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ABSTRACT

Root-zone soil moisture at the regional scale has always been a missing element of the hydrological cycle. 
Knowing its value could be a great help in estimating evapotranspiration, erosion, runoff, permeability, 
irrigation needs, etc. The recently developed Soil Moisture Analytical Relationship (SMAR) can relate 
the surface soil moisture to the moisture content of deeper layers using a physically-based formulation. 
Previous studies have proved the effectiveness of SMAR in estimating root-zone soil moisture, yet there is 
still room for improvement in its application. For example, the soil water loss function (i.e. deep percolation 
and evapotranspiration), assumed to be a linear function in the SMAR model, may produce approximations 
in the estimation of water losses in the second soil layer. This problem becomes more critical in soils with 
finer textures. In this regard, the soil moisture profile data from two research sites (AMMA and SCAN) 
were investigated. The results showed that after a rainfall event, soil water losses decrease following a power 
pattern until they reach a minimum steady state.  This knowledge was used to modify SMAR. In particular, 
SMAR was modified (MSMAR) by introducing a non-linear soil water loss function that allowed for 
improved estimates of root zone soil moisture. 

Keywords: surface soil moisture, root-zone soil moisture, SMAR, soil water loss function, 
MSMAR

INTRODUCTION

The moisture content of the vadose zone plays an important 
role in many water- and energy- related studies, numerical 
weather predictions, global change modelling, prediction of 
surface runoff, and evaporation modelling (Holmes et al., 2009; 
Brocca et al., 2010; Manfreda and Fiorentino, 2008; Manfreda 
et al., 2010; Parinussa et al., 2012). Soil moisture can help us 
to understand the interaction between land and atmosphere 
as it determines the partitioning of energy between the 
different water fluxes. However, the in-situ measurement of soil 
moisture, even for small watersheds, is often time-consuming 
and requires a large effort to adequately sample.

In previous research, description of an analytical 
relationship between the soil moisture at the surface and that 
in the lower soil layers has been emphasized as a significant 
challenge (Ochsner et al., 2013). Wagner et al. (1999) suggested 
the use of an exponential filter and a recession constant (T) to 
convert the time series of surface measurements to a signal that 
is able to capture the dynamics of the lower soil layer. The great 
advantage of this model is its simplicity, due to using only one 
parameter (i.e., T) and because the derived soil moisture index 
(SWI) relies only on surface observation. This approach has 
been tested with both simulated and measured data, and has 
been extensively used to improve the description of root-zone 
soil moisture in rainfall–runoff applications (e.g., Manfreda et 
al., 2011; Brocca et al., 2010, 2012; Matgen et al., 2012). Despite 

numerous efforts to find a physical interpretation for the 
parameter T (e.g. Ceballos et al., 2005; De Lange et al., 2008; 
Albergel et al., 2008) that is influenced by a number of physical 
processes controlling soil moisture fluctuations, researchers 
did not observe significant relationships between T and the 
main soil properties (clay and sand fractions, bulk density and 
organic matter content).

The recently developed Soil Moisture Analytical 
Relationship (SMAR) was derived from a simplified soil water 
balance equation for arid and semi-arid environments that 
provides a relationship between root-zone and surface soil 
moisture. Results have proved the potential of this model to 
estimate root-zone soil moisture. Applications of the SMAR 
model in estimating root-zone soil moisture (RZSM) from a 
time series of surface soil moisture (SSM), at both local and 
regional scales, have proved the capability of this methodology 
in providing a good description of RZSM (e.g., Manfreda et al., 
2014; Faridani et al., 2016; Baldwin et al., 2016).  The advantage 
of the SMAR model over the SWI method is that there are clear 
physical interpretations for the SMAR parameters which can 
be easily determined knowing soil texture and climate of the 
target location. In the original model proposed by Manfreda 
et al. (2014), the water loss function was assumed to be a linear 
function, but they suggested improving the SMAR model by 
representing a soil water loss function that accounts for the 
non-linearity of this process. This study therefore aimed to 
discover the water loss pattern of the root zone after a rainfall 
event in order to modify the SMAR model, using two different 
soil databases, i.e., in Africa and North America (the AMMA 
and SCAN networks, respectively).* To whom all correspondence should be addressed: 
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where: y(t) is the fraction of soil saturation infiltrating in the 
lower layer, n1 is the soil porosity of the top layer, Zr1 [L] is the 
depth of the top layer, s1 (θ1/n1) is the relative saturation of the 
first layer (given by the ratio between the soil water content, 
θ1, and the porosity, n1, of the top layer), and sc1 is the value of 
relative saturation at field capacity of the top layer of soil. 

In order to avoid the underestimation of infiltration, the 
surface-soil moisture value should be referred for the first 
5–10 cm of soil. Most satellite sensors cannot observe deeper 
than a few centimetres, but it is a reasonable assumption that 
these measures can be representative of the dynamics of a 
surface layer of approximately 5–10 cm (Manfreda et al., 2014). 
SMAR assumes that the soil water losses decrease linearly, from 
a maximum value under well-watered conditions to zero at the 
wilting point.

Soil water balance can be described by defining  
x2 = (s2 – sw2)/(1 − sw2) as the ‘effective’ relative soil saturation 
of the second soil layer and w0 = (1 – sw2) n2Zr2 as the soil water 
storage. Eq. 2 describes the soil water balance which Manfreda 
et al. (2014) used in the SMAR model.

(1 –  s w2 )  n 2  Zr 2    
 dx 2  (t) ___ dt   =  n 1  Zr 1 y (t) –  V 2  x 2  (t) (2)

where: s2 is the relative saturation of the soil, sw2 represents 
the relative saturation at the wilting point, n2 is the soil 
porosity, Zr2 [L] is the soil depth, V2 [LT−1] is the soil water 
loss coefficient accounting for both evapotranspiration and 
percolation losses, and x2 is the ‘effective’ relative soil saturation 
of the second soil layer. The model was developed mainly for 
an arid and semi-arid climate with flat surfaces and neglecting 
the presence of phreatic surfaces, effects due to topographic 
convergence (e.g. subsurface flows), the presence of frozen soils, 
etc. (Manfreda et al., 2014).

SOIL MOISTURE DATA

In-situ sites: the AMMA database

The African Monsoon Multidisciplinary Analysis (AMMA) 
programme, which started in 2004, has developed a network 
of ground-based stations in sub-Saharan West Africa (see 
Redelsperger et al., 2006). In this study, we focused on the 
point measurements of soil moisture taken at the sites of 
Belenfougou, Wankama and Tondikiboro in Niger. 

These sites have a semi-arid climate characterized by 
limited rainfall that is generally concentrated in time. The 
mean annual rainfall reaches a value of about 550 mm 
(AMMA-CATCH, 2014). 

At each site, soil moisture data were collected at 5 different 
depths (5, 10, 40, 70, 100 and 135 cm) using water content 
reflectometers (CS616 – Campbell Scientific Inc., Logan, 
Utah, USA) placed along the soil column with the geometry 
schematically described in Fig. 1. Similar to Manfreda et al. 
(2014), the relative saturation at 5 cm depth was considered as 
a reference surface measurement, and the relative saturation 
over the root zone was estimated by averaging the soil moisture 
measurements below the surface layer. The AMMA database 
and other soil moisture products from other projects have been 
collected in the International Soil Moisture Network (ISMN) 
database (e.g. Dorigo et al., 2011 – available at: http://ismn.geo.
tuwien.ac.at). 

In-situ sites: the SCAN database

The Soil Climate Analysis Network (SCAN) consists of more 
than 190 stations in the United States (US) with a variety of 
climatic, geological and vegetation conditions (e.g. Schaefer et 
al., 2007). Measurements are collected by dielectric devices at 5, 
10, 20, 50, and 100 cm depth. The selected stations were: Widow 
Wells and Cross Roads in New Mexico; Enterprise in Utah; 
and Mammoth Cave and Princeton#1 in Kentucky, US. The 
pedological report on the SCAN website allowed for definition 
of the soil texture characteristics of the first (the first 10 cm) and 
the second layer of soil (assumed equal to the remaining 90 cm), 
which can be used to derive soil parameters for each site. 

MATERIALS AND METHODS

The SMAR Model

Manfreda et al. (2014) assumed that soil was composed of 
2 layers: one surface layer with a depth of a few centimetres 
(equivalent to the retrieval depth of the satellite sensor) and a 
second layer below with a depth corresponding to the rooting 
depth of the vegetation. Infiltration is the most relevant water 
mass exchange between the two layers and other processes such 
as lateral flow and capillary rise are assumed negligible. The 
water flux from the top layer can be considered significant only 
when the soil moisture exceeds field capacity. Assuming that 
the soil moisture movement from the upper to the lower layer 
during a rainfall event can be modelled following the Green–
Ampt equation (Green and Ampt, 1911), one can also assume 
that all water in the first layer above field capacity will move 
into the lower layer within 1 day. Under such assumptions, 
Eq. 1 describes the instantaneous infiltration flux from the 
top layer to the lower layer. Therefore, infiltration is:

 n 1  Zr 1 y(t) =  n 1  Zr 1 y[ s 1  (t), t] =  n 1  Zr 1      (  s 1  (t) –  s c1  ) ,      0,       s 1 (t) <  s c1       s 1 (t) ≥  s c1 
  (1)

Figure 1
Relative position of the six soil moisture probes  
installed at the station of Tondikiboro in Niger

http://dx.doi.org/10.4314/wsa.v43i3.14
http://www.wrc.org.za
https://creativecommons.org/licenses/by/2.0/za/
http://ismn.geo.tuwien.ac.at
http://ismn.geo.tuwien.ac.at


http://dx.doi.org/10.4314/wsa.v43i3.14
Available on website http://www.wrc.org.za
ISSN 1816-7950 (Online) = Water SA Vol. 43 No. 3 July 2017
Published under a Creative Commons Attribution Licence 494

In SMAR, the soil water loss function is a simple linear 
function with parameter V2 that can be written as:

L ( s 2 (t)) =  V 2  s 2  (t) (9)

Such a formulation represents an approximation, leading to 
errors, especially in clay soils or humid environments where 
non-linear processes become dominant. The objective of the 
present study was to test the potential improvements that can 
be obtained with a new, more realistic, loss function.

Modification of SMAR

The soil water loss function is assumed to be linear in the 
SMAR model. However, by plotting the water losses against 
the days since the last precipitation, it was observed that soil 
water losses exhibit nonlinear behaviour in the days after 
rainfall (Fig. 2). As Laio et al. (2001) suggested, soil water loss 
(i.e. evapotranspiration and deep percolation) is a non-linear 
function influenced by soil permeability and local climate. 

Laio et al. (2001) assumed that leakage is at its maximum 
when soil is saturated and then rapidly decreases as the soil 
dries out, following the decrease in hydraulic conductivity 
Ks. They assumed that the hydraulic conductivity decreases 
exponentially from Ks at s2 = 1 to zero at field capacity sC2. 
Thus, the behaviour of leakage losses is described as:

DP ( s 2 ) =  K s s  
c   2  (10)

where: c = 2d + 4 and d is an experimentally determined 
parameter of the soil-water retention curve suggested by Clapp 
and Hornberger (1987). The values of parameters c and d for 
different soil textures are provided in Table 2. 

The evapotraspiration (ET) is calculated by:

ET ( s 2 ) =      ET w    
 s 2  –  s h2  ___  s w2  –  s h2 

  

  
         

   ET w  + ( ET 2  –  ET w2 )   
 s 2  –  s w2  ___ s* –  s w2 

     
         

  

 ET max 

   

 

  

s* ≤  s 2  ≤ 1

 s h  <  s 2  ≤  s w2 

 s w2  <  s 2  ≤ s*

 (11)
where: sh and s* are soil saturations at hygroscopic scale and 
stomata closure, respectively. s* depends on both vegetation 
and soil characteristics (Laio et al., 2001). 

The equation above can be simplified using normalized 
coefficients a and b defined as:

a =   
 V 2  ______ (1 –  s w2 ) n 2  Zr 2 

   , b =   
 n 1  Zr 1  ______ (1 –  2 w2 ) n 2  Zr 2 

   (3)

The value of these parameters can be related to the ratio of 
the depths of the two layers and the soil water loss coefficient. 
Therefore, the soil water balance equation becomes:

  
 dx 2  (t) ___ dt   = by (t) –  ax 2  (t) (4)

Equation 4 shows a generalization that includes the proposed 
case by Wagner et al. (1999). Manfreda et al. (2014) assumed 
an initial condition for the relative saturation x2(t) equal 
to zero and derived an analytical solution to this linear 
differential equation:

 x 2  (t) =  ∫ 
0
   
t

     be a(w–t)  y(w)dw (5)

For practical applications, the discrete form of Eq. 5 may 
also be needed:

 x 2  ( t i  ) =  ∑ 
i = 0

   
j

     be a( t i  –  t j–1 )  y( t i  ) ∆t (6)

Expanding Eq. 6 and assuming ∆t = (tj – t(j−1)), one may derive 
the following expression for the soil moisture in the second 
layer based on the time series of surface soil moisture:

  x 2  (t j  ) =   x 2  (t j–1 ) e –a( t j  –  t j–1 )  + b   y(t j  )(t j  –  t j–1 ) (7)

This may be rewritten as a function of s2 as:

  s 2  (t j  ) =  s w2  ( s 2 ( t j–1 ) –  s w2 ) e –a( t j  –  t j–1 )  + (1 –  s w2 )b y( t j  )( t j  –  t j–1 ) (8)

Parameters sw2, sc1, a, and b can be estimated from the soil 
texture, the soil depth, and the soil water losses (Table 1). The 
parameter a is a function of potential evapotranspiration 
and soil permeability which can be estimated by regression 
functions such as those proposed by Pan et al. (2003). 

TABLE 1
Soil parameters associated with different soil textures. The relative saturation at field capacity and  

wilting point were estimated using the Brooks-Corey model assuming ψ = −1.5 and −0.03 MPa, respectively.

Soil type n
[–]

m
[–]

Ψs
[cm]

Ks
[cm/d]

sw
[–]

sc
[–]

Sand 0.437 0.592 7.26 504.00 0.06 0.14
Loamy sand 0.437 0.474 8.69 146.60 0.11 0.24
Sandy loam 0.453 0.322 14.66 62.20 0.19 0.42
Silty loam 0.501 0.211 20.76 31.70 0.27 0.57
Loam 0.463 0.220 11.15 16.30 0.25 0.50
Sandy clay loam 0.398 0.250 28.08 10.30 0.34 0.62
Silty clay loam 0.471 0.151 32.56 3.60 0.45 0.73
Clay loam 0.464 0.194 25.89 5.50 0.40 0.67
Sandy clay 0.430 0.168 29.17 2.90 0.51 0.75
Silty clay 0.479 0.127 34.19 2.20 0.52 0.78
Clay 0.475 0.131 37.30 1.40 0.56 0.80
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soil water content of both surface and root-zone layers. This 
is mainly due to the high permeability of soil that is mainly 
characterized by a coarse texture. Looking at Fig. 4 A1 and 
B1, one can see that both the SMAR and MSMAR models 
had similar RZSM estimates in Tondikiboro and Wankama 
Stations. Because of the pure sandy textures of the soil at these 
stations, the MSMAR water loss function (Eq. 12) becomes 
almost equal to the water loss function proposed by the SMAR 
model, which will ultimately give similar results for the two 
models. Nevertheless, the MSMAR estimates of RZSM become 
significantly better when moving from coarse to finer textures. 
This can be seen for Belenfougou Station where the soil is finer 
(Fig. 4-C1).

As depicted by Fig. 5, MSMAR outperformed SMAR in the 
estimation of RZSM for most of the SCAN sites. In general, 
SMAR tends to underestimates RZSM in finer soil textures. 
Considering the spatial and climatic diversity of the locations 
where the soil profile saturation has been measured, results 
show that the proposed modifications improve modelling 
performance. 

Thus, the soil water loss function becomes:

 L (s 2 ) =   
 ET (s 2 ) +  DP (s 2 )  _______  n 2  ×  Zr 2 

   (12)

where: DP(s2) is the amount of deep percolation at s2. 
An example of such formulation is given in Fig. 3.

Soil texture, surface layer (Zr1) and root-zone layer (Zr2) 
were determined based on the soil characteristic report 
of study sites. According to the defined texture for each 
station, parameters sc1, sw2, sc2, a, b and Ks2 were determined 
from Table 1 and parameters: c2 and s*2 were determined 
from Table 2. Finally, parameters: V2, ETmax and ETw were 
determined according to the climate of study areas. Table 3 
shows all the mentioned parameters for all the studied field sites.

The SMAR model was modified by substituting the water 
loss coefficient with Eq. 12. Then the time series of surface soil 
moisture was applied in both the SMAR model and modified 
SMAR model (hereafter referred to as MSMAR). The time 
series of surface soil moisture (SSM), measured RZSM and 
estimated RZSM for the study sites are depicted in Figs 4 and 5.

As can be seen in Fig. 4 A2, B2 and C2, the rainfall pattern 
in the AMMA study area has two distinct dry and wet seasons 
which causes very clear rises and abrupt decreases in the 

Figure 3
Typical water loss function (L(s)) for typical climate,  

soil and vegetation conditions in arid and semi-arid regions

TABLE 2
Parameters describing various soil characteristics used in 

the water loss function proposed by Laio et al. (2001)
Soil texture ca da s*a

Sand 11.1 4.05 0.33
Loamy sand 11.7 4.38 0.31
Sandy loam 12.8 4.90 0.46
Loam 13.8 5.39 0.57
Clay 25.8 11.4 0.78

a Data reference: Laio et al. (2001). The value s* have been calculated 
supposing a soil water potential equal to 0.03 MPa.

Figure 2
Soil water losses against days since last precipitation for the considered sites
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TABLE 3
SMAR parameters assigned for each station based on soil characteristic  

report and tables proposed by Manfreda et al. (2014) and Laio et al. (2001)

Database Study site Zr1
(cm)

sc1
(–)

n1
(–)

Zr2
(cm)

sw2
(–)

s2*
(–)

sc2
(–)

Ks2
(cm/d)

n2
(–)

c2
(–)

V2
(cm/d)

ETmax
(cm/d)

ETw
(cm/d)

AMMA 
data base

Tondikiboro 10 0.14 0.437 125 0.06 0.11 0.14 504 0.437 11.1 2 2 0.1

Wankama 10 0.24 0.437 125 0.06 0.20 0.24 146.6 0.437 11.7 2 2 0.1

Belenfougo 10 0.57 0.453 125 0.51 065 0.75 62.2 0.430 13.8 2 2 0.1
SCAN 
data base

Enterprise 10 0.34 0.453 90 0.27 0.50 0.57 31.7 0.501 13.2 1.5 0.7 0.1

Princeton#1 10 0.57 0.501 90 0.27 0.50 0.57 31.7 0.501 13.2 1.5 0.7 0.1

Mammoth Cave 10 0.50 0.463 90 0.40 0.52 0.67 5.5 0.464 14.2 1.5 0.7 0.1

Cross Roads 10 0.24 0.437 90 0.11 0.50 0.57 31.4 0.437 13.2 2 1.5 0.1

Widow Wells 10 0.14 0.453 90 0.19 0.30 0.42 62.2 0.437 12.8 2 1.5 0.1

Figure 4
Time series of (1) measured and estimated RZSM using SMAR and MSMAR models and  

(2) measured SSM for the stations of AMMA database in Niger.

TABLE 4
MAE, RMSE and R values between measured and estimated RZSM values using (1) SMAR and (2) MSMAR models

Parameter AMMA database SCAN database

Tondikiboro Wankama Belefougou Enterprise Mammoth Cave Princeton#1 Cross Roads Widow Wells

SMAR
MAE 0.020 0.013 0.086 0.128 0.181 0.211 0.067 0.017
RMSE 0.027 0.030 0.107 0.152 0.188 0.249 0.082 0.029
R 0.840 0.813 0.935 0.734 0.726 0.899 0.699 0.899

MSMAR
MAE 0.017 0.020 0.057 0.046 0.083 0.086 0.019 0.004
RMSE 0.024 0.029 0.082 0.094 0.098 0.058 0.040 0.029
R 0.840 0.754 0.964 0.807 0.762 0.839 0.862 0.874
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Figure 5
Time series of (1) measured and estimated RZSM using SMAR and MSMAR models and  

(2) SSM for stations in the SCAN database in the US

In order to evaluate the accuracy of both the SMAR and 
MSMAR models, the mean absolute error (MAE), root mean 
square error (RMSE) and correlation coefficient (R) between 
measured and modelled RZSM values for each station were 
calculated (Table 4). In all stations except Widow-Wells, the 
MSMAR model had a lower RMSE than that of the SMAR 
model. Also, in terms of the correlation coefficient (R), for all 
stations except Wankama, MSMAR had better and/or equal 
correlations with the measured RZSM than that of the SMAR 
model (Table 4). Therefore, the MSMAR model may represent a 
good alternative in the estimation of RZSM. 

DISCUSSION AND CONCLUSIONS

In this study, the performance of the SMAR model in 
estimation of root zone soil moisture (RZSM) was investigated. 
The soil water loss function of the SMAR model was originally 
assumed to be a linear function for a given day. Since soils 
with finer textures have higher holding capacity and lower 
infiltration capacity, assuming such a linear relationship may 
lead to errors in the evaluation of soil water losses. 

By plotting measured soil water losses (the difference 
between RZSM of the current and previous days) vs. the 

number of days since the last precipitation for each day, soil 
water loss was shown to be strongly non-linear over time. Thus 
SMAR was modified (MSMAR) by substituting the water loss 
coefficient with the soil water loss function proposed by Laio 
et al. (2001), the parameters of which can be determined by 
knowledge of soil characteristics.

The performance of the SMAR and MSMAR models were 
evaluated by comparing RMSE and R values between measured 
and estimated RZSM values. The results showed that, in general, 
the MSMAR model improved the estimation of RZSM from the 
time series of surface soil moisture measurement. Nevertheless, 
these models had similar results in very coarse textured soils.

Since both the SMAR and MSMAR models use the moisture 
of the top few centimetres of the soil to estimate the root zone 
soil moisture, it is suggested that the possibility of assimilating 
satellite soil moisture data into these two models be evaluated.
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