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Approximation of a weighted Hilbert transform by using
perturbed Laguerre zeros

Donatella Occorsio a

Abstract

In the present paper is proposed a numerical method to approximate Hilbert transforms of the type

H( f w, t) =

∫ +∞

0

f (x)
x − t

w(x)d x , t > 0,

where w(x) = e−x xα, α > −1 is a Laguerre weight, by means of a new Lagrange interpolation process
essentially based on the midpoints between two consecutive zeros of Laguerre polynomials. Theoretical
error estimates are proved in some weighted uniform spaces and some numerical tests which confirm
the theoretical estimates are shown.

1 Introduction
Let H( f w, t) be the Hilbert transform of the function f

H( f w, t) =

∫ +∞

0

f (x)
x − t

w(x)d x , w(x) = e−x xα, α > −1, t > 0, (1)

provided that the integral exists as a principal value. In the present paper, starting from the decomposition

H( f w, t) =

∫ +∞

0

f (x)− f (t)
x − t

w(x)d x + f (t)

∫ +∞

0

w(x)
x − t

d x , (2)

we propose a numerical method to approximate the function

F( f w; t) :=

∫ +∞

0

f (x)− f (t)
x − t

w(x)d x , t > 0, (3)

since the function H(w; t) is computable with the desired accuracy by means of special functions.
By virtue of the known smoothness of F( f w) when f belongs to some uniform Zygmund spaces [11], we propose to

approximate F( f w) by a suitable Lagrange polynomial interpolating F( f w). This approach was firstly considered in [6] for
Hilbert transforms in [−1,1] and successively applied in [0,+∞) in [11], where the function F( f w) is approximated by the
truncated Lagrange polynomial introduced in [3] (see also [4]). One advantage offered by the global approximation of the
function F( f ) is the use of the same samples of the function f independent of the point t. For instance, many values of H( f w, t)
are required in some projection methods to approximate the solution of singular integral equations. However, the choice of the
interpolation nodes that we go to propose here seems to be new. To be more precise, we introduce here the truncated Lagrange
polynomial L∗m(F( f w)) defined as

L∗m(F( f w), zi) = F( f w, zi), i = 1,2, . . . , m− 1, L∗m(F( f w), 4m) = F( f w, 4m), (4)

L∗m(F( f w)) =
j
∑

i=1

lm,i(x)F( f w, zi),

where zi are the midpoints of the intervals between two consecutive zeros of the m−th Laguerre polynomial pm(w, x) and the
index j ≤ m is defined in (7). Since in the general case the samples of the function

F( f w, zi)

∫ +∞

0

f (x)− f (zi)
x − zi

w(x)d x , i = 1, 2, . . . , j,

cannot be exactly computed, we will approximate them by the truncated Gauss-Laguerre formula [5] based on the zeros {xk}mk=1
of pm(w), i.e.

F( f w; zi)∼
∑̀

k=1

f (xk)− f (zi)
xk − zi

λk, {λk}mk=1 Christoffel numbers, i = 1, 2, . . . ,`, (5)
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where the index `≤ m is defined in (9). By this way, with the employment of only one set of Laguerre zeros, the interpolation
nodes zi and the Gaussian knots xk in (5) are sufficiently far among them, avoiding possible numerical cancellation phenomena.
In addition, a reduction of the computational cost is realized w.r.t. the analogous procedure introduced in [11] where two
different Laguerre polynomials sequences are involved.

The paper is organized as follows. In Section 2 are collected some basic results about orthogonal polynomials and functional
spaces, needed to introduce the main results. Section 3 contains the definition and a result about the rate of convergence of
the new Lagrange process defined in (4). In Section 4 the numerical method to approximate H( f w, t) is described and a result
about the rate of convergence is stated. Section 5 contains some tests for showing the behavior of the Lebesgue constants of the
process in (4). In Section 6 we present some numerical tests about the approximation of the Hilbert transform, which confirm the
theoretical estimates. Finally, in Section 7 the proofs of the main results are stated.

2 Notations and preliminary results
In the sequel C will denote any positive constant which can be different in different formulas. Moreover C 6= C(a, b, ..) will be
used to say that the constant C is independent of a, b, ... The notation A∼ B, where A and B are positive quantities depending on
some parameters, will be used if and only if (A/B)±1 ≤ C, with C positive constant independent of the above parameters.

Throughout the paper θ will denote a fixed real number, with 0< θ < 1, which can be different in different formulas.
Denote by IPm the space of all algebraic polynomials of degree at most m.

Consider the weight w(x) = e−x xα, α > −1, let {pm(w)}m be the corresponding sequence of orthonormal polynomials with
positive leading coefficients,

pm(w, x) = γm(w)x
m + terms of lower degree, γm(w)> 0 (6)

and denote by {xk}mk=1 the zeros of pm(w) in increasing order, i.e.

xk < xk+1, k = 1, . . . , m− 1.

We recall that

xk ∈ ζm :=
�

C
m

, 4m− Cm
1
3

�

.

For any fixed 0< θ < 1, let

x j = x j(m) = min {xk : xk ≥ 4mθ , k = 1, 2, .., m} . (7)

2.1 Functional spaces and best approximation estimates

Setting u(x) = e−x/2 xγ, γ≥ 0, we define the functional space

Cu =
n

f : f u ∈ C0(IR+), lim
x→0+

f (x)u(x) = 0= lim
x→∞

f (x)u(x)
o

,

equipped with the norm ‖ f ‖Cu
= supx≥0 | f (x)|u(x) and Zλ(u), with λ > 0, will denote the following Zygmund-type space

Zλ(u) =

�

f ∈ Cu : ‖ f ‖Zλ(u) := ‖ f u‖∞ + sup
t>0

Ωr
ϕ
( f , t)u,∞

tλ
<∞, r > λ, ϕ(x) =

p
x ,

�

,

where

Ωr
ϕ
( f , t)u,∞ = sup

0<h≤t
‖(∆̄r

hϕ f )u‖L∞(Irh),

Irh = [8(rh)2,Ch−2], C an arbitrary constant and

∆̄r
hϕ =

r
∑

i=0

(−1)i
�

r
i

�

f
�

x +
� r

2
− i
�

h
p

x
�

.

Moreover, we denote by Ws(u), s = 1, 2, . . . , the Sobolev space

Ws(u) =
�

f ∈ Cu : f (s−1) ∈ AC(IR+)‖ f (s)ϕsu‖∞ <∞
	

,

where AC(IR+) denotes the set of the functions which are absolutely continuous on every closed subset of IR+, equipped with the
norm

‖ f ‖Ws(u) = ‖ f u‖∞ + ‖ f (s)ϕsu‖∞.

Denoting by
Em( f )u = inf

P∈IPm

‖( f − P)u‖∞

the error of the best approximation in Cu, the following weaker version of the Jackson theorem holds [2, Corollary 3.6]

Em( f )u ≤ C
∫

1p
m

0

Ωk
ϕ
( f , t)u
t

d t, C 6= C(m, f ). (8)
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By (8), [2], [10]

Em( f )u ≤ C
‖ f ‖Zλ(u)

(
p

m)λ
, C 6= C(m, f ), ∀ f ∈ Zλ(u), λ > 0,

Em( f )u ≤
C

(
p

m)s
‖ f (s)ϕsu‖∞, C 6= C(m, f ), ∀ f ∈Ws(u), s ≥ 1.

2.2 Truncated Gaussian rule

The so called “truncated" Gauss-Laguerre rule [5] (see also [8], [4]) is based on the first ` zeros of pm(w), i.e., for a fixed
θ1 ∈ (0,1), denoted by x` the zero of pm(w) s.t.

x` =min {x i : x i ≥ 4mθ1, i = 1, 2, .., m} , (9)

the formula is
∫ +∞

0

f (x)w(x)d x =
∑̀

k=1

f (xk)λk + Rm( f ), (10)

where {λk}mk=1 are the Christoffel numbers w.r.t. the weight w and Rm( f ) is the remainder term. For all f ∈Wr(u), under the
assumption α− γ > −1 [4, Proposition 2.3]

|Rm( f )| ≤
C

(
p

m)r
‖ f (r)ϕru‖∞, 0< C 6= C(m, f ).

2.3 Lagrange Interpolation at Laguerre zeros

Let Lm+1(w, g) be the Lagrange polynomial interpolating a given function g at the zeros of pm(w, x)(4m− x), i.e.

Lm+1(w, g, x i) = g(x i), i = 1,2, . . . , m, Lm+1(w, g, 4m) = g(4m).

In [7] it was proved that for any g ∈ Cu,

‖Lm+1(w, g)u‖∞ ≤ C‖gu‖∞ log m,

if and only if
α

2
+

1
4
≤ γ≤

α

2
+

5
4

, (11)

where C 6= C(m, g).
Later, a more convenient interpolation process was introduced in [3], namely the "truncated Lagrange polynomial" interpolating

f defined as

L∗m+1(w, g, x) := Lm+1(w, gχm,θ , x) =
j
∑

k=1

g(xk)`m+1,k(w, x), `m+1,k(w, x) =
pm(w, x)(4m− x)

p′m(w, xk)(4m− xk)(x − xk)
, (12)

where for a fixed θ ∈ (0, 1) χm,θ is the characteristic function of the interval (0, x j), j defined in (7).
About the Lebesgue constants in the space Cu, in [4] the authors proved that for any g ∈ Cu, the assumption (11) is sufficient to
prove

‖L∗m+1(w, g)u‖∞ ≤ C‖gu‖∞ log m,

where C 6= C(m, g).

In such a way, under the same assumptions on the parameters α,γ they obtain a Lagrange process which requires less samples
of the function and whose Lebesgue constants are of order log m again.

3 The Lagrange interpolation process at “midpoints"
Let j be the index defined in (7) and let γm(w) be the leading coefficient of the polynomial pm(w), as well as defined in (6). Let
qm−1 ∈ Pm−1 be the polynomial

qm−1(x) := γm(w)
m−1
∏

i=1

(x − zi),

zi =
x i + x i+1

2
= x i +

∆x i

2
, i = 1,2, . . . , m− 1, ∆x i = x i+1 − x i .

Let Lm( f ) be the Lagrange polynomial interpolating a given function f at the zeros of qm−1(x)(4m− x), i.e.
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Lm( f , x) =
m−1
∑

k=1

lm,k(x) f (zk) +
qm−1(x)

qm−1(4m)
f (4m), lm,k(x) =

qm−1(x)(4m− x)
q′m−1(zk)(4m− zk)(x − zk)

.

For a fixed θ ∈ (0, 1) set z j =
x j+x j+1

2 , where j is the index defined in (7) and denote by µm,θ the characteristic function of the
interval (0, z j). Let us introduce the truncated Lagrange polynomial L∗m( f )

L∗m( f , x) := Lm( f µm,θ , x) =
j
∑

k=1

lm,k(x) f (zk). (13)

We observe that L∗m( f , zk) = 0= L∗m( f , 4m), k > j. The Lagrange operator Lm projects C0(R+) onto Pm−1, while L∗m does not.
However, letting

P∗m−1 = {p ∈ IPm−1 : p(4m) = p(zi) = 0, i > j} ⊂ Pm−1,

L∗m projects C0(R+) onto P∗m−1. Moreover, similarly to Lemma 2.1 in [9], it can be proved that ∪mP∗m−1 is dense in Cu, since

eEm−1( f )u := inf
P∈P∗m−1

‖( f − P)u‖∞→ 0, m→∞.

Moreover, eEm−1( f )u can be estimated in terms of the best approximation error of order M , where M is a proper fraction of m,
depending on θ , i.e.

eEm−1( f )u ≤ C(EM ( f )u + e−Am‖ f u‖∞) (14)

with M =
�

(m− 1) θ
θ+1

�

([a] denotes the integer part of a ∈ R) and A 6= A(m, f ) is a positive constant.
About the above introduced interpolation process we are able to state the following result

Theorem 3.1. For any function f ∈ Cu, under the assumption

1
4
≤ γ−

α

2
≤

5
4

, (15)

we have

‖L∗m( f )u‖∞ ≤ C‖ f u‖∞m
2
3 log m, (16)

where 0< C 6= C(m, f ).

Remark 1. Recalling that in a more general context [13], [14] P. Vértesi proved that for any matrix of interpolation knots in
[0, 4m], the Lebesgue constants in Cu are greater than or equal to log m (as order), the above introduced Lagrange polynomial is
not an optimal process, since the corresponding Lebesgue constants algebraically diverge. On the other hand this represents a first
result in the study of Lagrange interpolation processes on perturbed zeros of orthogonal polynomials. Moreover, as announced in
the Introduction, the polynomial L∗m( f ) will be usefully employed to approximate the Hilbert transform (1).

About the convergence of the Lagrange interpolation on the zeros of qm−1(x)(4m− x), the following result holds

Theorem 3.2. For any function f ∈ Cu, under the assumption (15) the following error estimate holds

‖( f − L∗m( f ))u‖∞ ≤ C
¦

EM ( f )um
2
3 log m+ e−Am‖ f u‖∞

©

where M =
�

m
�

θ
1+θ

��

∼ m, 0< C 6= C(m, f ), 0< A 6= A(m, f ).

For instance, assuming f ∈ Zλ+ 4
3
(u), by (8) it follows

‖( f − L∗m( f ))u‖∞ ≤ C log m
‖ f ‖Z

λ+ 4
3
(u)

(
p

m)λ
, C 6= C(m, f ).

Remark 2. We point out that all the previous results hold true in the more general case, where w(x) is a Freud-Laguerre weight
i.e. w(x) = wα,β (x) := e−xβ xα,β > 1

2 . For β = 1, wα,β reduces to a Laguerre weight.

4 Approximation of the function H( f w)
Start from the decomposition in (2) with w(x) = e−x xα and assume −1< α < 1. Indeed, the case α≥ 1 can be easily treated
setting f (x)x [α] instead of f , with weight ew(x) := e−x xα−[α]. Since H(w; t) is given in a closed form and it can be “exactly"
computed (see Section 6), we focus our attention in approximating the function F( f w) defined in (3).

Thus, following an idea in [11] (see also [6]), we approximate the function F( f w) by L∗m(F( f w)), i.e.

L∗m(F( f w), t) =
j
∑

k=1

lm,k(t)F( f w; zk) =
j
∑

k=1

lm,k(t)

∫ +∞

0

f (x)− f (zk)
x − zk

w(x)d x .
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Since in the general case the samples {F( f w; zk)}
j
k=1 cannot be exactly computed, we approximate them by the m−th

“truncated" Gaussian rule (10)

F( f w; zk) = Fm( f w; zk) + em(F( f w); zk), k = 1, . . . , j,

where

Fm( f w; zk) :=
∑̀

i=1

λi
f (x i)− f (zk)

x i − zk
.

Therefore we have at least

H( f w, t) = Hm( f w; t) +ρm( f w, t), (17)

Hm( f w; t) := L∗m(Fm( f w); t) + f (t)H(w; t).

Now, recalling that under the assumptions

0≤ γ < α+
1
4

, f ∈ Zλ+1(u),

both the functions F( f w) and Fm( f w) belong to Zλ(u) [11, Lemmas 5.4 , 5.7], we are able to prove the following results about
the error estimate:

Theorem 4.1. Let f ∈ Zλ+2+ 1
3
(u) and assume t ∈ (0,4mθ ). Then, under the assumption

max
�

α

2
+

1
4

, 0
�

≤ γ < α+
1
4

(18)

we have

|ρm( f w, t)|u(t)≤ C
log m
(
p

m)λ
‖ f ‖Z

λ+2+ 1
3
(u) (19)

where 0< C 6= C(m, f ).

As we can see the method is easy to carry out, since it uses tools like the Gaussian rule and Lagrange interpolation, both of
them involving only one sequence of orthogonal polynomials, namely {pm(w)}m.

We remark that interpolation knots and Gaussian nodes involved in the computation of Hm( f w; t) are far enough among
them, avoiding in such a way a possible numerical instability in computing (x i − zk)−1. In the meantime the global process
requires only one sequence of orthogonal polynomials. This aspect can represent an advantage w.r.t. the procedure proposed
in [11], where two sequences of Laguerre polynomials were involved, namely {pm(w)}m, {pm(w̄)}m, w̄(x) = xw(x). The above
mentioned saving becomes much more interesting in the more general case w let be a Freud-Laguerre weight wα,β (see Remark
2). Indeed, in this case, the coefficients of the three term recurrence relation are not always known. Therefore, the computation
of zeros and Christoffel numbers can be again performed by using the package "OrthogonalPolynomials" in MATHEMATICA [1],
which uses "high" variable precision and requires a considerable computational effort.

5 The numerical behavior of the Lebesgue constants

In this section we show the behavior of the Lebesgue constants related to the Lagrange process at midpoints, by proposing some
numerical experiments for different choices of the parameters α,γ under the assumption (15). For the same parameters, we show
also the behavior of the Lebesgue constants associated to the Lagrange process at Laguerre zeros. To be more precise, denoted by

Λm, j(w, x)u =
j
∑

k=1

|`m+1,k(w, x)|
u(x)
u(xk)

, eΛm, j(x)u =
j
∑

k=1

|lm,k(x)|
u(x)
u(zk)

the Lebesgue functions associated to the Lagrange processes defined in (12) and (13) respectively, we will denote by

Λ
(u)
m, j(w) :=max

x≥0
Λm, j(w, x)u, eΛ

(u)
m, j :=max

x≥0
eΛm, j(x)u,

the corresponding Lebesgue constants. In the tables we will report the ratios

�

Λ
(u)
m, j (w)

log m

�

m

,

�

eΛ
(u)
m, j

m
2
3 log m

�

m

for θ = 0.7. In Table 1 we

have considered γ = α
2 +

1
4 for α = ± 1

2 , while in Table 2 the case γ = α
2 +

1
2 for α = ± 1

2 . Moreover, we present some graphs of the
Lebesgue functions Λm, j(w, x)u and eΛm, j(x)u for m= 100 and for different choices of θ .
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α= −0.5, γ= 0, θ = 0.7

m j
Λ
(u)
m, j (w)

log m

eΛ
(u)
m, j

m
2
3 log m

10 9 1.27 0.30
60 56 1.02 0.11

110 102 0.96 0.09
160 148 0.94 0.08
210 194 0.93 0.07
260 240 0.92 0.06
310 286 0.91 0.06

α= 0.5, γ= 0.5, θ = 0.7

m j
Λ
(u)
m, j (w)

log m

eΛ
(u)
m, j

m
2
3 log m

10 9 1.08 0.29
60 55 0.89 0.11

110 101 0.85 0.08
160 148 0.85 0.08
210 194 0.83 0.07
260 240 0.82 0.07
310 286 0.82 0.06

Table 1

0 100 200 300 400 500 600
0

1

2

3

4

5

6

7

8

9

10

Red: Laguerre zeros

Blue:midpoints

Figure 1: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 100,
θ = 0.7, α= −0.5, γ= 0, for x ∈ [0, 600]
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7

8

9

10

Red: Laguerre zeros

Blue:midpoints

Figure 2: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 100,
θ = 0.7, α= 0.5, γ= 0.5 for x ∈ [0,600]

In all the proposed graphs of the Lebesgue functions we have considered ranges such that the attained maxima values are
included. Only the Figures 5− 6 contain zooms of the complete ranges, in order to evidence the comparable behaviors of the
Lebesgue functions eΛm, j(x)u,Λm, j(w, x)u in the ranges [0,4mθ], for different choices of α,γ. As we can see by inspecting the
plots in Figures 1− 12, in all the cases the growths of the functions eΛm, j(x)u,Λm, j(w, x)u are comparable inside the truncation
interval [0, 4mθ], for different admissible choices of the parameters α and γ and for different values of the truncation parameter
θ . Moreover, for any m, j the function eΛm, j(x)u takes the maximum outside the truncation range [0,4mθ], as the Fig. 1-4 and
7-12 attest. This allow us to hypothesize that in the interval [0, 4mθ] it is possible to achieve results better than the estimate in
(16) and therefore to prove that the new Lagrange process L∗m at the midpoints can be optimal in some sense. Finally, by the
numerical results given in the Tables 1− 2, it seems that the estimate of the Lebesgue constants in (16) is too pessimistic, since
the sequence eΛ(u)m, j diverges slower than m

2
3 log m. The conjecture is that in a restricted range of γ− α

2 it should be possible to
improve the estimate in (16). This argument will be elaborated in future research studies.

6 Numerical tests
In this section we propose some numerical tests obtained by using formula (17). Since the exact values of the integrals are not
known, we will compare our numerical approximations with the corresponding ones obtained by using m= 700.

About the computation of the Hilbert transform of the Laguerre weight we recall [12, p.325, n. 16]
∫ +∞

0

e−x

x − t
d x = −e−t Ei(t),

∫ +∞

0

e−x xα

x − t
d x = −πtαe−t cot((1+α)π) + Γ (α)1F1(1,1−α,−t), α 6= 0,

where Ei is the Exponential Integral function,1F1 is the Confluent Hypergeometric function and Γ is the complete gamma function.
Before, we want to give just an idea of the percentage of interpolation knots involved in truncated processes, depending on

the choice of the parameter θ .
Defined

Nm(a, b) = Number of zeros of qm−1 in (a, b)
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α= −0.5, γ= 0.25, θ = 0.7

m j
Λ
(u)
m, j (w)

log m

eΛ
(u)
m, j

m
2
3 log m

10 9 1.02 0.77
60 56 0.86 0.54

110 102 0.83 0.49
160 148 0.81 0.45
210 194 0.80 0.43
260 240 0.79 0.42
310 286 0.78 0.41

α= 0.5, γ= 0.75, θ = 0.7

m j
Λ
(u)
m, j (w)

log m

eΛ
(u)
m, j

m
2
3 log m

10 9 1.0 0.67
60 55 0.86 0.48

110 101 0.82 0.43
160 148 0.81 0.41
210 194 0.81 0.39
260 240 0.79 0.39
310 286 0.79 0.38

Table 2
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16

18

Red: Laguerre zeros

Blue:midpoints

Figure 3: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 100,
j = 92, θ = 0.7, α= −0.5, γ= 0.25 for x ∈ [0, 600]
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Red: Laguerre zeros

Blue:midpoints

Figure 4: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 100,
j = 92, θ = 0.7, α= 0.5, γ= 0.75 for x ∈ [0, 600]

for any θ ∈ (0, 1) let

νm(θ ) = Nm(0,4mθ )%, ν̃m(θ ) =
1

901

1000
∑

m=100

νm(θ ).

Next Table 3 contains the value of ν̃m(θ ) for two choices of α.

α= −0.5
θ ν̃(θ )

0.1 39.62
0.2 55.00
0.3 66.06
0.4 74.82
0.5 81.88
0.6 87.66
0.7 92.29
0.8 96.00
0.9 98.68

α= 0.5
θ ν̃(θ )

0.1 39.5
0.2 55.00
0.3 66.10
0.4 74.74
0.5 81.83
0.6 87.62
0.7 92.26
0.8 96.00
0.9 98.66

Table 3: Mean percentages of interpolation points belonging to [0,4mθ], for α= ± 1
2 .

Now, about the numerical experiments presented below, we point out that we have empirically detected the truncation
intervals. More precisely, in each table the indexes ` and j defined in (9) and (7), respectively, have been chosen under the
following criteria

` := max
1≤k≤m

`k, `k = max
i=1,...,m

�

i : λi

�

�

�

�

f (x i)− f (zk)
x i − zk

�

�

�

�

≥ eps

�

and
j := max

k=1,...,m
{k : |Fm( f w, zk)|u(zk)≥ eps} .
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Figure 5: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 100,
j = 61 θ = 0.25, α= −0.5, γ= 0 for x ∈ [0,200]

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Red: Laguerre zeros

Blue:midpoints

Figure 6: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 100, j =
61, θ = 0.25, α= 0.5, γ= 0.5 for x ∈ [0,200]
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Figure 7: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 100,
j = 82 θ = 0.5, α= −0.5, γ= 0 for x ∈ [0,400]
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Figure 8: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 100,
j = 82, θ = 0.5, α= 0.5, γ= 0.5 for x ∈ [0, 400]

In any case, for m and j given, the corresponding value of θ "a posteriori" can easily be deduced.
For each test we produce also the plots of the functions Hm( f w) realized for m = 200. Finally, we point out that all the

computations have been performed in double-machine precision (eps t 2.22044e− 16).
Example 1

H( f w, t) =

∫ +∞

0

f (x)
x − t

e−xpxd x , f (x) =
sin x
(x2 + 5)3

, α= 0.5, γ= 0.5.

We compute H( f w, t) for three values of t, namely t = 0.2,2,10. The function f is very smooth and we expect for a
fast convergence. We remark that even if m takes "large" values, the actual number of samples of the integrand function f is
substantially lower. For instance, with m= 512 for which 13 exact digits are taken, only 179 evaluations of f are required, for
any value of t.

Example 2

H( f w, t) =

∫ +∞

0

f (x)
x − t

e−x 4pxd x , f (x) = sinh
� x

8

�

|x − 1|
13
2 , α= 0.25, γ= 0.5.

We compute H( f w, t) for three values of t, namely t = 0.1, 1, 10. In this case the function f ∈ Z6.5(u), γ = 0.5 and therefore,
according to (19), the error behaves like (

p
m)−3.83 log m. Thus, for m = 512 we can expect at most 6 exact digits, while 11 digits

appear correct. We observe also a lower truncation than the previous test, depending on the exponential growth of f . Indeed
almost twice of samples of f are required as compared with Example 1, where f decays to 0 at x →∞.

Example 3
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Figure 9: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 100,
j = 96 θ = 0.8, α= −0.5, γ= 0 for x ∈ [0,700]
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Figure 10: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 100,
j = 96, θ = 0.8, α= 0.5, γ= 0.5 for x ∈ [0, 700]
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Figure 11: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 300,
j = 296 θ = 0.9, α= −0.5, γ= 0 for x ∈ [0,2500]
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Figure 12: Graphs of the functions Λm, j(w, x)u, eΛm, j(x)u for m = 300,
j = 296, θ = 0.9, α= 0.5, γ= 0.5 for x ∈ [0,2500]

H( f w, t) =

∫ +∞

0

f (x)
x − t

e−x

4px
d x , f (x) =

cos(log(π+ x))
(e+ x)5

,α= −0.25.

We compute H( f w, t) for three values of t, namely t = 0.1,1,10. Since the function f is very smooth we expect for a fast
convergence.

We remark that even if m takes "large" values, the actual number of samples of the integrand function f is drastically lower.
For instance, with m= 512 for which 13 exact digits are taken, only 175 evaluations of f are required.

7 The proofs
Now we collect some polynomial inequalities proved in [7].
Let x ∈ [x1, xm] and d = d(x) ∈ {1, . . . , m} be an index of a zero of pm(w) closest to x . Then, for some positive constant
C 6= C(m, x , d), we have

1
C

�

x − xd

xd − xd±1

�2

≤ p2
m(w, x)e−x

�

x+
1
m

�α+ 1
2
q

|4m− x |+m
1
3 ≤ C

�

x − xd

xd − xd±1

�2

. (20)

and for a fixed real number 0< δ < 1,

|pm(w, x)|
Æ

w(x)≤ C
1

4px
4
q

|4m− x |+m
1
3

,
C
m
≤ x ≤ 4m(1+δ). (21)
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m j ` Hm( f w, 0.2) Hm( f w, 2) Hm( f w, 10)
16 16 13 4.e− 3 −2.1e− 3 −2.e− 4
32 24 19 4.12e− 3 −2.17e− 3 −2.1e− 4
64 36 27 4.1223e− 3 −2.1745e− 3 −2.1885e− 4

128 51 38 4.122234e− 3 −2.1745710e− 3 −2.18851e− 4
256 73 54 4.12223453576e− 3 −2.17457109172e− 3 −2.188510510e− 4
512 103 76 4.122234535761e− 3 −2.174571091722e− 3 −2.188510510010e− 4

Table 4: Example 1: Hm( f w, t) with t = 0.2,2, 10
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Figure 13: Example 1: Hm( f w, x) for m= 200, α= 0.5, γ= 0.5 and t ∈ (0,20]

Moreover, for k = 1,2, . . . , m

1

|p′m(w, xk)|
p

w(xk)
∼∆xk

4
Æ

xk(4m− xk), ∆xk = xk+1 − xk, (22)

and

∆xk ∼
√

√ xk

4m− xk
, (23)

uniformly in m ∈ N.
In particular for k ≤ j, with j given in (7), by (23), it follows

∆xk = xk+1 − xk ∼
s

xk

m
, k = 1,2, . . . , j. (24)

Lemma 7.1. Let {xk}mk=1 the zeros of pm(w) and denote with xd a zero closest to x, ∆xk = xk+1 − zk. Assuming 0≤ τ,σ ≤ 1, for
x ∈ (0,4m) and for m sufficiently large, we have

m
∑

k=1k 6=d

∆xk

|x − xk|
(4m− x)τ

(4m− xk)τ
xσ

xσk
≤ C log m,

where C 6= C(m, x).

Now we prove some Lemmas useful in the subsequent proofs.

Lemma 7.2. For k ≤ j , where j has been defined in (7),

|p′m(w, xk)|
|q′m−1(zk)|

≤ C(4m− xk) C 6= C(m).

Proof. Consider the ratio

�

�

�

�

p′m(w, xk)

q′m−1(zk)

�

�

�

�

= (xm − xk)
k−1
∏

i=1

xk − x i

xk − x i +
∆xk−∆xi

2

m−1
∏

i=k+1

x i − xk

x i − xk +
∆xi−∆xk

2

≤ (4m− xk),

since ∆x r −∆xs ≥ 0,∀r > s.
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m j ` Hm( f w, 0.1) Hm( f w, 1) Hm( f w, 10)
16 16 16 1.8e+ 2 2.061e+ 2 −1.1e+ 02
32 32 30 1.8267e+ 2 2.06147e+ 2 −1.11978e+ 02
64 58 45 1.82677e+ 2 2.061477e+ 2 −1.119782e+ 02

128 89 66 1.8267753e+ 2 2.0614775e+ 2 −1.1197822e+ 02
256 129 94 1.82677536e+ 2 2.06147754e+ 2 −1.11978222e+ 02
512 185 133 1.8267753669e+ 2 2.0614775426e+ 2 −1.1197822201e+ 02

Table 5: Example 2: Hm( f w, t) with t = 0.1,1, 10
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-400

-300

-200

-100

0

100

200

300

400

500

Figure 14: Example 2: Hm( f w, x) for m= 200, α= 0.25, γ= 0.5 and t ∈ (0,20]

By Lemma 7.2, taking into account (22), it follows

1
|q′m(zk)|u(xk)

≤ C(4m− xk)
5
4 x

α
2 −γ+

1
4

k ∆xk. (25)

Lemma 7.3. Let be α > −1 and u(x) = e−x/2 xγ. Then for any x ∈ ζm =
�

C
m , 4m− Cm

1
3

�

it is

|qm−1(x)|u(x)≤
C

m
1
3

xγ−
α
2 −

1
4

4p4m− x
, (26)

0< C 6= (m, x).

Proof. Assume at first x 6= xk, k = 1,2, . . . m. Denote by d the index of a zero closest to x , and let, for instance, xd−1 < x < xd
and consider at first x ≥ m

2 . By

|qm−1(x)|
|pm(w, x)|

=
1

x − x1

d−3
∏

i=1

x − zi

x − x i+1

d
∏

i=d−2

|x − zi |
|x − x i+1|

m−1
∏

i=d+1

zi − x
x i+1 − x

since for i ≥ d it is zi − x < x i+1 − x , and taking into account x1 ∼
1
m and the assumption x ≥ m

2 , we have

|qm−1(x)|
|pm(w, x)|

≤
C
m

d−3
∏

i=1

x − zi

x − x i+1

�

1+
∆xd−2

x − xd−1

��

xd − zd−1

xd − x

�

.

Since ∆xd−2 ∼∆xd−1 ∼ x − xd−1 and xd−zd−1
xd−x ∼ 1

|qm−1(x)|
|pm(w, x)|

≤ C
C
m

d−3
∏

i=1

�

1+
∆x i

2(x − x i+1)

�

≤
C
m

eS (27)

where

S =
d−3
∑

i=1

∆x i

2(x − x i+1)
≤

1
2

d−3
∑

i=1

∫ xi+1

xi
d t

x − x i −∆x i
≤

1
2

d−3
∑

i=1

∫ xi+1

xi

d t
x − t −∆x i

≤
1
2

d−3
∑

i=1

log
�

x − x i −∆x i

x − x i+1 −∆x i

�

≤
1
2

log
�

x − x1 −∆x1

x − xd−2 −∆xd−3

�

≤
1
2

log(Cm)
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m j ` Hm( f w, 0.1) Hm( f w, 1) Hm( f w, 10)
16 16 13 −3.2e− 3 −1.8e− 3 −1.e− 4
32 24 19 −3.227e− 3 −1.82e− 3 −1.34e− 4
64 36 26 −3.22783e− 3 −1.821903e− 3 −1.3446e− 4

128 51 37 −3.2278395029e− 3 −1.8219038131e− 3 −1.34460808e− 4
256 73 51 −3.227839502975e− 3 −1.82190381314e− 3 −1.34460808900e− 4
512 103 72 −3.227839502975e− 3 −1.821903813148e− 3 −1.344608089008e− 4

Table 6: Example 3: Hm( f w, t) with t = 0.1,1, 10
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Figure 15: Example 3: Hm( f w, x) for m= 200, α= −0.25, γ= 0 and t ∈ (0,20]

and by (27) it follows
|qm−1(x)|
|pm(w, x)|

≤
C
p

m
. (28)

Assume now 1
2 ≤ x ≤ m

2 . By similar arguments to those used in the previous case, we have

|qm−1(x)|
|pm(w, x)|

=
1

xm − x

d−1
∏

i=1

x − zi

x − x i

|x − zd |
|x − xd |

m−1
∏

i=d+1

zi − x
x i − x

≤
C
m

m−1
∏

i=d+1

zi − x
x i − x

and also
|qm−1(x)|
|pm(w, x)|

≤ C
C
m

m−1
∏

i=d+1

�

1+
∆x i

2(x i − x)

�

≤
C
m

eS , (29)

where

S =
m−1
∑

i=d+1

∆x i

2(x i − x)
≤

1
2

� j−1
∑

i=d+1

∫ xi+1

xi

d t
t − x − a

+
m−1
∑

i= j

∫ xi+1

xi

d t
t − x − b

�

, a =max∆x i < C, i ≤ j, b ≤ Cm
1
3 .

Therefore

S ≤
1
2

�

∫ x j

xd+1

d t
t − x − a

+

∫ xm

x j

d t
t − x − b

�

≤
1
2

�

log
x j − x − a

xd+1 − x − a
+ log

xm − x − b
x j − x − b

�

≤
1
2

log(Cm)

and by (29) it follows
|qm−1(x)|
|pm(w, x)|

≤
C
p

m
.

By (21), we have for x ∈ ζm\{x1, . . . , xm}

|qm−1(x)|u(x)≤
C
p

m
xγ−

α
2 −

1
4

4p4m− x
.

For x = xk, k = 1,2, . . . , j, with j defined in (7), by following arguments similar to those used in the proof for x 6= xk, it is no
hard to prove

|qm−1(xk)|
|pm(w, zk)|

≤
C
p

m
, k ≤ j (30)
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and therefore, by (20)

|qm−1(xk)|u(xk)≤
C
p

m

z
γ− α2 −

1
4

k
4
p

4m− zk

.

Finally, for x = xk, k > j,

|qm−1(xk)|= γm(w)
∆xk

2

k−1
∏

i=1

(xk − zi)
m−1
∏

i=k+1

(zi − xk)≤ γm(w)
∆xk

2

k−1
∏

i=1

(xk − x i)
m−1
∏

i=k+1

(x i+1 − xk) =
1
2
|p′m(w, xk)|

and therefore by (22), taking into account ∆xm ∼ m
1
3

|qm−1(xk)|u(xk)≤
C
∆xk

x
γ− α2 −

1
4

k
4
p

4m− xk

≤
C

m
1
3

x
γ− α2 −

1
4

k
4
p

4m− xk

and the Lemma is completely proved.

Lemma 7.4. For x ∈ (z1, z j), j defined in (7) and denoted by zd a zero of qm−1 closest to x, we have

|qm−1(x)|
|q′m−1(zd)(x − zd)|

u(x)
u(zd)

≤
C
p

m
(4m− x), C 6= C(m, x).

Proof. For x 6= xd , by (28) and (20) we have

|qm−1(x)|u(x)
|x − xd |

≤
C
p

m
xγ−

α
2 −

1
4

4p4m− x
∆xd .

By taking into account (25), w(x)∼ w(zd) and that by (24) ∆xd ≤ C, d ≤ j we get

|qm−1(x)|
|q′m−1(zd)(x − zd)|

u(x)
u(zd)

≤
C
p

m
(4m− x)

�

4m− xd

4m− x

�
1
4
�

x
xd

�γ− α2 −
1
4

(∆xd)
2 ≤

C
p

m
(4m− x).

Finally, the case x = xd follows from (26), (25) and (30).

To prove the next two Theorems, we recall that for any polynomial P ∈ IPm the following Remez-type inequality holds [10,
Theorem 2.1]

max
x≥0
|Pm(x)u(x)| ≤ C max

x∈ζm
|Pm(x)u(x)|, ζm =

�

C
m

, 4m− Cm
1
3

�

(31)

where C 6= C(m).

Proof of Theorem 3.1. To prove (16), by (31) and denoting by d the index of an interpolation knot closest to x , we have

‖L∗m+1( f )u‖∞ ≤ max
x∈ζm
|L∗m+1( f , x)|u(x)≤ ‖ f u‖∞max

x∈ζm

j
∑

k=1

|qm−1(x)|(4m− x)u(x)
|q′m−1(zk)|(4m− zk)u(zk)|x − zk|

= ‖ f u‖∞max
x∈ζm

� j
∑

d 6=k=1

|qm−1(x)|(4m− x)u(x)
|q′m−1(zk)|(4m− zk)u(zk)|x − zk|

+
|qm−1(x)|u(x)(4m− x)

|q′m−1(zd)|(4m− zd)u(zd)|x − zd |

�

=: ‖ f u‖∞max
x∈ζm
[Σ2(x) + Cd(x)] . (32)

For x ∈ ζm and from (26) and (25) it follows

Σ2(x)≤
C

m
1
3

j
∑

d 6=k=1

(4m− x)
3
4 (4m− zk)

1
4

�

x
xk

�γ− α2 −
1
4 e∆xk∆zk

|x − zk|
.

Moreover, recalling ∆xk ∼
p

xkp
m , k ≤ j, and by Lemma 7.1, under the assumption 0≤ γ− α

2 −
1
4 ≤ 1,

Σ2(x)≤ Cm
2
3 log m. (33)

Finally, from Lemma 7.4 it easily follows

Cd(x)≤ Cm
2
3 . (34)

Theorem 3.1 is then proved by combining (33) and (34) with (32).
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To prove Theorem 4.1 we need the following result proved in [11].

Lemma 7.5. [11] For any f ∈ Zλ+1(u), under the assumption 0≤ γ < α+ 1
4 ,

Em(F( f w))u ≤
C

(
p

m)λ
‖ f ‖Zλ+1(u), (35)

Em(Fm( f w))u ≤ C
C

(
p

m)λ
‖ f ‖Zλ+1(u), (36)

where C is independent on f , m.

Proof of Theorem 4.1. Let Pm−1 ∈ P∗m−1.

|ρm( f w, t)|u(t) = |H( f w; t)−Hm( f w; t)|u(t)≤ |F( f w; t)− Pm(t)|u(t) + |L∗m(Fm( f w)− Pm; t)|u(t).

Under the assumption (18), which implies (15),

|ρm( f w; t)|u(t)≤ C|F( f w; t)− Pm−1(t)|u(t) + |Fm( f w; t)− Pm−1(t)|u(t)m
2
3 log m

and taking the infimum on P∗m and by (14) we get

|ρm( f w; t)|u(t) ≤ C
¦

EM (F( f w))u + EM (Fm( f w))um
2
3 log m

©

,

where M =
�

m
�

θ
1+θ

��

∼ m. Finally, from (35) and (36) the thesis follows.
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