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a  b  s  t  r  a  c  t

In this  paper,  vortex-induced  vibrations  (VIV)  of  an  elastically  mounted  sphere  with  two  linear  degrees  of
freedom have  been  experimentally  studied.  The  dynamic  response  analysis  shows  that,  for  the  range  of
reduced  velocity  from  2 to 14  here  investigated,  the  sphere  exhibits  similar  amplitudes  and  frequencies
compared  to the tethered  sphere,  and  Modes  I and  II are  detected.  A new  application  of  the  phase  average
approach  allowed  extrapolating  the  periodic  trajectory  pattern  from  the  experimental  trajectories.  In
eywords:
ortex-induced vibration
phere
rajectory

particular,  more  than  one  dominant  harmonic  component  is  observed  in  the  streamwise  oscillation,  so
the sphere  trajectories  are  significantly  different  from  the  traditional  figure-of-eight  shape.  The  main
difference  is  that  these  trajectories  are  not  self-intersecting.  Based  on  the  experimental  observations,  an
analytical  model  of the  trajectory  is  built  and  discussed.

© 2017  Elsevier  Ltd.  All  rights  reserved.
hase average
educed velocity
xperimental model

. Introduction

The practical relevance of vortex-induced vibrations (VIV), as a
esign failure problem in bluff structures (bridges, buildings, auto-
obiles, electric power poles, telephone cables, heat-exchanger

ubes, etc.), and also as a resource of renewable energy [1], contin-
es to raise interest in the scientific research. The sphere is one of
he simplest representatives of real life bluff structures, but shows
lmost all the physical phenomena [2]. However, so far only few
nvestigations have been carried out to study the dynamics of the

ore complex, three-dimensional problems of freely oscillating
pheres in steady flows, and the majority of them are focused on
he tethered spheres [3–10], to name a few.

The first Authors to observe the dynamic response of tethered
pheres in steady fluid flows were Williamson and Govardhan
3]. In the transverse direction, they noted a saturation amplitude
lose to two diameters peak-to-peak for high Reynolds num-
ers (Re = 1.13 × 104), with figure-of-eight shaped trajectories. In
ddition, they found a distinct collapse of data by plotting the

mplitudes versus the reduced velocity, U* = U/fND, under a range of
ifferent sphere mass ratios, m* = m/md, from 0.082 up to 0.73. Such
ollapse, occurred at values of U* = 5–6, was verified at the classical
esonance condition, where the natural frequency is approximately

∗ Corresponding author.
E-mail addresses: marco.negri@polimi.it (M.  Negri),

omenica.mirauda@unibas.it (D. Mirauda), stefano.malavasi@polimi.it
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141-1187/© 2017 Elsevier Ltd. All rights reserved.
equal to the vortex formation frequency. Later, Jauvtis et al. [4]
named the resonance condition and the saturation state as Modes
I and II, respectively. They investigated higher m*  = 80–940 and
U* = 0–300 compared to those analysed by [3], discovering two  new
responses: a periodic one for 20 ≤ U* ≤ 40 at m*  = 80, named Mode
III, and another, named Mode IV, characterised by intermittent
bursts of large-amplitude vibrations beyond U* = 100.

In 2005, Govardhan and Williamson [5] extended their previous
study on heavy spheres (m* > 1). They found a large-amplitude and
highly periodic mode (Mode III) at distinctly higher flow velocities,
where the frequency of vibration was far below the frequency of
vortex shedding for a static body. Furthermore, for both light and
heavy spheres, they observed that Mode I and II in the synchro-
nisation region were separated by a transition regime, exhibiting
non-periodic vibrations. They also found that the peak amplitude
and the range of the synchronisation region increased with the
decreasing of the mass-damping parameter, (m*  + CA)�.

van Hout et al. [6,7] discovered three different bifurcation
regions of a heavy tethered sphere (m* = 7.87) for 2.8 ≤ U* ≤ 31.1.
In the first region, the sphere oscillated with low amplitudes. The
second region was characterised by periodic and large amplitude
transverse oscillations of half the sphere diameter and overlapped
with Modes I and II described by [4] and [5]. For the third region, the
sphere exhibited non-periodic vibrations in the transverse direc-

tion, comparable to Mode IV. In the same year, a numerical and
experimental study by [8] found different response amplitudes of
an oscillating tethered sphere for 50 ≤ Re ≤ 12.000. These regimes
did not have any relation with the four modes previously described,
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Nomenclature

A Transverse sectional area of the channel
AD Frontal area of the sphere
Ay Transverse amplitude of motion
Ax1 Streamwise amplitude of motion (first harmonic)
Ax2 Streamwise amplitude of motion (second harmonic)
CA Potential added mass coefficient (CA = 0.5)
D Sphere diameter
fN Natural frequency of the sphere in water
fvo Vortex shedding frequency (stationary sphere)
f Main oscillation frequency of the sphere
h Distance between the free surface and sphere upper

surface
L Rod length
m Sphere mass
md Displaced fluid mass
� Non-dimensional damping coefficient
U Mean free-stream velocity
�xy1 Phase angle between streamwise and transverse

position (first harmonic)
�xy2 Phase angle between streamwise and transverse

position (second harmonic)
�x Standard deviation of streamwise oscillation
�y Standard deviation of transverse oscillation
T Mean period of oscillation
x Streamwise position
y Crossflow position
∼
x Phase-averaged streamwise position

m
o

t
fl
t
r
4
l
h
e
t
t
l
d
t
n
a
h
s

[
f
o
(
t
c
t
a
t
i
y

imposing a threshold brightness, and then calculating the cen-
∼
y Phase-averaged transverse position

aybe due to the use of neutrally buoyant tethered spheres instead
f light and heavy spheres.

Only recently, more attention has been paid to the study of
he dynamic response of elastically mounted spheres in steady
uid flows. Computationally, Behara et al. [9] analysed the vibra-
ions of an elastically mounted sphere of m* = 2 at Re = 300 and
educed velocity in the range of U* = 0–9. They showed that for
.8 ≤ U* ≤ 9 the sphere exhibited two distinct synchronised oscil-

ation regimes, each associated with a distinct wake mode: the
airpin mode and the spiral mode. Later, the same Authors [10]
xpanded the range of reduced velocities (U* = 0–13) at Re = 300 and
he range of Reynolds numbers to 300 ≤ Re ≤ 1000, fixing U* = 9. In
his manner, they observed that for 9 ≤ U* < 12.2 the sphere oscil-
ated periodically in the transverse (y) and lateral (x) directions,
epicting a circular motion on the transverse plane. On the con-
rary, for U* = 12.2, at the end point of the synchronisation region,
on-stationary oscillations were observed, and the sphere moved
long elliptical orbits. In the second set of simulations, they showed
ow the vortex shedding mode and the sphere motion were both
trongly influenced by the Reynolds number.

With regard to the experimental studies, Mirauda et al.
11–15] analysed the influence of the boundary conditions, like
ree surface and bottom of the channel, on the movement
f an elastically mounted sphere at high Reynolds numbers
Re = 1.7 × 104–7.0 × 104) and for a large range of reduced veloci-
ies (U* = 1.90–7.58) in a steady fluid flow. In particular, the Authors
onsidered a heavy sphere characterised by a value of m* = 1.34 and
wo sets of experiments. In the first set, they investigated the body

t three different relative submergences, h* = h/D: sphere close to
he free surface (h* = 0), to the bottom (h* = 3.97) and completely
mmersed (h* = 2). For h* = 2 and h* = 3.97, the displacements anal-
sis showed Mode I at U* = 4.74, a value slightly lower than that
esearch 70 (2018) 62–75 63

found in literature, and a transition trajectory between crescent
topology and figure-of-eight shape. For h* = 0, instead, they noted
that the distortion of free surface reduced the transverse displace-
ments and the shape of the trajectory became of the chaotic type.
In the second set of experiments, fixing the sphere near the chan-
nel bottom, the Authors varied the water level from 0 to 2 times
the body diameter. This way, they observed how, for 0 < h* ≤ 0.5,
the free surface significantly reduced the transverse oscillations of
the sphere at lower flow velocities, inhibiting the formation of the
typical Mode II and forestalling also Mode I at U* < 5. For h* > 0.5,
both the modes were, instead, noted.

With the present work, the Authors have expanded on their
earlier studies by investigating, through a wider range of reduced
velocity, the dynamic response of an elastically mounted sphere
with two  linear degrees of freedom. In view of this, the follow-
ing set of experiments has been carried out, in which the reduced
velocity varies between 1.6 and 13.6, fixing the Reynolds number
at 4.5 × 104. The analysed body vibration modes and trajectories
in the XY plane will contribute to provide additional insights into
the VIV of a sphere completely immersed in a steady fluid flow.
Furthermore, the phase average, an approach already used in lit-
erature by [5] and [16] in vorticity fields with spheres VIV, has
here been adopted to describe the trajectory shape of an elasti-
cally mounted sphere, which allowed identifying the “synchronised
pattern” between the transverse and streamwise motion.

The outline of the paper is as follows. In Section 2, the exper-
imental setup and the data analysis are described. The analytical
modelling of the sphere trajectories are shown and discussed in
Section 3. In Section 4 the dynamic response in amplitude and fre-
quency of the sphere and the trajectory shapes on the XY plane
are analysed. Finally, the main findings of the present work are
summarised in Section 5.

2. Experimental setup and data treatment

Experiments were performed in an open water channel at the
Hydraulics Laboratory of the Politecnico di Milano, with a cross sec-
tion of 50 × 60 cm and a 6 m length. The experimental model was
a sphere made of PVC plastic, covered in paint in order to reduce
the surface roughness. The diameter was D = 90 ± 0.02 mm and the
mass ratio was  m* = 1.24 ± 0.01. The sphere was connected through
a threaded coupling to one end of a stainless steel rod of circular
section with a diameter of 3 ± 0.02 mm.  The other end of the rod
was clamped to a fixed aluminium structure mounted on the chan-
nel and located above it. The type of restraint allowed the sphere
to move mostly in the XY plane, while the displacements along
the vertical direction, Z, were negligible. In Fig. 1 a scheme of the
experimental apparatus is shown.

The spherical body was completely immersed (h/D = 2) in a free
surface flow with water depth equal to 5 times the sphere diameter,
while the blockage coefficient (�b = A/AD) was constant, and equal
to 0.03.

The sphere movements were recorded through a CCD (Charge
Coupling Device) with an acquisition frequency of 50 Hz and a
resolution of 659 × 493 px. The camera was located below the
water channel. The sphere had a fluorescent circular marker at
its bottom (aligned with its centre of gravity), which allowed
acquiring well-contrasted images in the darkness, with the bright
marker on a black background. Therefore, the image processing
necessary to calculate the position of the marker was quite sim-
ple, and consisted in converting each frame into a binary image
troid of the blob associated to the marker. Taking into account
the spatial resolution of the images, 2.45 px/mm, and the average
blob diameter, 9 px, the uncertainty of the marker position was
0.02 mm.
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ig. 1. Scheme of the experimental apparatus. The origin of the reference system is
n  the sphere centre.

The values of the natural frequency in water, fN , were exper-
mentally determined hypothesising the behaviour of the sphere
imilar to that of a linear single degree-of-freedom (SDOF) oscil-
ator. In the case here analysed, the response of the sphere was
btained by isolating the single mode of interest, since the natural
requencies of the system were sufficiently separated everywhere.
he adopted procedure was the following: a) recording through

 CCD camera of several free decay oscillations of the sphere, set
ree to oscillate from an initial position; b) evaluation of the power
pectral density (PSD) function from the recorded signal; c) iden-
ification on the PSD of the natural frequency of the first mode in
ater, fN . The natural frequencies, fN , went from 3.39 Hz to 0.41 Hz
ith increasing L/D ratio from 2.2 to 10 (where L includes half the

phere diameter).
In the tests in flowing water, the x and y time-coordinates of

he sphere were processed by means of phase average. This was
ossible because, in all the cases analysed, at least one component
f the sphere movement was harmonic and was used as reference
hase for itself and the other motion component. For example, in
ig. 2a and b, a piece of the time history of x and y is reported for two
xperimental tests (U* = 4.3 and U* = 9.6). In the first case (Fig. 2a),
he x-component of motion is harmonic while the y-component is

ore chaotic, vice versa in the second case (Fig. 2b). In Fig. 2c and
, the spectra of the two components of motion are shown.

The reference phase was built by low-pass filtering (cut-off
requency equal to 1.2 times the main frequency of the signal spec-
rum) of the periodic signal (x or y), and then detecting its points
f relative maxima, which were used as period trigger. The mean
eriod T of the signal was calculated by averaging the duration of
he periods found inside the signal. Subsequently, data (x and y)
ere re-sorted by assigning a new time-coordinate to each sam-
le, which was the time-lag between the sample and the closest
rigger point in the reference signal. Re-sorted data were then aver-
ged by means of a moving average window going from –T/2 to T/2
width of window = T/20); the result was a “mean oscillation cycle”
f x and y motion. Fig. 2e–h show the phase-sorted (point) and the
hase-averaged (line) data of the two experimental tests. This kind
f phase average is very similar to the one explained in more detail
n [17].

The mean period of the phase average was used to define the

scillation frequency of the sphere ω = 2�f = 2�/T. Therefore, the
imensionless frequency was calculated as f∗ = f/fN .

The mean amplitude and phase of the sphere motion were cal-

ulated as Fourier coefficients of the phase-averaged quantities
∼
x

nd
∼
y:
esearch 70 (2018) 62–75

A∗
y = Ay/D ≡ 2

T

∣∣∣∣∣∣∣
T/2∫

−T/2

∼
ye−iωtdt

∣∣∣∣∣∣∣/D (1)

A∗
x,n = Ax,n/D ≡ 2

T

∣∣∣∣∣∣∣
T/2∫

−T/2

∼
xe−inωtdt

∣∣∣∣∣∣∣/D (2)

�y ≡ arg

(∫ T/2

−T/2

∼
y e−iωtdt

)
(3)

�x,n ≡ arg

⎛
⎜⎝

T/2∫
−T/2

∼
xe−inωtdt

⎞
⎟⎠ (4)

where n = 1, 2. In the next paragraph, the analytical representation
of Eqs. (1)–(4) is explained in more details.

3. Trajectory analytical modelling

A discrete Fourier transform on the phase-averaged motion

components
∼
x and

∼
y revealed that the trajectories of the sphere

are always well represented by the following expressions:

∼
y/D ∼= A∗

y sin (ωt) (5)

∼
x/D ∼= A∗

x1 sin
(

ωt + �xy1
)

+ A∗
x2 sin

(
2ωt + �xy2

)
(6)

where �xy1, �xy2 are calculated by re-arranging the phases of Eqs.
(3) and (4).

The reliability of this representation is demonstrated in the
appendix, where the Fourier coefficients of the phase-averaged
data are calculated up to further harmonics. As a result, their
increase does not effectively improve the model of the trajectory:
the analysis of the Fourier coefficients and the residual between the
phase average trajectory and its inverse Fourier transform reveals
that the transverse motion is completely represented by one har-
monic, and the streamwise motion is completely represented by
a maximum of two harmonics. Therefore, the trajectories can be
subdivided into two groups:

- 1:1 trajectories: first harmonic in the streamwise motion, first
harmonic in the crossflow motion;

- 2:1 trajectories: second (and eventually first) harmonic in the
streamwise motion, first harmonic in the crossflow motion.

It should be noted that only the integer multiples of the main
harmonic ω have been considered in this model, because the
operation of phase average cancels the contribution of the other
frequencies, which do not determine a recurrent and recognisable
pattern in the trajectory anyway. Looking at the Eqs. (5) and (6), the
parameters that define the shape of a trajectory can be identified.
A possible list of them can be A∗

y/A∗
x, �xy1, for the 1:1 trajectory and

A∗
y/A∗

x2, A∗
x1/A∗

x2, �xy1, �xy2, for the 2:1 trajectory. It is interesting to
further subdivide these parameters into two groups: the ones that
change only the XY aspect ratio (stretching or shrinking the trajec-
tory) and the ones that cause a more effective change of shape. The
latter are �xy1 for the 1:1 trajectory and A∗

x1/A∗
x2, �xy1, �xy2, for the
2:1 trajectory.
Fig. 3 reports the trajectories according to Eqs. (5) and (6), as a

function of the suggested “effective” parameters. Only a quadrant
of the domain �xy1, �xy2 is reported; it includes the experimental
values found in this work, and it is also representative for many
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ig. 2. Examples of experimental data and processing for tests U* = 4.3 and U* = 9.6.
point) and phase-averaged (line) x-data; g), h) phase-sorted (point) and phase ave

rajectories of tethered spheres and elastically mounted cylinders
ound in VIV literature.

The trajectories in Fig. 3 are subdivided into two main groups:
he 1:1 trajectories on the left hand side (red background) and the
:1 trajectories on the right hand side (violet and blue background)
f the figure. The 2:1 trajectories with blue background do have not
he first harmonic in the x component, so they are represented out
f the �xy1 domain, for simplicity purpose. The vertical axis of the
gure, �xy1, applies to 1:1 and 2:1 trajectories, while the horizon-
al axis �xy2 applies only to 2:1 trajectories. In the 2:1 trajectories,
he effect of the parameter A∗

x1/A∗
x2 is also considered. The num-

er reported next to the trajectories is the critical value of A∗
x1/A∗

x2,
hose meaning will be explained later. The domain of �xy1 and �xy2

n Fig. 3 includes half of 1:1 trajectories and a quarter of 2:1 tra-
ectories. However, the reported analysis can be easily extended to
he rest of the domain.

The effective shape of 1:1 trajectories depends only on �xy1.
hese trajectories are an ellipse, which is reduced to a line segment
hen �xy1 = 0 or �xy1 = �. In the present results, these trajecto-

ies always happen with very low A∗
y/A∗

x1, which means that the
ain direction of motion is the streamwise one. �xy1 determines

he sign of the ellipse inclination and the direction of rotation:

or −�/2 < �xy1 < �, the inclination is negative (the inclination sign
s sgn(cos �xy1)), while for 0 < �xy1 < � the direction of rotation is
ounter clockwise (the rotation direction is sgn(sin �xy1)).
piece of x and y time histories; c), d) x and y spectra of the tests; e), f) phase-sorted
(line) y-data.

The 2:1 trajectories are depicted as a function of A∗
x1/A∗

x2, �xy2,
�xy1 (A∗

y/A∗
x2, which is the XY aspect ratio, is not constant in the

representations). According to the experimental results here pre-
sented and VIV literature, these trajectories always happen with
high A∗

y/A∗
x2, which means that the main direction of motion is the

transverse one. Four values of A∗
x1/A∗

x2 (0, 1, 2, 5) are considered in
Fig. 3, and they are recognisable by the thickness of the line.

The first row of the 2:1 trajectories has A∗
x1/A∗

x2 = 0 and it is the
“classical” 8-shaped VIV trajectory, which is a Lissajous figure. It has
no dependence on �xy1, and the parameter �xy2 only determines the
shape of the trajectory (apart from the XY aspect ratio), the sign of
the concavity and the direction of rotation of the trajectory. The sign
of the concavity is −sgn(sin �xy2) and, for � < �xy2 < 2�, the trajec-
tory concavity is positive (towards downstream). The trajectory is
reduced to a chord (the crescent topology in VIV) for �xy2 = 3�/2 and
�xy2 = �/2. For �/2 < �xy2 < 3�/2, the direction of rotation is such that
the trajectory moves downstream at the top of the figure-of-eight,
named “clockwise motion” by [18]. Therefore, in that definition, the
rotation direction is sgn

(
cos �xy2

)
.

The influence of the phase lag �xy2 on the direction of rotation
of 8-shaped trajectories was already highlighted in [19]. In that
work, the phase lag was calculated according to the cosine phase,

hence the present �xy2 should be shifted by �/2 to be compared
with the phase lags of [19]. The presence of the first harmonic also in
the streamwise motion (A∗

x1/A∗
x2 > 0) determines trajectory shapes

that are sometimes different from the classical 8-shape, especially



66 M. Negri et al. / Applied Ocean Research 70 (2018) 62–75

F round
t backgr

c or inte

t

b
b
o
c
i
o
T
l

o
t
t
t
s
a

i
A
d
t
i
“
b
p
n
s
i
u

(

ig. 3. Analytical model of VIV trajectories: the first column on the left (red backg
rajectories with only second harmonic in the x component; in the centre (violet 

omponent. The number next to each trajectory is the critical ratio
(

A∗
x1/A∗

x2

)
crit

. (F

he  web  version of this article.)

ecause they can be not self-intersecting. Such trajectories have
een encountered in this study and are also visible in some previ-
us works on cylinder VIV, in which the natural frequency of the
ylinder in the x and y directions is different [20,21]. In those stud-
es, besides the classical 8-shape, the authors detected other types
f trajectories, which they called “D”, “egg”, and ”rain drop” shape.
hese shapes are also recognisable in Fig. 3, and their occurrence is
inked to the values of A∗

x1/A∗
x2, �xy2, �xy1.

The magnitude of A∗
x1/A∗

x2 indicates the relative importance
f the first and second harmonic. If A∗

x1/A∗
x2 → 0, the trajectory

ends to the 8-shape (including its degeneration to the crescent
opology) while, if A∗

x1/A∗
x2 → ∞,  the trajectory tends to the 1:1

rajectory shape, which is the ellipse (and its degeneration to the
egment). Between these extreme cases there are some intermedi-
te shapes.

For �xy1 ≈ 0 and �xy1 ≈ �, the trajectory is always self-
ntersecting (8-shape or chord when �xy2 = 3�/2) regardless of
∗
x1/A∗

x2. For �xy1 /= 0 and �xy1 /= �, the increase of A∗
x1/A∗

x2 changes
ramatically the shape of the trajectory: if �xy2 /= 3�/2, the trajec-
ory shifts to the “rain-drop” and then to the “egg” shape while,
f �xy2 ≈ 3�/2 or �xy2 ≈ �/2, the chord-trajectory “opens” into the
D” shape. Actually, the “rain-drop” shape is the critical passage
etween the “8” and the “egg” shapes, in which the self-intersecting
oint of the trajectory is a cusp. Therefore, the occurrence of a
on-derivable point in the trajectory marks the passage from a
elf-intersecting trajectory (8-shape or a chord) to a non-self-
ntersecting trajectory (“egg” or “D”). By detecting when dy/dx is

ndetermined, it is possible to identify this critical condition as:

A∗
x1/A∗

x2

)
crit

= 2

∣∣∣∣ cos �xy2

sin �xy1

∣∣∣∣ (7)
) contains 1:1 trajectories; the first row at the top (blue background) contains 2:1
ound) there are the 2:1 trajectories with both first and second harmonic in the x

rpretation of the references to colour in this figure legend, the reader is referred to

The trajectory is self-intersecting (8-shape or chord) when
A∗

x1/A∗
x2 <
(

A∗
x1/A∗

x2

)
crit

, otherwise it is not self-intersecting (“egg”

or “D” shape). If A∗
x1/A∗

x2 =
(

A∗
x1/A∗

x2

)
crit

, the trajectory has a cusp
and can be considered as “rain-drop” shape.

This critical value is reported in Fig. 3 on the right of each tra-
jectory. Three particular cases occur:

-
(

A∗
x1/A∗

x2

)
crit

= 0 the trajectory is self-intersecting only if
A∗

x1/A∗
x2 = 0, and in that case it is a chord.

-
(

A∗
x1/A∗

x2

)
crit

= ∞ the trajectory is always self-intersecting (8-
shape or chord) regardless ofA∗

x1/A∗
x2; if A∗

x1/A∗
x2 → ∞,  the

trajectory is a chord.
-
(

A∗
x1/A∗

x2

)
crit

= ind (indeterminate) the trajectory is always self-
intersecting (chord) regardless of A∗

x1/A∗
x2.

Therefore, the sharpening of the trajectory on one side is linked
to A∗

x1/A∗
x2, �xy1, �xy2. The trajectory tip (or the smallest lobe of

the 8) is in the region y < 0 if sgn(cos �xy2)/sgn(sin �xy1) > 0: that
means that for 3�/2 < �xy2 < 5�/2 ∩ 0 < �xy1 < � and �/2 < �xy2 < 3�/2
∩ � < �xy1 < 2� the downer part of the trajectory is pointed and the
upper part is rounded. A∗

x1/A∗
x2 determines the relative dimension

of the two lobes in the self-intersecting trajectories, and the amount
of concavity in the not self-intersecting trajectories.

As for the classical 8-shaped trajectories, � < �xy2 < 2� implies
concavity towards downstream.
As for the 1:1 trajectories, �xy1 determines the sign of the trajec-
tories inclination, which is positive for −�/2 < �xy1 < �/2, (reference
system of Fig. 3). In the trajectories that are not self-intersecting,
0 < �xy1 < � determines counter clockwise direction of rotation (in
its common sense).
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Table  1
Geometrical properties of 2:1 trajectories.

Property Condition/expression

Self-intersection A∗
x1 = 0 or

A∗
x1

A∗
x2

< 2
∣∣ cos �xy2

sin �xy1

∣∣
Rotation direction of self-intersecting trajectories (according to [18]) (positive if counter clockwise) sgn (cos �xy2)

Concavity sign (positive if concavity is towards downstream) −sgn (sin �xy2)

Rotation direction for not self-intersecting trajectories (also for 1:1 trajectories) (positive if counter clockwise, according to
the  present reference system)

sgn (sin �xy1)

Inclination sign (also for 1:1 trajectories) (according to the present reference system) 

Position  of the tip (or smallest lobe) (positive if tip is in the region y > 0, according to th

Table 2
Characteristic parameters of the experiments.

L/D fN [Hz] � U* Re

2.22 3.39 0.009 1.6 4.50 × 104

3.89 1.54 0.012 3.6
4.44 1.28 0.013 4.3
4.72 1.18 0.013 4.7
5.00 1.08 0.014 5.1
5.28 1.01 0.014 5.5
5.56 0.94 0.015 5.9
6.11 0.82 0.016 6.8
6.67 0.72 0.017 7.7
7.22 0.65 0.018 8.5
7.78 0.58 0.019 9.6
8.33 0.53 0.020 10.5
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8.89 0.48 0.021 11.6
9.44 0.44 0.021 12.6
10.00 0.41 0.022 13.6

Table 1 is a summary of the geometrical properties of the 2:1
rajectories.

. Discussion of the results

The tests were carried out maintaining the mean stream veloc-
ty constant (U = 0.5 ± 0.001 m/s) and changing L/D, in order to

odify the natural frequency of the system. This allowed inves-
igating a sufficiently wide range of reduced velocity and verifying
he efficacy of the non-dimensional parameters used to study the
henomenon. Table 2 shows the characteristic parameters of the
xperiments. The damping ratio � increases with the rod length,
nd it is included in the range 0.009–0.022. Therefore, the mass-
amping parameter (m* + CA)� is included in the range 0.016–0.038
nd should slightly affect the sphere amplitude of motion.

Fig. 4 reports the variation, with the reduced velocity, U*,  of the
ormalised amplitudes (A∗

y, A∗
x1, A∗

x2) of oscillation in the XY plane.
or the streamwise motion, the value

√
2�x/D is also shown, which

s useful to compare the present results with the ones in literature.
It is evident that the value U* = 5 divides the chart of Fig. 4

nto two parts: for U* < 5 the motion is mostly in the streamwise
irection, while for U* > 5 the transverse motion component is pre-
onderant. Moreover, for U* > 5 the streamwise component is char-
cterised by two harmonics, whose amplitudes are comparable.

Looking at the transverse amplitude A∗
y, the sphere is seen to

xhibit the classic amplitude response of the tethered sphere, with
odes I and II. The first one starts the lock-in regime at U* ≈ 5

nd persists up to U* ≈ 8. This branch is characterised by large
ransverse amplitude oscillations with 0.4 ≤A∗

y ≤ 0.65. The second
esponse amplitude branch occurs at U* ≈ 10 and continues up

t least to the end of the present measurements U* ≈ 14. In this
ranch, the sphere starts undergoing oscillations that are higher
han the amplitudes corresponding to the first response branch
0.8 ≤ A∗

y ≤1). The maximum transverse amplitude, A∗
y ≈ 1, is greater

han the saturation value 0.9 found by Govardhan and Williamson
sgn (cos �xy1)

e present reference system) − sgn(cos �xy2)
sgn(sin �xy1)

[5] with Reynolds number up to 12000. Taking also into account
that the mass parameter (m* + CA)� is a little higher than 0.02 (the
value below which it is not influential), this higher amplitude could
be due to the high Reynolds number. As a matter of fact, Govardhan
and Williamson [22] found that the maximum amplitude of cylin-
der VIV increases with the Reynolds number, at least in the range
1000–33000.

The presence of two  vibration modes is furtherly confirmed
by Fig. 5, where the results here analysed for a heavy sphere of
m* = 1.24 are compared to those obtained for light tethered spheres
of m* = 0.45 [5] and m* = 0.8 [4] and for a heavy tethered sphere of
m* = 2.8 [4].

The figure shows a different behaviour in function of the mass
ratio. In particular, in the case of the light tethered sphere, m*  = 0.45,
the transition between the two  modes is clearly exhibited through
a jump. Besides, [5] demonstrated that the two modes are charac-
terised by periodic transverse oscillations while, in the transition
regime, the transverse oscillations are not periodic. Instead, in the
case of sphere of higher mass, m* = 2.8, the data do not show any
clear separation but a change in concavity from Mode I to Mode
II [4]. In fact, the transition between the two  modes is more con-
tinuous and the response seems to remain periodic. The data here
investigated, with m* = 1.24, have a trend similar to that of a heavy
sphere with m* = 2.8 and, as shown in Fig. 6f, the transition from
Mode I to Mode II does not present a change of periodicity in the
time histories of the transverse oscillations.

With regard to the streamwise oscillation, it is interesting to
note that U* = 5 represents a significant change in motion dynam-
ics. In fact, for U* < 5 the streamwise component is made of only
one harmonic (A∗

x1), while for U* > 5 it is made of two harmonics
(A∗

x1 andA∗
x2). Therefore, U* = 5 is the transition from the 1:1 XY syn-

chronisation to the 2:1 XY synchronisation. The first harmonic A∗
x1

increases up to 0.18 until U* ≈ 5, where it sharply decreases to zero.
Subsequently, for U* > 5 the second harmonic A∗

x2 also appears, and
A∗

x1 and A∗
x2 increase from zero to about 0.06 ÷ 0.08 in U* = 12, where

they reach a maximum. For U* > 12, A∗
x1 and A∗

x2 slightly decrease.
For U* > 5, A∗

x1 and A∗
x2 are of the same magnitude order. The value of√

2�x/D for U* > 5 is slightly less but comparable with the stream-
wise amplitudes found in Govardhan and Williamson [5] with a
tethered sphere of m* = 0.45.

In Fig. 7, the parameters that are linked to the trajectory shape
are reported. Fig. 7a shows the phase lags �xy1 and �xy2 between
streamwise and transverse motions, and Fig. 7b shows the ratio
A∗

x1/A∗
x2 and its critical value, calculated as Eq. (7). It is useful to

link these parameters to the experimental trajectories, which are
reported in Fig. 8; there, the raw experimental trajectories, the
phase-averaged experimental trajectories and the inverse Fourier

transform of the latter are reported. Looking at Fig. 7a, 0 ≤ �xy1 ≤ �
for the range of U* investigated in this work. Referring to Fig. 3, this
means negative inclination of the trajectory and counter clockwise
motion for the 1:1 trajectories (U* < 5) and for the 2:1 trajecto-
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Fig. 4. Amplitudes of transverse and streamwise motion.
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Fig. 5. Transverse amplitude as a function of r

ies (U* > 5) with A∗
x1/A∗

x2 >
(

A∗
x1/A∗

x2

)
crit

(i.e. not self-intersecting
rajectory).

�xy1 is almost always included between 3�/4 and � and is
lightly decreasing with U*.  In fact, for U* < 5 the transverse ampli-
ude motion Ay* is very small, so the value of �xy1 is sensitive to
mall changes in the trajectory shape. This could explain why, in

* = 3.6, �xy1 quite disagrees with the neighbouring points. The
alue assumed by �xy1 for U* < 5 is close to � or 0, so the elliptic tra-
ectory is almost a segment. In Fig. 8, the 1:1 trajectory for U* = 4.3 is
epresented, where the periodic component of transverse motion,
d velocity. Present data and literature results.

visible in the phase-averaged trajectory, is very small with respect
to the chaotic, unsynchronised component of streamwise motion.

For U* > 5, the second harmonic appears in the streamwise com-
ponent. The phase lag �xy2 (Fig. 7a) increases with U* and is included
in the range � ≤ �xy2 ≤7�/4. �xy2 seems to have two plateaus, one
in Mode I (�xy2 ≈ 7�/6) and one in Mode II (�xy2 ≈ 5�/3).
Fig. 7a also indicates that the self-intersecting trajectories are,
according to the definition of [18], clockwise(�xy2 < 3�/2) in Mode
I and in the transition region, while they are counter clockwise
(�xy2 > 3�/2) in Mode II. Fig. 8 shows that the clockwise trajectories
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ig. 6. Time histories of the non-dimensional vibration amplitudes, both in the strea

re more chaotic than the counter clockwise ones, as also found by
18]. An explanation given in [18] for cylinder VIV is that, in counter

lockwise trajectories, the body goes downstream after the vortices
re shed, keeping closer to them as they go downstream too, and
ence exploiting more the suction force. The timing of vorticity
nd body position for Mode I (clockwise trajectory) and II (counter
lockwise trajectory) of the sphere VIV are reported in [5].
 and transverse directions: a), b) U* = 4.3; c), d) U* = 5.9; e), f) U* = 8.5; g), h) U* = 10.5.

The A∗
x1/A∗

x2 ratio (Fig. 7b) is about 3 in U* ≈ 5, and then decreases
as U* increases. In U* ≈ 8, A∗

x1/A∗
x2 approaches unity and remains
almost constant as U* further increases. The comparison with(
A∗

x1/A∗
x2

)
crit

suggests whether the trajectory is self-intersecting
(8-shape or crescent) or not (“egg”, “rain-drop” or “D”). Only for
U* = 5.1, 5.5, and 9.6 - 11.6, A∗

x1/A∗
x2 >
(

A∗
x1/A∗

x2

)
crit

and thus the tra-



70 M. Negri et al. / Applied Ocean Research 70 (2018) 62–75

tion. b

j
w

(
s

t
a
l
c
w
y
t
t
t
i
j
y

t
r
a
j

Fig. 7. a) Phase lag between streamwise and transverse mo

ectory is not self-intersecting. This is visible in Fig. 8b, e and f,
here the trajectories at U* = 5.1, 9.6, and 10.5 are represented.

The self-intersecting trajectories have clockwise rotation
according to the definition of [18]) for U* < 10 (Mode I and tran-
ition) and counter clockwise rotation for U* > 10 (Mode II).

The trajectories depicted in Fig. 8 are a compendium of the
rajectories encountered in this work. For U* = 5.1, the trajectory
lmost has a “rain-drop” shape, though the value of A∗

x1/A∗
x2 is still

arger than the critical value (the trajectory does not yet show a
usp). For U* = 5.9, the trajectory is similar to the classical 8-shape,
hile for U* = 8.6 it is still self-intersecting, but a lobe (the one in

 > 0) is much smaller than the other. An increase of U* causes the
rajectory to open up and to be not self-intersecting: for U* = 9.6 the
rajectory has a “D”- shape and for U* = 10.5 it is halfway between
he “D”-shape and “rain-drop” shape, and the tip of the trajectory
s now in the region y < 0. The further increase of U* causes the tra-
ectory to become self-intersecting again, with the smallest lobe in

 < 0 (U* = 13.5).

By looking at Fig. 8, it is evident that the phase-averaged trajec-

ories and their inverse Fourier transforms are very close: this is a
eliability proof of the analytical model of the trajectories (see the
ppendix for more details). Nevertheless, the raw experimental tra-
ectory is often very noisy and its connection with its phase-average
) Ratio between the amplitudes of the streamwise motion.

is hardly visible to the naked eye. This is due to the fact that, in the
non-periodic motion component (either x or y), the contribution
of the main frequency ω (and its double 2ω) is often smaller than
the contribution of other frequencies, which are not synchronised
with the main frequency ω, and hence do not contribute to charac-
terise the periodic pattern of the trajectories. In order to quantify
the amount of “periodicity” contained in the x and y components
of motion, the subsequent indexes are calculated:

xperiodicity =
√

A2
x1 + A2

x2√
2�x

(8)

yperiodicity = Ay√
2�y

(9)

These indexes compare the amplitude calculated through the
Fourier transform of the phase-averaged signal with the ampli-
tude that the signal should have if it were perfectly periodic. In
Fig. 9, the periodicity indexes are reported. It is possible to note

that, for U* < 5 the streamwise component is highly periodic and the
transverse periodicity is very low (which indicates that the ampli-
tudes of the other transverse motion frequencies are much higher
than the amplitude of the oscillation frequency), decreasing as U*
approaches 5. For U* > 5, the x-periodicity increases with U* and
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Fig. 8. Experimental raw trajectories with phase-averaged trajectories and inverse Fourier transform of phase-averaged trajectories superimposed. a) U* = 4.3; b) 5.1;
c)U*  = 5.9; d) U* = 8.5; e) U* = 9.6; f) U* = 10.5; g) U* = 13.6.
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amwise and transverse motion.
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Fig. 10. Dimensionless frequency of streamwise motion.
Fig. 9. “Periodicity” of stre

eaches its maximum value of 0.6 in Mode II, higher than in Mode
, while the y-periodicity is high.

This different periodicity between the streamwise and trans-
erse oscillations could be explained connecting U* ≈ 5 to the
hreshold value which divides the dynamic response in two  syn-
hronisation regions: a first region for U* < 5, where the vortex
hedding synchronises with the streamwise oscillations (Fig. 6a, b),
nd a second one for U* ≥ 5, where the vortex shedding synchro-
ises with the transverse oscillations (Fig. 6c–h). In fact, theoretical
nd experimental results obtained by previous literature works on
IV spheres and cylinders [5–7,23,24] demonstrated the follow-

ng: for low values of reduced velocity, the body motion is mainly
xcited by the fluctuating drag force associated with the vortex
hedding; for high values of U*,  instead, and in particular since
he resonance condition occurs (when the frequency of vibration
s equal to the natural frequency), the motion begins to be mainly
xcited by the fluctuating lift force associated with the vortex shed-
ing. Therefore, the oscillations happen as a consequence of the
eriodic forces applied to the sphere due to vortex shedding.

In particular, in the first region different authors [6,7] observed
 periodic sequence of counter-rotating vortex pairs in the wake of
he vibrating sphere. This sequence is similar to the vertical struc-
ures shedding visualised for a stationary sphere [25]. The sphere
s then stimulated by periodic drag forces, which lead to a periodic

otion in the line direction (Fig. 6a). The lift forces in this region
re negligible and the transverse oscillations, being very low, are
onfused with the noise from external perturbations (Fig. 6b).

In the second region, instead, the formation of a chain of hairpin
ortices in the plane normal to the flow, which shed periodically
lternating on both sides of the sphere, puts the body through peri-
dic lift forces [5,6,7]. This would justify the high periodicity of the
ransverse displacements (Fig. 6d, f, h). In this second region, there
s no change in periodicity from Mode I to Mode II (Fig. 6f) because
o different pattern of vortexes is observed but only a change in
he timing of vortex formation, consistent with differences in the
hase of the vortex force between the two modes [5].

The periodicity of the motion component, assumed as reference
ignal for the phase average (x for U* < 5 and y for U* ≥ 5), is always
lose to the unity except for U* = 5.1, where it is about 0.9. This

ndicates the switch from x-driven motion to y-driven motion.

In Figs. 10 and 11, the dimensionless frequency is reported
espectively for streamwise and transverse components as a func-
ion of U*.  In both figures, the Power Spectral Density (PSD) of
he motion component is represented by the inverted greyscale

Fig. 11. Dimensionless frequency of transverse motion.



cean R

i
r
S
i
t
i
c
f

r
j
c

m
c
f
a
n
a
t
a
n
f
t
i
c
o
o

d
U

5

m
f
B
h
t

1

between the phase average and its inverse Fourier transform, is
M. Negri et al. / Applied O

ntensity (for each U*,  the PSD has been non-dimensionalised with
espect to the maximum value found in the spectrum) and the
trouhal frequency for a fixed sphere is also reported, consider-
ng St = 0.2. The oscillation frequency f* is plotted as large circles if
hat motion component (either x or y) is the phase reference (i.e. if
t is the main motion component), otherwise as small circles (indi-
ated as “synchronised”). In Fig. 10, the double of the oscillation
requency 2f* is also plotted.

The value of the oscillation frequency f* agrees with literature
esults [5]: f* is close to the unity for U* < 5; in U* = 5 there is a small
ump (decrement); and f* slowly increases with U*,  still remaining
lose to the unity.

Looking at the PSD map, a first observation is that the main
otion component (x-component for U* < 5 in Fig. 10 and y-

omponent for U* ≥ 5 in Fig. 11) is characterised by a unique
requency peak, which coincides with the one calculated by phase
verage. On the contrary, the PSD of the secondary component (the
on-periodic one) is scattered (U* ≥ 5 in Fig. 10 for the x-component
nd U* < 5 in Fig. 11 for the y-component) and is distributed near
he oscillation frequency, the double of the oscillation frequency,
nd/or the Strouhal frequency. In the secondary motion compo-
ent (the non-periodic one), it must be noted that the oscillation

requency (or its double) is not always the dominant frequency of
he spectrum. For example, in Fig. 10 for U* = 5 - 6 very little power
s associated to f* and 2f*; on the contrary, for U* > 8 the PSD of the x-
omponent concentrates in f* and 2f*. This agrees with the increase
f x-periodicity shown in Fig. 9 and corresponds to the establishing
f Mode II.

In the x-component, significant amount of power is also
istributed in the low frequencies for U* > 8, increasing with
*.

. Conclusion

In this paper, experimental investigations on an elastically
ounted sphere with two linear degrees of freedom were per-

ormed under a wide range of reduced velocities (1.6 ≤ U* ≤ 13.6).
y analysing the dynamic response in amplitude and frequency and
ighlighting the comparative analysis of the motion trajectories,
he following conclusions were reached:

) the sphere showed a behaviour in amplitude and frequency
similar to the tethered sphere, exhibiting Mode I (from U* ≈ 5
to U* ≈ 8), with oscillations between 0.4 and 0.65, and Mode
II (from U* ≈ 10 to U* ≈ 14)  characterised by higher amplitudes

0.8 ≤ A∗

y ≤ 1. The “saturation amplitude” A∗
y ≈ 1 at U* ≈ 12 was

greater than the value 0.9 found by [5], probably due to the
high Reynolds number. With regard to the dimensionless fre-
quency, it was always close to unity, slightly increasing with U*,
in accordance with [5].
esearch 70 (2018) 62–75 73

2) The PSD frequency analysis of the streamwise and transverse
oscillations highlighted that the main motion component was
characterised by a unique frequency peak, while the frequency
content of the secondary component was  more scattered and
distributed near the oscillation frequency, its double, and/or the
Strouhal frequency.

3) The discrete Fourier transform of the phase-averaged motion
components revealed that the transverse motion was  com-
pletely represented by one harmonic, while the streamwise
motion was completely represented by a maximum of two  har-
monics of comparable magnitude.

4) For U* < 5, the streamwise motion component was highly peri-
odic and the transverse periodicity was  very low. For U* > 5, the
crossflow motion component was  highly periodic while the x-
periodicity increased with U* and reached its maximum value
in Mode II, higher than in Mode I.

5) Besides the classical 8-shaped trajectory, other trajectory shapes
were detected. For U* < 5, the trajectory was almost a segment. At
the beginning of Mode I (U* ≈ 5), the trajectory had a “rain-drop”
shape. When U* = 5.9, the trajectory was similar to the classical
8-shaped one. As U* increased, the trajectory was  distorted and
one lobe of the 8 grew larger, until the trajectory opened up in
a “D”-shape in Mode II at U* ≈ 10 - 12. A further increase caused
the trajectory to become self-intersecting again, with the bigger
lobe being on the opposite side of the 8.
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Appendix A.

The trajectories were modelled considering one harmonic for
the transverse component and a maximum of two harmonics for
the streamwise component (one harmonic for U* < 5). In Table A1,
the Fourier coefficients (amplitudes) of the phase-averaged x
and y motion are reported up to the fourth and third harmonic
respectively for the x and y component. The coefficients are non-
dimensionalised by the sphere diameter. The highlighted columns
contain the coefficients used in the trajectory modelling; it can be
seen that, for both the x and y components, the magnitude of the
coefficients corresponding to higher harmonics is small compared
to the ones considered for the model.

In Table A2, the coefficient of determination, R2, calculated
reported, for the x and y motion component. The highlighted
columns indicate the R2 between the phase-averaged x and y and
the trajectory model, which indeed are where R2 approximately
reaches the unity.
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Table A1
Amplitude of the Fourier coefficients of the phase-averaged x and y motion. The coefficients are dimensionless with respect to the sphere diameter. The highlighted columns
contain  the coefficients used in the modelling of the sphere motion.

x y
harmonic

U* ω 2ω 3ω 4ω ω 2ω 3ω

1.6 0.065 0.001 0.001 0.001 0.001 0.000 0.000

3.6 0.125 0.003 0.000 0.000 0.006 0.000 0.000
4.3 0.166 0.003 0.001 0.000 0.009 0.001 0.000

4.7 0.172 0.001 0.000 0.000 0.004 0.000 0.000

5.1 0.015 0.005 0.000 0.000 0.351 0.004 0.001
5.5 0.023 0.009 0.000 0.000 0.485 0.003 0.002

5.9 0.028 0.014 0.001 0.000 0.552 0.000 0.001
6.8 0.033 0.024 0.002 0.001 0.623 0.003 0.004

7.7 0.044 0.032 0.001 0.000 0.654 0.003 0.005
8.5 0.045 0.065 0.003 0.002 0.798 0.006 0.010

9.6 0.058 0.069 0.001 0.002 0.858 0.005 0.010

10.5 0.065 0.061 0.001 0.001 0.854 0.006 0.010
11.6 0.054 0.078 0.004 0.002 0.983 0.016 0.013

12.6 0.069 0.061 0.003 0.002 0.884 0.009 0.011
13.6 0.057 0.058 0.002 0.002 0.897 0.002 0.011

Table A2
R2 coefficient between the phase-average and its inverse Fourier transform up to the n-th harmonic. Columns highlighted indicate the R2 coefficient between the phase-
averaged trajectories and the trajectory model.
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