6 MEMBERSHIP FOR XSD SCHEMAS
6.1 Multi-Words Checking

A single type T is often used to check m words wy, ..., w,, - one-time use of a type is not the
standard case. In this case, the repeated application of MEMBERSTAB gives us an upper
bound of O(m * (|T| + |w|)), where |w| is the average length of the words. This bound is not
linear, in general, in the input size |T| + (m = |w|), due to the m = |T| component. If types are
always smaller than words, this is not a problem, since m = (|T| + |w|) is in this case bounded
by m # (Jwl]), hence the algorithm is indeed linear. In the general case, where |T| may be
bigger than |w|, the non-linearity of the theoretical bound reflects the practical observation
that we should not needlessly rebuild a type, which may be big, for every word that we read.

This problem can be easily solved by building the CC[] and OC[] structures once, plus
two copies CCSave[] and OCSave[]. Every time a word is checked, rather than rebuilding
the type from scratch, we use ToRestore[] in order to only rebuild the part of the type that
has been modified, by applying the following Restore Type procedure, which trivially extends
RestoreUpLinks, to the root of the type. The same technique can be of course used with the
flat algorithm MEMBERFLATSTAB.

RESTORETYPE(n)

OCJn] := OCSave[n]

CC[n] := CCSave[n]

for (nc,pos) in ToRestore[n]
Parent[nc] := (n,pos);
if Symbol[nc] is not null

Count[Symbol[nc]]:=0

else RestoreType(nc)

ToRestore[n]:=();

This restoring phase does not visit the whole T but only the modified part, which is
never bigger than |w| = depth(T), which gives the whole algorithm a complexity O(|T| + m *
|w| = depth(T)). When types are flattened, flatdepth(T) is typically smaller than 3, hence this
algorithm is ‘quasi-linear’.

In the next section, we will use MultiMemberStab as a name for this optimized algorithm.

O~ O T Wi

6.2 XSD Schemas

We are now ready to extend our techniques from words to trees. For the purpose of this
discussion, we focus on XML trees where every node is an element node, hence on documents
generated by the following grammar:

x =€ | {a)x{/a)x

Following a long tradition, (see [24], for example), we model an XSD schema as an
extended DTD, that is, as a quintuple (2, A, 7, j1, p), where X is a set of labels, A is a set of
type-names, T is a function mapping each type-name to a content-model, which is a type
expressed on the alphabet A, p is a function from A to X, and p € A is the root type-name.
Although p is not injective in general, the Element Declarations Consistent (EDC) constraint
specifies that p must be injective when restricted to a specific content model (see [43]).
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As a consequence, it is possible to check membership of an XML tree x into an XSD
schema as follows. Membership checking happens in the context of a specific type-name
B, which is initially the root type-name of the schema, hence of a specific content-model
T = (). To check whether (a;)xi{/a1)...{(an)xn{/a,) satisfies T, we retrieve the content
model T; = r(,u;(ai)) of each subelement, check that each x; matches T;, and check that the
sequence w = ,u;(al) .. .,ugl(an) matches T. Here, ,u/’),l(,) is the inverse of u restricted to the
type-names appearing in the content model of §; this inverse function is well-defined thanks
to the EDC constraint.

We assume here that each content model is expressed in our type language and satisfies the
conflict-freedom constraint. The cost of verifying whether x satisfies (z, u, p) depends on the
cost of checking whether a word belongs to a content model 7(«), as follows. We assume that
the XSD schema contains |J| content models {r(e;)}/</, each of size |7(e;)|, that x contains
(immediately or recursively) |I| elements {e;}'¢T, and that w; is the sequence of the labels of
the children of e;. We assume that MultiMemberStab is used for word-membership. We have
a set-up phase with cost O(}¢; [7(a;)]) = O(|z]). We have a checking and type-restoration
phase with cost O(|w;| * depth(r(a;))) for each w; € [z(a;)] test.® Hence, the total cost of
XSD checking is in O(|T| + |w;| * depth(T)). Since DTDs can be modeled as a special case of
EDTDs, this result holds for DTDs as well.

7 EXPERIMENTAL EVALUATION

In the previous sections we presented two different families of membership checking algorithms
for regular expressions in cf-RE(#, &) and cf-RE(#, &, %), respectively. In this section we
analyze the performance and scalability of these algorithms, compared with a baseline
algorithm based on Brzozowski’s derivatives [14] for expressions in cf-RE(#, &) and cf-
RE(#, &, %). We would have liked to also compare our algorithms with some of the many
automata-based systems, but, to the best of our knowledge, while many tools can deal
with regular expressions with counting, there are no tools supporting both counting and
interleaving, with the notable exception of Anders Mgller’s automaton library [37]. However,
this library maps regular expressions with interleaving and counting into DFAs incurring
in an exponential blow up of the size of automaton, hence it cannot deal with the size of
our test suite. Finally, we were not able to find any tool or automaton library supporting
unordered concatenation.

7.1 Derivative-based Membership Algorithm

As said above, in our experiments we compare the proposed algorithms with a competitor
based on Brzozowski’s derivatives. There are several reasons behind this choice. First of all,
to the best of our knowledge, there are no tools for regular expressions offering unordered
concatenation. Furthermore, while counting is supported by many tools, the only known
implementation of interleaving is represented by Anders Mgller’s automaton library; this
library, while very efficient for standard regular-expression operators, features a trivial
implementation of counting, which leads to an exponential explosion of automaton size and
is hence unable to support regular expressions with multiple counting operators and large
upper bounds; interleaving is implemented through a product automaton construction (see
[36]), and also leads to an exponential explosion of the number of states.

5 Although XSD-checking uses top-down recursion, its total run-time can be still evaluated by just adding
the time needed to verify that the w; label sequence of each element, at any depth level in the document,
matches the element content model
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Hence, lacking an established alternative, we decided to explore a competitor algorithm
based on Brzozowski’s derivatives, which are very well behaved for deterministic types, so
that the technique is well suited to work with conflict-free types. The algorithm is an original
adaptation to our operators of a well known approach. The notion of Brzozowski’s derivative
is standard, and is defined as follows (see [13]).

Definition 7.1. The derivative of a regular language L over a finite alphabet 3 with respect
to a symbol a € ¥ is defined as §,(L) = {v | a-v € L}. Such a derivative is, by definition,
unique.

A derivative of a regular expression E whose language is L, with respect to a, is any regular
expression E’ that generates the language d,(L). The Brzozowski’s derivative d,(E) of an
expression E with respect to a is a specific derivative expression of E with respect to a that
is computed according to the rules described by Brzozowski in [14].

To define a derivative-based membership algorithm for conflict-free types, we extended
Brzozowski’s derivation rules to conflict-free types with interleaving, counting, and unordered
concatenation (see also [42]). To this aim, we first extend our type language with the empty
expression.

Definition 7.2. 0 denotes the empty regular expression, that is, [0] =4 0. 0 satisfies the
following properties:

T+0 = 0+T =T T-0 = 0T = 0 T&) = 0&T = 0

Moreover, we relax the constraints of Section 2.1 on the bounds of a [m..n] types: we allow
0 to appear in both the m and n positions of a [m..n], with the obvious semantics (specifically,

[a[0..0]] = [e] and [a[0..n]] = [e + a[1..n]]).

Hereafter, we will use cf-RE(#, &,0) to denote the class of conflict-free expressions extended
with the 0 type and 0 bounds. We extend cf-RE(#, &, %) to cf-RE(#, &, %,0) in a similar
way. We use these wider classes since they greatly simplify the definition of derivatives,
and a membership algorithm for these classes can of course be used for c¢f-RE(#, &) and
cf-RE(#, &, %).

We can now give a function that returns a derivative for a conflict-free expression in
cf-RE(#, &,0) and in cf-RE(#, &, %, 0).

Since we extend Brzozowski rules, we will use the same notation d,(T) to denote the
derivative of a conflict-free extended regular expression T according to a symbol a € 3.

NOTATION 7.3 (m~, x—1). In the following definitions, we use m~ to denote max(m—1,0),
and assume that * — 1 = *.

Definition 7.4. first(T) is a function on regular expressions, defined as follows:
first(0) = 0
first(e) 0
first(a[m..n]) {a}
first(Th + Tz) first(T1) U first(Tz)

First(Ty) U first(Ty) if N(Ty)

{ first(T1) otherwise

first(T1) U first(Tz)

UL, first(T;)

first(Ty - T2)

first(T1&T»)
first(%(Ty,...,Tn))
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Definition 7.5. The function d,(T), where T is in c-RE(#, &, %,0) and a is a symbol, is
defined as follows:

da(e) =gr 0
da(®) =def 0
do(b [m..n]) i 0 i ifa# b. orn=0
b[m ..n—1] otherwise
do(Ty) if a € first(Ty)
do(T1 + To) =g da(T2) if a € first(Ty)
0 otherwise
do(Ty)- T, if a € first(Ty)
dy(Ty- To) =def {da(T2) if a € first(T;) and N(Ty)
0 otherwise
d,(T))&T, if a € S(Ty)
do(T1&T3) =def da(T2)&T; if a € S(T3)
0 otherwise

do(Ti) - %(T1s . . s Tie1, Tivas - . ., Tpy)  if i a € first(T;
da(%(T1,. .. Tn))  =def ()l =t T n) | first(Ty)
0 otherwise

Note that for % types the function is defined on n-ary expressions, as the % operator is
not associative. Furthermore, it can be observed that, thanks to conflict-freedom, all the
cases in the definitions of d,(T; + T3), da(Ti- To), do(T1 &T3), and dy(%(T4, . . ., T,)) are mutually
exclusive.

The function d,(U) can be lifted to words in the following way: d.(U) = U, dg, (U) =
dw(da(U)).

It is easy to see that d,(U) is a Brzozowski’s derivative, and that such derivative of a
conflict-free expression is still a conflict-free expression.

We use D(U) to denote the set of all d,,(U)-derivatives of U: D(U) =g {d\,(U) | w € £*}.
As it can be easily observed, D(U) is finite. Unfortunately, D(U [m..n]) has a size that grows
linearly with m, hence is exponential in |U [m..n] |, which makes D(U) exponential in size
with respect to U, in the worst case.

The membership algorithm based on Brzozowski’s derivatives is reported in Figure 9.
Given an input word w and a conflict-free type T, the algorithm scans w and, for each
symbol a in w, it derives the current type according to a. If the obtained derivative is the
empty expression, then the algorithm halts since w does not belong to [T]; otherwise, the
algorithm keeps iterating on the symbols in w until the last symbol has been read; if the
last derivative is nullable, then w € [T]. The algorithm is quite natural and the proof of
its correctness and completeness follows by a simple induction. Since DERIVMEMBER (W,
T) computes a new derivative for each symbol being read, and the simplest algorithm to
compute a derivative is in O(|T|?), its complexity is trivially in O(|w| = |T|?).

To improve the efficiency of the derivation process, each derivative being generated is
simplified according to the following rules:

e ¢®T—>T, 0®T — 0, where ® € {,&}.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article . Publication date: November 2017.



Linear Time Membership in a Class of R.E. with Counting, Interleaving and Un. Conc. :33

DERIVMEMBER(w, T)
Type U :=T
for each symbol a in w
U :=dy(U)
if (U==0)
return false
if N(U)
return true
else return false

O~ O T W+

Fig. 9. Derivative-based membership algorithm.

Since the derivative of a conflict-free expression is still conflict-free, no non-trivial subex-
pression can appear more than once; hence, in our implementation there is no need to memoize
the derivation process, as would happen in the case of unrestricted regular expressions.

7.2 Experimental Setup

We implemented the algorithms being tested in Java 1.8, and evaluated their performance
on a 2.4 GHz Intel Core i7 machine with 8 GB of main memory and running Mac OSX
10.12.4. To avoid the perturbations introduced by system activity, we ran each experiment
ten times, discarded the best and the worst performance, and computed the average of the
remaining times: this means that, for each dataset, we evaluated the membership of each
word ten times.

7.3 Datasets

In this experimental evaluation we analyze the performance and scalability of our algorithms
when used for checking the membership of a word in the language generated by a regular
expression in cf-RE(#, &) or cf-RE(#, &, %). Our experiments are based on several different
datasets, generated as follows.

We perform distinct tests for expressions in cf-RE(#, &) and in cf-RE(#, &, %). In the
cf-RE(#, &) case we evaluate the performance of all the binary and flat algorithms described
in this paper (binary, binary with stability, flat, and flat with stability), and compare them
with the baseline algorithm based on Brzozowski’s derivatives, described in the previous
section. In the cf-RE(#, &, %) case, instead, we limit our comparison to the flat algorithms,
as unordered concatenation is not supported by the binary ones.

For both classes of regular expressions, we use positive as well as negative datasets. The
first step in the creation of positive and negative datasets is the generation of a random
regular expression T. Our generator essentially builds an AST of n-ary operators, and,
then, transforms this AST into a type with unary and binary operators. The choices of the
generator are driven by the following parameters:

e the expected depth of the n-ary AST (d.);

e the expected number of children per operator (c.);

e the probability of generating a union, a concatenation, an interleaving, or an unordered
concatenation operator (py, pe, Pi, Puc);

e the probability of generating an e operator on a leaf (pe).

The generation algorithm uses these parameters to create an n-ary AST of depth d, + 1.
For each intermediate node in the AST, a union, concatenation, interleaving, or unordered
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concatenation operator is generated according to probabilities py, pc, pi, puc by using the
uniform distribution; these operators have a number of children randomly chosen according
to the Poisson distribution with variance A = ¢,. When the generator reaches level d, — 1
in the AST, if no interleaving and unordered concatenation operator has been previously
generated, then it enforces their presence in the nodes of level d. — 1. For each counting
atom a[m..n], furthermore, m and n values are randomly generated according to the uniform
distribution, and n is set to * with probability n..

For each leaf node, p. is used to choose between € or an atom. To satisfy conflict-freedom,
leaf symbols are chosen by assigning to each newly created atom a new symbol: in particular,
the symbol generator exploits an integer counter initialized to 0 and incremented for each
new generated symbol. Therefore, if T contains n atoms, then S(T) = {“0”,...,“n —17}.

Once an AST is generated, it is transformed into an actual type in the following way:

e n-ary union, concatenation, and interleaving operators are replaced with their binary
counterparts in the obvious way;

e unordered concatenation operators, that are not supported by binary algorithms, are
left untouched;

e if the type being generated is used for assessing the efficiency of flat algorithms, then
union, concatenation, and interleaving operators are flattened again.

Our types were generated by using the above described scheme and the following parameter
values:

o cfRE(# &): d, = 3, c. = 8, py = 0.33, po = 0.33, p; = 0.34, pye = 0, pe = 0.25, and

n, = 0.01;
° cf—RE(#, &, %): de =3, ce =8, p, = 0.25, p. = 0.25, p; = 0.25, p, = 0.25, p. = 0.25, and
n, = 0.01.

Positive datasets were created by randomly generating a regular expression T, as described
above, and, then, by using this expression to produce a dataset of 30000 words in [T] with
minimum and maximum size ranging from 1000 to 5000 symbols. These words were generated
from T by applying the following rules:

o for each atom a[m..n], we use the uniform distribution to choose an integer p € [m, n]
and output p occurrences of a; if n = *, then we choose p in the interval [m, 2% — 1]
(Java maximum value for 32-bit integers);

e for each union type T; + T;, we choose between T; and T, by generating a random
boolean (uniform distribution);

o for each type %(Ty,...,T,), we generate words wy € [T1], ws € [T2], ..., wn € [T,], and
randomly choose an order for them;

e finally, for each type T;&T;, we generate a word w; € [T1], a word w, € [T3], and shuffle
them by performing a parallel scan and randomly choosing, at each step, the word
from which the next symbol must be extracted.

For what concerns negative tests, we created two distinct datasets for each class of regular
expressions, i.e., cf-RE(#, &) and cf-RE(#, &, %). The first dataset, for the given T, contains
words that are very similar to words in T, while the second contains random words. In
greater detail, the first dataset comprises 30000 negative words, with length ranging from
1000 to 5000 symbols, obtained by modifying positive words with a few wrong or misplaced
symbols. We first generate a random regular expression T; this expression is then used to
produce a random word w € [T], as in the case of positive tests. w is, then, transformed into
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Table 5. Datasets.

Dataset Number of types | Number of words | Frequency (%)
Pos cf-RE(#, &) 1 30000 N/A

Pos cE-RE(% & %) T 30000 N/A

Neg cERE(% &) 1 30000 1.13

Nog cLRE(% & %) T 30000 778

Neg Random cf-RE(#, &) 1 30000 100

Neg Random cf-RE(#, &, %) 1 30000 100

Table 6. Types.

Dataset Type size | Alphabet size | € Atoms + . & %
Pos cf-RE(#, &) 237 94 25 94 61 | 30 | 27 | N/A
Pos ci-RE(%, &, %) 94 88 N/A | 88 T 2 T 2
Neg cf-RE(#, &) 273 109 28 109 92 | 16 | 28 | N/A
Neg cf-RE(#, &, %) 138 123 N/A | 123 4 6 2 3
Neg Random cf-RE(#, &) 255 101 27 101 61 | 35 [ 31 | N/A
Neg Random cf-RE(#, & %) 120 108 N/A 108 1 4 4 3

a negative word w ¢ [T], that is added to the dataset. The word transformation procedure
works as follows.

(1) We fix to 10 the number of “violations” to be introduced in w.

(2) For each violation, a random and distinct position p € [1,length(w)] is chosen, and the
symbol w(p) is then replaced with a different symbol in S(T) U {x}, randomly chosen
according to the uniform distribution, where x ¢ S(T); hence, in each word we introduce
10 misplaced or extraneous symbols.

(3) If w € [T], we apply again steps (1) and (2) until we get a word w ¢ [T].

The second negative dataset comprises again 30000 negative words, with length ranging
from 1000 to 5000 symbols; in this case, however, after generating a random type T in
cf-RE(#, &) or cf-RE(#, &, %), respectively, we created each word by randomly choosing a
word length in [1000,5000] and by randomly picking, for each word position, a symbol in
S(T) U {x}, where x ¢ S(T); any word that, by any chance, belongs to [T] is filtered out
and replaced with a new word. As a consequence, this dataset contains 30000 words whose
symbol set is S(T) U {x} but are otherwise unrelated to T.

In Tables 5 and 6 we overview the characteristics of these datasets. In particular, Table
5 recalls the very basic information about the datasets (i.e., number of types, number of
words, frequency of words with extraneous symbols), while Table 6 details, for each dataset,
the features of the regular expressions being used (i.e., type size, alphabet size, number of
occurrences for each operator).

7.4 Regular Expression Experiments

For the sake of clarity, in all the figures we present in this section, we divided the x-axis
in disjoint buckets of 100 symbols (e.g., from 1001-1100 to 4901-5000), assigned words to
buckets according to their size, and plotted for each bucket the average running time.

Positive Experiments. In our first experiment we compare the performance of our algo-
rithms with that of the derivative-based algorithm on a positive sample of 30000 random
words generated from a random type in c¢f-RE(#, &). This sample was generated as discussed
in Section 7.3 and comprises words of size between 1000 and 5000 symbols. We use as input
size the word length and measure the time required for completing the membership checking.
The results we obtained are shown in Figures 10 and 11.
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Fig. 10. Positive experiments for cf-RE(#, &): logarithmic scale.
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Fig. 11. Positive experiments for cf-RE(#, &): binary and flat algorithms.

In Figure 10 we plot our algorithms together with the derivative-based one. The figure
shows that our algorithms are orders of magnitude faster than the derivative-based one,
which is the reason why we had to use a logarithmic scale for the time axis.

In Figure 11 we excluded the data about the derivative-based algorithm and focused our
attention on the binary and flat ones. As it can be observed, they are all very scalable, and
the flat algorithm with stability is slightly faster than the binary one with stability and
the flat one without stability; the binary algorithm without stability, instead, is the slowest
constraint-based algorithm, but it still orders of magnitude faster than the derivative-based
one. The huge performance gap between the binary algorithm without stability and the flat
one, again without stability, is mostly due to the depth of the parse tree of T. Indeed, in most
cases flatdepth(T) is significantly lower than depth(T): in particular, for the random type T
used here, flatdepth(T) = 4 and depth(T) = 15, which implies that the binary algorithm must
traverse in the parse tree of T a path of 15 nodes for each symbol being read, while the flat
one traverses a path of only 4 nodes. The benefits provided by stability and by flattening
constraints confirm what was indicated by the computational complexity analysis.

In our second experiment we move from cf-RE(#, &) to ¢cf-RE(#, &, %), and compare the
performance of our flat algorithms with that of the derivative-based one on a positive
sample of 30000 random words generated from a random type in cf-RE(#, &, %). We restrict
ourselves to the flat algorithms because of the presence of the % operator. As in the previous
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Fig. 12. Positive experiments for cf-RE(#, &, %): logarithmic scale.
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Fig. 13. Positive experiments for cf—RE(#, &, %): flat algorithms.

experiment, this sample was generated as discussed in Section 7.3 and comprises words of
size ranging from 1000 to 5000 symbols. The results we obtained are shown in Figures 12
and 13, where we report, respectively, the results using a logarithmic scale on the y-axis,
and the results for flat algorithms only.

As in the case of cf-RE(#, &), our algorithms are much faster than the derivative-based
one, and there are several orders of magnitude of performance difference between the two
classes of algorithms. In Figure 13, finally, we focus our attention on flat algorithms only.
Both algorithms show a linear behaviour and, also in this case, stability seems to have a
positive impact on performance.

To summarize, experiments on positive datasets show that our algorithms are much faster
than the derivative-based competitor, and that, in particular, the flat algorithm with stability
seems to represent the best option.

Negative Experiments. In these tests we evaluate the performance of our algorithms on two
kinds of negative datasets, obtained, respectively, by introducing a few wrong or misplaced
symbols in positive words, or by randomly generating unrelated words.

In both cases, we created datasets of 30000 words whose length ranges from 1000 to 5000
symbols. As in positive tests, for expressions in cf-RE(#, &) this comparison covers all the
algorithms proposed here and the derivative-based one, while for expressions in cf-RE(#, &, %)
it drops the binary ones.
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Fig. 14. Negative experiments for cf-RE(#, &): logarithmic scale on y-axis.

In Figure 14 we report the results obtained for regular expressions in cf-RE(#4, &) and
the first kind of datasets. As shown in Figure 14, where we used a logarithmic scale for the
y-axis, the flat algorithm without stability outperforms the other ones, while the derivative-
based algorithm appears to be the slowest one. The relative ineffectiveness of stability in
negative tests for flat algorithms is not a surprise: indeed, stability is an optimization that
optimistically assumes that the word being processed is in the semantics of the type, hence
it pays a high cost the first time a symbol is met that is amortized when the same symbol
is met again and again. However, the analysis of wrong words would typically stop much
earlier than the end of the word, hence there is usually no time to recover the higher set-up
cost. The problem is less serious in the binary case, where the gain offered by stability is
higher, hence we need very few repetitions of a symbol in order to match the initial set-up
cost.

In the case of regular expressions in cf-RE(#, &, %) the results we obtained, shown in
Figure 15, are slightly different. We still observe that the flat algorithm without stability
outperforms the others, and, specifically, is faster than the one with stability. However, in
this case the Brzozowski algorithm is comparable to ours and is even faster than the flat
algorithm with stability. Again, our algorithms are optimized for the positive case, since
they only check bounds introduced by a[m..n] operators once at the end of the word rather
than at each step of the word analysis. We believe that this optimization is useful in the
typical case when positive cases are the most common ones. In an applicative scenario where
negative cases are common we could easily change the balance by checking for the violation
of an a[m..n] constraint every time the symbol a is met.

In Figures 16 and 17 we report the results obtained on negative random words for regular
expressions in ct-RE(#, &) and cf-RE(#, &, %), respectively. Unlike what happens in all other
tests, the derivative-based algorithm is now competitive with the flat one without stability,
and both are definitely much faster than the other constraint-based algorithms. This is
coherent with the fact that the derivative-based algorithm checks repetition bounds for each
character being read while our algorithms wait until the end of the word. As in the other
negative cases, stability seems to introduce a performance penalty rather than an advantage.

To summarize, experiments on negative samples show that the flat algorithm without
stability should be taken into consideration when negative cases are common, and the
derivative-based one may be considered if checks for fully random words dominate the
workload.
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Fig. 15. Negative experiments for cf-RE(#, &, %).
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Fig. 17. Negative experiments for cf-RE(#, &, %): random words.

7.5 Schema Experiments

In this section we evaluate the performance of our algorithms when used to validate an XML
document against an XML schema, as described in Section 6. We base our analysis on a
dataset comprising 10 instances of the XMark benchmark, whose size ranges from 110 MB
to 1100 MB and compare the performance of validators using our algorithms with that of a
validator built around the derivative-based algorithm, as well as with the validator of Relax
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Fig. 19. Schema experiments: caching.

NG. The inclusion of this validator in the comparison is motivated by the fact that the Relax
NG schema language supports interleaving as well as a constraint on symbol occurrences
that is close to conflict-freedom.

In Figure 18 we show the results we got in our experiment. As can be observed, the
validator of Relax NG slightly outperforms our algorithms, and its performance is very close
to that of the flat algorithm without stability. This could be explained by the fact that Relax
NG internally uses a cache, while our implementation has no caching.

As an XML document may contain several fragments having the same structure, we
modified our implementation by means of a form of memoization through a fully associative
LRU cache of 200 entries. In particular, we memoized the results of the word-membership
algorithm and used memoization in the endElement method of the SAX handler. The results
we obtained are shown in Figure 19.

As can be observed, our algorithms are now faster than the validator of Relax NG, which
shows a performance very close to that of the Brzozowski algorithm with caching.

To summarize, the algorithms described here can represent a viable option for validating
an XML document against a schema with and without some form of memoization.

8 RELATED WORK

Membership checking is one of the basic problems involving regular expressions. For plain
REs membership testing is in PTIME (see [31]) and membership can be checked just by
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translating the input regular expression into an equivalent NFA. For regular expressions with
interleaving, counting, and/or unordered concatenation, however, the membership problem
becomes much more complex. In the following, hence, we will first review the most prominent
complexity results for the membership checking problem, discuss alternative restricted classes
of regular expressions and constraint-based inclusion algorithms, and, then, describe a few
evaluation techniques proposed in the past.

8.1 Complexity Results

In [35] Mansfield, as well as Warmuth and Hausler in [44], proved that the membership
problem for RE(&) is NP-hard, even when union, Kleene star, and counting are not present.
In [36] Mayer and Stockmeyer improved these results by showing that this problem is NP-
complete and that it remains NP-hard even if & appears just once in the regular expression.
They also proved that, just by combining interleaving with union or Kleene star alone, the
problem remains intractable.

In [32] Kilpeldinen and Tuhkanen focused on RE(#) and showed that, despite the fact
that regular expressions in RE(#) are exponentially more succinct than plain REs, their
membership problem is still tractable.

In [30] Hovland analyzed the complexity of membership for RE(#, %) and proved that this
problem is NP-complete and it remains NP-complete even if counting is omitted and REs
are limited to those with a single occurrence of % at the top level.

In [24] Gelade et al. analyzed the interaction between interleaving and counting. They
focused their research on inclusion and equivalence, but also proved the membership for
RE(#, &) is in PSPACE by defining a special kind of automaton for which membership is in
PSPACE.

8.2 Restricted Classes of Regular Expressions

As briefly pointed out in the Introduction and in Remark 1, conflict-freedom has already
been used in the past to design type inclusion algorithms [16-20, 25], and, furthermore, it is
not the only restriction that has been proposed in the literature with the aim of lowering
the cost or the computational complexity of a given class of operations. Here we will first
discuss constraint-based type inclusion algorithms, and, then, survey alternative restrictions
for regular expressions, even though none of them has been applied to regular expressions
with interleaving.

In [16-20, 25] we first proposed conflict-freedom as a convenient restriction to identify
a class of regular expressions with interleaving and counting for which inclusion can be
decided in polynomial time. We used essentially the same set of constraints we exploited
here, but our inclusion algorithms are not based on constraint residuation but, rather,
on constraint implication. Starting from [20, 25], where we proposed a cubic algorithm,
in [18, 19] we lowered the complexity to quadratic time and extended our approach to
asymmetric inclusions of the form T; <: T,, where T, must satisfy conflict-freedom and Ty
can be any type; finally, we described in [16, 17] an optimized algorithm that, by means
of syntax-driven inclusion rules, has an almost linear running time. While the asymmetric
algorithms of [16-19] can also be used for membership checking, as membership can always
be seen as a special kind of asymmetric inclusion, the algorithms we are proposing here have
a better time complexity and have been fine-tuned and optimized for membership.

Conflict-free DTDs [3, 4] as well as duplicate-free DTDs [38, 45] are plain DTDs where
each element type is described by a single-occurrence plain regular expression, i.e., a regular
expression when each alphabet symbol may appear only once. These DTDs have been
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proposed for lowering the cost of incremental validation and query satisfiability checking,
respectively; compared to conflict-free regular expressions, they do not impose any constraint
on the use of Kleene star, while they do not support interleaving, counting, and unordered
concatenation.

Single Occurrence Regular Expressions (SORE) have been introduced by Bex et al. in [6, 7]
in their studies about the inference of concise DTDs and XSDs. In these expressions no
symbol can appear twice, even though there is no restriction on the use of the Kleene star.

CHain Regular Expressions (CHARE) are a refinement of SORE with further constraints
and have been introduced in [6]. In essence, a CHARE r is a single-occurrence expression
consisting of the concatenation of factors of the form (‘111)1 +...+d™9, where p1,...,pn,q €
{*,+,?} are optional quantifiers. The ability to add an external quantifier makes CHARESs
slightly more expressive than the conflict-free types that we presented here. For example,
the CHARE (a; + ...+ ap)" can be expressed by the conflict-free type (aj&...&ay), but
(a1 + ...+ ay)* requires one more type operator T! that deletes the empty string from a
type. The extension to conflict-free types with T! is trivial, makes conflict-free types more
expressive than CHARES, and is discussed in [20]. In [24] Gelade et al. extended CHARESs
with addends of the form a[m..n]. Nesting of counting quantifiers makes these extended
CHAREs much more expressive that conflict-free types.

8.3 Membership Checking Approaches

Most approaches for checking the membership of a word in the language generated by a
regular expression are based on the use of finite automata and differ in the kind of automaton
being used and in the way the automaton is built.

For plain regular expressions, membership is usually checked by creating an equivalent
NFA with the usual construction process, and by verifying whether the NFA accepts the
input word. In the case of 1-unambiguous regular expressions [12] it is also possible to create
an equivalent DFA in polynomial time by relying on the Glushkov construction process [27]
or on Brzozowski automata [14]. Brzozowski’s derivatives can also be directly used to check
for membership without building an automaton, as detailed in the previous section.

For regular expressions in RE(#), Gelade et al. in [23] introduced Counter Automata
(CNFA). A counter automaton is an NFA enriched with a set of counter variables C and a set
of guards (boolean predicates) over counter variables. In a CNFA A, any transition is labeled
with a symbol from a finite alphabet, a set of guards over counter variables, and a set of
basic updates on counter variables: a transition from state g; to state g;, hence, can be fired
if A, when in state g;, reads the symbol labeling the transition and guards are satisfied by the
current assignment of values to counter variables; after firing the transition, A moves to state
g; and updates counter variables. Counter automata can be built from regular expressions
in RE(#) in polynomial time by applying the extended Glushkov construction described by
Sperberg-McQueen in [41]. In [8] Bjorklund et al. used CNFA to address the traditional
membership problem for RE(#) as well as its incremental variant, where words are subject to
updates, insertions, and deletions [2, 39], by proposing an approach based on the construction
of a tree intermediate data structure; an extensive experimental evaluation proved that
the authors’ approach is very efficient, while it is not clear whether the intermediate data
structure can be built in polynomial time for non-trivial expressions in RE(#).

Similar automata have also been proposed by Kilpeldinen and Tuhkanen in [33]. The
same authors proposed in [32] a radically different approach for testing the membership of a
word in the language generated by an expression r in RE(#): this approach is based on a
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dynamic programming algorithm that traverses bottom up the abstract syntax tree of r and
decorates each node of the AST with relations over states. Automata with counters have
also been studied by Smith et al. in [40] in the context of deep packet inspection for network
appliances.

In [24] Gelade et al. described a kind of automata suitable for modeling regular expressions
in RE(#, &). These automata are essentially NFAs extended with split and merge transitions,
needed for translating interleaving operators, as well as counters on states and counting
transitions, necessary for counting operators. Differently from CNFA, here counters are
directly associated to automaton states and there are no counter variables. An alternative
kind of automata for expressions in RE(#, &) has been described by Dal-Zilio and Lugiez in
[21] and is based on the use of Presburger formulas for dealing with both interleaving and
counting.

In [30] Hovland proposed Finite Automata with Counters (FACs) to model regular
expressions in RE(#, %). The main idea of this new kind of automata is to associate a counter
to each counting and unordered concatenation operator in the input regular expression.
Counters, hence, are directly bound to the original regular expression and are not associated
to states. As in [23], transitions may change the current state of an automaton, as well as
update and reset counter values.

REMARK 2. An extended abstract of this paper appeared in [26]. Compared to that confer-
ence version, there are four major additions:

o In [26] we presented a very naive form of stability applied to binary and flat algorithms.
Here we fully develop stability and completely rewrite our algorithms to exploit stability
without any complexity and performance penalty.

o We introduce the support for unordered concatenation, that was missing in [26].

o We provide here all the proofs that were omitted in the conference version; some of
these proofs are definitely non-trivial.

o In [26] we presented a very partial experimental evaluation of our algorithms in the
context of XSD schemas. Here, we provide a very detailed performance analysis of our
algorithms, mostly focused on reqular expressions, and study their behaviour on large
positive and negative datasets.

9 CONCLUSIONS

While membership checking is polynomial for plain regular expressions, it quickly becomes
intractable when more flexible operators, like interleaving and unordered concatenation, are
considered. In this paper we presented algorithms to verify whether a word w belongs to the
language generated by a regular expression T with interleaving, counting, and unordered
concatenation, provided that T satisfies a conflict-free restriction on the use of symbols and
counting operators, a restriction that is quite severe but seems to be extremely common
in practice. The fastest algorithm runs in linear time, and an extensive experimental
evaluation proves that our algorithms perform very well on positive datasets as well as on
negative datasets comprising words with wrong or misplaced symbols; given that cardinality
constraints are checked at the end of word scan, they may experience performance issues on
fully random negative datasets formed by words unrelated to the input type.
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