
Solid Angle based Ambient Obscurance in Image
Space

Dario Scarpa1 and Ugo Erra2

1 SpinVector, Benevento, Italy
darioscarpa@gmail.com

2 Università degli Studi della Basilicata, Potenza, Italy
Dipartimento di Matematica, Informatica ed Economia

ugo.erra@unibas.it

Abstract. We derive a new approximation of ambient obscurance to
improve the quality of state-of-the-art techniques used in real-time ren-
dering. We attempt to stay close to the original definition of ambient ob-
scurance and, while building on the deferred rendering approach, bring
into image-space information that is suitable for accurate estimations of
visibility that take account of the position and orientation of near occlud-
ing geometry. The approach is based on the approximation of a covered
solid angle, considering the area of surfaces, and hemisphere partitioning
that gives directional information about coverage, both done in image
space. The immediate advantage of our technique is that we avoid over-
occlusion caused by multiple occluders covering each other but covering
from the same direction. In some cases our implementation achieves lower
performance with respect to some currently popular and widely adopted
screen-space ambient obscurance approximations, but still obtains real-
time frame rates on the current generation of hardware.

Keywords: Ambient Obscurance, Screen-space, Hemisphere Partition-
ing

1 Introduction

Shadowing of ambient light is called ambient occlusion. It has been shown in [8]
that ambient occlusion offers a better perception of the 3D shape of displayed
objects, and its effectiveness is evident in its popularity in videogame engines [11].
The mathematical definition of ambient occlusion is related to the concept of
the solid angle. In fact, the occlusion Ap at a point p on a surface with normal
n can be computed by integrating the visibility function over the hemisphere Ω
with respect to the projected solid angle:

Ap =
1

π

∫
Ω

Vp,ω(n · ω) dω (1)

where Vp,ω is the visibility function at p along a direction ω. A simple method
to approximate this integral in practice, in off-line rendering, is based on ray-
tracing. Rays are shot in a uniform pattern across the hemisphere over point



p, and an occlusion value can be calculated as the number of rays that hit
the geometry divided by the total number of rays shot. Rays can be restricted
to a certain length, avoiding distant geometry to be taken into account while
calculating the occlusion value. This is fundamental in closed environments,
which would otherwise result in total occlusion at every point and subsequently
the complete removal of ambient light.

Ambient Obscurance (AO) is an extension of ambient occlusion defined in
[20]. A falloff function that reduces the influence of occlusion with distance is
introduced in the formula:

AOp =
1

π

∫
Ω

ρ(Dp,ω)(n · ω) dω (2)

Comparing this expression with the formula of ambient occlusion , in place
of the binary visibility function Vp,ω we have the function ρ(Dp,ω), where Dp,ω

is the distance between p and the first intersection point along ω. If there are no
intersections along ω, its value is +∞. Here, ρ is the decreasing falloff function,
with ρ(0) = 1 and ρ(x) = 0 if x > r, where r is the maximum distance at which
any intersecting geometry is considered as producing occlusion.

In this paper, we derive a new approximation of ambient obscurance focused
on improving the quality of state-of-the-art techniques used in real-time ren-
dering. Our approach is called Solid-angle Screen Space Ambient Obscurance
(SaSSAO). We attempt to remain close to the original definition of ambient
obscurance and, while building on the deferred rendering approach, bring into
image-space information that is suitable to an accurate estimate of visibility that
takes account of the position and orientation of near occluding geometry. The
main idea is to track the amount of occlusion from the set of directions. This
approach handles the over-occlusion that results from the same directions where
thin objects are stacked. To the best of our knowledge, the approximation of a
covered solid angle (used in our occlusion estimate) considering the area of sur-
faces, and the hemisphere partitioning that gives directional information about
coverage, both done in image space, are original contributions to the field.

To evaluate the quality of results, we compare screen-shots from our imple-
mentation with images rendered off-line in Blender, a popular open-source 3D
graphics software that features a configurable ray-traced calculation of ambient
occlusion. For the comparison, we use the Structural Similarity Index [19], a
metric that attempts to measure similarity between images in a way that is con-
sistent with human eye perception. In some cases our implementation achieves
lower performances with respect to some currently popular and widely adopted
screen-space ambient obscurance (SSAO) approximations, but still obtains real-
time frame rates on the current hardware generation. Moreover, it offers many
parameters that can be adjusted to trade quality for efficiency.

2 Related Works

Real-time global illumination is a “hot topic” in computer graphics research, and
an impressive number of related works have been published. The 2012 survey [14]



provides a general overview of the field, and works about ambient occlusion offer
further insights. Here, we restrict the scope to techniques most closely related
to our own: ambient occlusion/obscurance approximations suitable to real-time
rendering that operate in image space (also called screen space).

Even considering only this category of algorithms, a variety of approaches
exist. Some sources attempt to correlate, compare and evaluate such techniques,
and the interested reader may like to consult [1] and [6], two recent theses that
both agree that the Alchemy algorithm is the current state of the art. In the
following sections, we briefly cover the more influential works.

In his seminal work [3], Micheal Bunnell of NVIDIA corporation describes a
technique that approximates polygon meshes as a set of surface elements (discs)
that can emit, transmit, or reflect light and that can shadow each other. He
defines an approximation of ambient occlusion on the basis of the calculated
coverage between discs, and an approximation of indirect lighting by estimating
the disc-to-disc radiance transfer. Major drawbacks of this algorithm are the de-
pendence on scene complexity and the need to preprocess geometry, which must
be well tessellated to give good results. This also implies that the technique is
not suitable for deformable objects. Note that this is not an image-space tech-
nique, but a geometry approximation one. Nevertheless, we mention it because
it has to some extent inspired subsequent works, including our own.

In [16] Shanmugam and Arikan approximate ambient occlusion through spher-
ical proxies. Their interesting idea is to reconstruct approximately the surface
represented by a pixel using a sphere in world-space that roughly projects to
that pixel on the screen. By using deferred rendering, a ND -buffer storing nor-
mals and depths is created. From this information, each pixel can be mapped
to a sample of some surface in world-space, which can be considered as an oc-
cluder to other pixels. The algorithm also uses a separate calculation (non-screen
space) for low-frequency occlusion due to distant occluders, and then combines
the results. Despite its original and interesting ideas, this technique is perhaps
over-complicated and had little success and was subsequently surpassed in both
quality and speed by simpler techniques.

In [11] the denomination “screen-space ambient occlusion” appears for the
first time. In its CryEngine, Crytek implements this technique, which works by
sampling the surroundings of a pixel and, on the basis of the z-buffer, performs
depth comparisons. Sample positions are distributed in a sphere around the
pixel, and some randomness is introduced by reflecting position vectors on a
random plane passing through the sphere origin. The occlusion factor depends
only on the depth difference between sampled points and the current point. This,
combined with the simple distribution of samples (around a sphere and not a
hemisphere) causes some over-darkening: even flat, non-occluded areas result in
some samples considered as occluders.

Some improvements over the CryEngine approach are shown in [5]. Samples
are offset in 3D space from the current point being computed, and then projected
back to screen space to sample the depth of the sample location. Normals (this
algorithm is also based on deferred rendering) are used to flip the vectors that fall



in the hemisphere below the current point, avoiding the self-occlusion exhibited
by the Crytek algorithm. An occlusion function maps the relationship between
the depth delta and the amount of occlusion. A number of details are taken
care of (sample randomization, filtering, down-sampled calculation) to improve
performance and to obtain a production-ready solution.

The method in [2] interprets the depth buffer as a height field and works
by performing a type of ray marching in screen space. It considers the tallest
occluder along each azimuthal direction to determine the visible horizon on the
hemisphere around the current point. This assumes a continuous depth buffer,
so the occlusion does not take into account the unoccluded portion of hemi-
sphere in case of floating occluders. Subsequent refinements of the method have
been published, but the method remains expensive in relation to the quality it
produces.

The Alchemy SSAO algorithm, presented in [10], has been developed with
the goal of artistic expressiveness rather than physically grounded realism. The
strength of Alchemy is in the way it derives its estimator: the chosen falloff func-
tion cancels some expensive operations while staying meaningful. The obtained
highly efficient estimator is then applied to points sampled in the hemisphere, as
in some previous methods . Alchemy features a number of artist-tweakable pa-
rameters and generally gives good quality results with high performance. Some
improvements and modifications of the algorithm are discussed in [9].

3 Hemisphere Partitioning

To derive an approximation close to ambient obscurance into image space, we
adopt a scheme to discretize the sphere into solid angles as proposed in [7]. Let
us consider a unit sphere centred on the origin of Euclidean space. The origin
divides each of the axes into two halves: a positive and a negative semi-axis. Let
us refer to the slice of sphere delimited by the three positive semi-axes as the
positive octant of the sphere (see Figure 1).

Let us consider the x+ y + z = 1 plane and the equilateral triangle that lies
on it with vertices v0 = (1, 0, 0), v1 = (0, 1, 0), and v0 = (0, 0, 1).

We split each of the v0v1, v0v2, and v1v2 edges into n equal units. For edge
v0v1, we connect subdivisions between the other two edges with line segments
parallel to v0v1. Then, we repeat the same process for the remaining two edges,
obtaining a tessellation of the original triangle into n2 triangles. The process is
illustrated in Figure 2.

If we project onto the surface of the sphere the vertices of this tessellation,
by normalization we obtain a partition of the octant into spherical triangles.
Each of these spherical triangles represents a solid angle ω, associated with
the direction Θω passing through the triangle centroid. Individual triangles are
assigned unique identifiers, as shown in Figure 2.

Given an arbitrary direction ϑ starting from the sphere’s centre, we can iden-
tify the associated triangle in constant time by using the procedure illustrated



Fig. 1: The surface above the positive octant of a sphere.

in [7]. Then, from the unit vector along ϑ, the procedure takes as input its inter-
section point pϑ with the x+ y + z = 1. We report the procedure for simplicity
below.

Algorithm 1 getTriangle

procedure getTriangle(pϑ)
x = npϑ; z = npϑ
xi = bxc; zi = bzc
ξϑ = zi(2n− zi) + 2xi
diag = (x− xi) + (z − zi)
return ξ′ϑ = ξϑ + bdiagc

For the ambient obscurance calculation, we are interested only in directions
associated with the hemisphere “surrounding” the normal of the point, so we
repeat the process for four octants, building a pyramid. We have shown how
for n subdivisions we obtain n2 triangles, so for four octants we obtain 4n2

total triangles. The triangle identifiers follow the pattern shown in Figure 2, but
with an additional offset added, depending on the slice of hemisphere to which
they are related: for example, the third slice will have triangle identifiers ranging
between 2n and 3n− 1.

The solid angle covering the full hemisphere is 2π, so the solid angle associ-
ated with every “bucket” is

ω =
2π

4n2
(3)

The algorithm to find the bucket associated with any direction vector is easily
adapted: the signs of the vector coordinates indicate in which of the four octants
of the hemisphere we have to look.



Fig. 2: Steps of triangle subdivision for n = 4. The last triangle has numeric
identifiers for each individual triangles.

4 Solid-Angle-based Ambient Obscurance

On a higher level, our approach proceeds in three passes. In the first pass, the
geometry shader computes an area value relative to each triangle processed,
then forwards it to the fragment shader, which saves it in the G-buffer together
with normals and depths. In the second pass, for each pixel, a fragment shader
samples the G-buffer to calculate the ambient obscurance (AO). In the third
pass, the AO-buffer is filtered to lower the noise caused by the sampling and
used to modulate the ambient factor in the final compositing of the rendered
image. In the following sections, we provide details of each pass.

4.1 Area calculation

Whereas the vertex shader operates on a per-vertex level, the geometry shader
can access whole primitives (in our implementation, we use only triangles). So,
for each triangle, the camera space position of its vertices is used as a basis to
compute an area that will later be used in the AO calculation. The main idea is
to approximate triangle meshes as a set of circumscribed circles or of inscribed
circles that will be used as occluders for calculating the AO for a given point.



Given a triangle in the camera space position, we calculate the lengths of
its sides, a, b, and c. Then, by using the Heron formula, in which s is the semi-
perimeter of the triangle, we can calculate the triangle area At:

At =
√
s(s− a)(s− b)(s− c) (4)

We can calculate additional quantities related to the triangle, such as the
area of the circumscribed circle Acct as

radiuscct =
abc

4At
⇒ Acct = π · radius2

cct (5)

or the area of the inscribed circle Aict as

radiusict =
2At

(a+ b+ c)
⇒ Aict = π · radius2

ict (6)

Further area calculations are possible, and as we show in the following, these
can be taken as a configurable parameter.

4.2 Ambient obscurance calculation

The second pass operates in image space, accessing the G-buffer created in the
first pass. Specifically, we can retrieve some geometry-related information from
the G-buffer according to a sampling pattern, then use it in our calculation of
the ambient obscurance.

For a pixel p, at screen coordinates xp and yp, from the G-buffer we have the
following data:

– dp: the depth of the pixel p, from the z-buffer, normalized to [0..1]
– np: the normal of the geometry surface at p
– cp: the camera space position of p
– ap: the area related to the triangle to which p belongs, calculated as described

in Section 4.1.

Selection of the screen-space positions to take samples for calculating the AO
for point p is important. Basically, two categories of approaches are possible,
both involving a radius around p, named samplingRadius, often scaled by dp,
which limits the distance samples can be taken. The flat sampling locates points
around p, in a circle of radius samplingRadius, considering the 2D screen-space
coordinates xp and yp. While the 3D sampling considers the hemisphere around
np having radius samplingRadius and takes points in the screen-space area
delimited by this hemisphere.

Perspective projection introduces same complications when returning to cam-
era space. Pixels selected with both approaches may result in useless samples,
related to points outside the area considered in the AO calculation. Randomiza-
tion is a crucial aspect of every sampling technique adopted. If we adhere to a
static, regular pattern, some banding artefacts will appear in the calculated AO.



θp

p

s

np

ns

d

θs

d

-d

Fig. 3: The angles and vectors related to the solid-angle approximation between
two pixels p and s.

By applying some form of randomization, we avoid such artefacts, at the price of
some high-frequency noise that can be handled with filtering, as will be shown
in Section 4.3. A simple way to introduce randomization is to use some form
of rotation dependent on a random value derived from the pixel coordinates. In
flat sampling, a kernel of points randomly placed around the centre p is rotated
around p. While in 3D sampling, a kernel of vectors reaching random points in
the hemisphere is rotated by using the normal of point p as the rotation axis. In
our experiment, we tested both approaches (including some variants) to evaluate
the best option.

Solid-angle estimator. In [3], scene geometry is approximated with ori-
ented discs considered as occluders to calculate per-vertex occlusion on the GPU.
Our approach takes inspiration from this technique but brings it to the image-
space domain.

Let us consider two pixels, p and s, which belong to two different triangles.
We want to estimate the solid angle at pixel p that is covered by the surface to
which the point s belongs. Figure 3 visualizes the involved entities.

Let d = cs − cp be the normalized vector from the camera space position of
p to the camera space position of s, and let d the distance between cs and cp.
We also define θp as the angle formed by d and np and θs as the angle formed
by −d and ns. A possible solid-angle approximation is

sp =
as max(0,d · np)

d2
(7)

The key idea is that max(0,d · np) decreases the impact of occluders that
block only incident light at shallow angles (which is radiometrically correct ).
Conversely, multiplying by the area related to the occlusor surface modulates
the contribution according to the dimensions of the surface.



If we want to also consider the orientation of the occlusor, we must intro-
duce θs into the equation. Ideally, if we consider a disc of area as and oriented
according to ns, its projected solid angle would be

ωs =
as cos θs

d2
(8)

This is based on the differential area being related to the differential solid
angle (as viewed from point p) by

dω =
dA cos θ

r2
(9)

where θ is the angle between the surface normal of dA and the vector to p, and
r is the distance from p to dA, as shown in Figure 4.

θ

θp

p

s

np

ns

d

θs

d

-d

n

p

dω

dA
na

Fig. 4: Differential solid angle and differential area (image taken from [13]).

This equation can be understood intuitively as follows. If dA is at distance 1
from p and it is aligned so that it is exactly perpendicular to dω, then dω = dA
and cos θ = 1, and the equation holds. As dA moves farther away from p, the r2

term increases, and so dividing by it reduces dω accordingly. Conversely, as dA
rotates so that it is not aligned with the direction of dω, the cos θ term decreases,
reducing dω accordingly.

Unfortunately, applying this equation with screen-space estimators results in
bad artefacts, because often the portion of an object visible to the camera is not
the same one that is oriented towards the surface for which we are calculating
the occlusion, as shown in Figure 5.

A possible approximate solution can be obtained by flipping the normal in
such cases: after all, regarding solid-angle coverage, we are interested in whether
or not there is some geometry occluding light, not whether or not it is oriented
towards the occluded surface.

In terms of calculations, instead of holding the cosine value to 0, we can take
its absolute value: so, if the θs angle falls in the [90...180] degrees range, the
negative cosine value relative to ns becomes a positive value for −ns.

ω′
s = as · abs(d · ns) (10)



p

s

ns

npd
non-visible surface

θp

θs

Fig. 5: No occlusion would be calculated if applying the basic solid-angle formula
calculation.

Modifying our approximation according to this factor, we obtain:

sp,s =
as · abs(d · ns) ·max(0,d · np)

d2
(11)

Our approximation of ambient obscurance allows the solid-angle approxi-
mation formula to be changed to evaluate different approaches easily. As for
instance, in [12] the authors derive an analytical expression for the solid angle
subtended by a plane triangle at some arbitrary point in the space. This expres-
sion should be used to obtain ambient obscurance in our approach in place of
11. However, this expression is more expensive because its computation involves
32 multiplications, 20 additions, 3 square roots, and 1 ATAN2.

A falloff function relative to the occluding geometry distance allows the ob-
scurance contribution to be smoothed with distance. We adopt the falloff func-
tion proposed by the Alchemy SSAO algorithm in [10].

SaSSAO algorithm. Let triangleDivs be the triangle subdivision factor,
which defines how the hemisphere is discretized. From this factor (as explained
in Section 3), we derive hemisphereBuckets, which is 4 · triangleDivs2 and the
maximum value of the solid angle of each bucket as:

bucketSolidAngle =
2π

hemisphereBuckets
(12)

Now, given the discretized hemisphere over the the current pixel p, a fragment
shader computes the ambient obscurance estimating its visibility as we describe
below (see Algorithm 2).

The depth dp is read and used to check whether the pixel p is part of the
geometry or the background. If it is part of the background, no processing takes
place . Otherwise, np is retrieved and used, together with dp, to calculate the
screen-space position of the samples to be taken.



Algorithm 2 SaSSAO.

procedure AmbientObscurance(p)
if foreground(dp) then

for i← 0, k − 1 do
Si ← sample pixel(p)
if foreground(dSi) then

sampleDir ← cSi − cp
if length(sampleDir) ≤ maxDist then

tid ← getTriangle(Si)
b← bucket(tid)
if b ≤ bucketSolidAngle then

sp,s ← getSolidAngle(p, Si)
b← min(bucketSolidAngle, b+ sp,s)

for i← 1, hemisphereBuckets do
em← em+ bi

AO = em/2π

Let k be the number of samples to take, and Si, i ∈ [0...k − 1], be the i-th
sample pixel position in screen space, located depending on the adopted sampling
pattern, as discussed in Section 4.2. Then, for each Si, the depth dSi

is read.
If the pixel is part of the background, the processing skips to the next sample.
Otherwise, the cSi is calculated in order to obtain the vector sampleDir that
goes from cp to cSi

and its length sampleDist. Because of perspective projection,
this length can be significantly greater than the screen-space distance between
p and Si. If sampleDist is greater than the maxDist parameter, the sampled
point is too distant to be taken into account for the AO calculation, and so
processing skips to the next sample.

Otherwise, by the process described in Section 3 and adapted to work for
the four octants of the hemisphere, the triangle id in which sampleDir falls is
found. So, let ti be the triangle id found for Si. We check whether the bucket
ti is already fully covered (meaning that we know that the direction to which
the sample belongs is already occluded). If it is, we skip to the next sample.
Otherwise, we compute an estimate of the covered solid angle as described in
the approximation formula 11, and we add it to the current coverage value for
the bucket. The last check is to determine whether in the current bucket an
over-occlusion from the same directions occurs. If this is the case, the value of
the current bucket is set to the maximum value bucketSolidAngle.

After processing all the samples, we have an estimate of the visibility around
the current processing point in the form of the coverage values for all the buckets
of our discretization. We know that the solid angle for the full hemisphere is 2π,
so we sum the coverage values of all the buckets and divide this sum by 2π to
obtain a global occlusion value. Of course, random sampling is no guarantee that
samples will be obtained on every near-field occluder, but this is true for every
SSAO technique. The immediate advantage of our technique is that we avoid



over-occlusion caused by multiple occluders covering each other but covering
from the same direction.

4.3 AO filtering

Random sampling avoids banding issues, but introduces high-frequency noise.
This could be removed with a basic Gaussian blur but the main problem with
using this filter with AO is that it would also cause some shadow bleeding be-
tween surfaces at different depths or orientations. Because we have normals and
depths at our disposal, so a more intelligent filtering can be done.

We decided to use a filtering function defined in [6], that is, a filter with bilat-
eral weights based on normal and depth differences, and not Gaussian weights:

Ifiltered(x) =

∑
xi∈Ω color(xi)w(x, xi)∑

xi∈Ω w(x, xi)
(13)

where

w(x, xi) = wnormal(x, xi)wdepth(x, xi) (14)

wnormal(x, xi) =

(
nx · nxi

+ 1

2

)kn
(15)

wdepth(x, xi) =

(
1

1 + |dx − dxi
|

)kd
(16)

Here, kn and kd are two constants that can be tuned to alter the contribution
of the normal/depth discriminators in the weight calculation.

5 Results

In this section, we present our methodology for evaluating the validity of our
rendering technique. In terms of quality, we use Blender to off-line render ray-
traced ambient occlusion as the reference image. The Blender renderings were
conducted setting the number of samples to 64, a high number that gives ex-
cellent quality images. The resolution of all the images is 1280 × 720 pixels.
To define the similarity between two images, we adopted the Structural Simi-
larity Index (SSIM) [19] as a metric to measure similarity between images in
a way that is consistent with human eye perception. In terms of efficiency, we
implemented the Alchemy algorithm to allow us to evaluate SaSSAO against an
already established technique. We implemented Alchemy while performing the
minimal changes needed to our already active pipeline, so that we could share
many parameters between the two techniques and make meaningful compar-
isons. However, evaluating the validity and efficiency of the technique against
other techniques is complicated. Many parameters are involved, and even if the



source code of some other technique is available, comparisons are not straight-
forward: different algorithms in many cases do not use the same parameters,
and even minor adjustments may dramatically change the quality of results and
performance. Moreover, there may be some scene dependency, causing one tech-
nique to perform better than others in only some scenes, and then the results
are merely indicative.

5.1 Test results

Our testing system was equipped with an Intel Core i7-3820 CPU 3.60 GHz,
16 GB of RAM, and a GeForce GTX TITAN GPU. The model used in our
experiments was Sponza by Crytek [4]. For SaSSAO, we used the area of cir-
cumscribed circle as area approximation, and hemisphere sampling. These pa-
rameters showed the best results during our tests. We also used an angle bias
parameter . This parameter often appears in SSAO techniques and is used to
limit the self-occlusion and the artefacts caused when the geometry is almost
co-planar with the geometry of the current point. If the cosine of the angle be-
tween the current point normal and the direction to the occluder was less than
the angle bias, the sample was ignored. Tables 1 and 2 list the test scenes and as-
sociated parameters used. For Alchemy, we used flat sampling because it clearly
shows good results. Other parameters were adjusted manually in an attempt to
improve results or to show some particular behaviour. However , because of the
difficulty of performing a comparison, we attempted to obtain for each selected
scene the best result by tuning the parameters manually. Figures from 6 to 11
show some results from the Atrium Sponza 3D model [4].

Overall results are encouraging, with our algorithm often producing results
of comparable quality to Alchemy (sometimes even slightly superior). Alchemy
performs fewer calculations for each sample, so with the same number of samples
it is generally faster. However, the interesting aspect is that with fewer samples
and more calculations, sometimes approximately the same quality was obtained
at a similar frame rate, which could be useful in bandwidth-limited situations.
FPS count in our approach is generally lower because of the many access into the
triangle buckets associated with each pixel, and also to perform the comparison
to check whether a region is fully covered by triangles . Nevertheless, we are
confident that some optimizations can be implemented to increase performance.

Ultimately, it appears that properly adjusting the parameters is a large factor
in the results obtained. Moreover, a higher-SSIM image may not always match
a human observer’s choice of the best result, so we are not completely confident
that this index is a particularly effective metric for ambient obscurance com-
parisons. For example, sometimes, smoother images taken with more samples
receive a lower SSIM.

6 Conclusions and Future Work

We have developed a new technique for ambient obscurance exploiting screen
space. The approach common in the literature is based on deferred rendering



Table 1: Test scenes used with maximum distance, angle bias, and radius sam-
pling chosen as shared parameters.

Scenes Max distance Angle bias Radius

Lion head close up 0.5 0.3 0.4

Lion head close up 1.0 0.3 1

Lion head and drapes 0.25 0.6 0.2

Lion head and drapes 1.5 0.4 1.5

Atrium (from top) 0.8 0.3 0.8

Atrium 0.8 0.3 0.5

Table 2: Test scenes used with values associated with the SaSSAO and Alchemy
approaches. Note that we tuned these values independently to obtain the best
results for each one in terms of Structural Similarity Index (SSIM) and FPS.

SaSSAO Alchemy

Scenes SSIM FPS Samples tDivs SSIM FPS Samples

Lion head close up 92.80% 35.90 16 4 92.71% 22.26 64

Lion head close up 91.87% 22.86 32 4 92.95% 22.96 64

Lion head and drapes 92.64% 14.32 64 3 91.07% 55.41 16

Lion head and drapes 90.46% 11.53 64 4 84.81% 83.19 16

Atrium (from top) 85.51% 35.59 64 4 81.16% 84.10 16

Atrium 87.77% 13.28 64 4 86.91% 84.52 16

and G-buffer sampling and is shared by a number of algorithms in the field.
Our novel contributions are the use of a geometry shader to approximate the
area of occluders and the adoption of a hemisphere discretization technique to
classify the occluders according to their positions. To estimate coverage, we used
a solid-angle approximation derived from our experiments with other algorithms
and from some observations related to the lack of data inherent to image-based
algorithms.

This type of approach, in which we evaluated the level of occlusion con-
sidering the direction from which coverage originated, storing the result in our
“triangle buckets”, allowed us to avoid over-occlusion and generally produced
better quality results because of the implicit weighting of sample contributions.
Quality is our primary concern, and we evaluated our results by comparing the
structural similarity with off-line rendered images calculated through ray-tracing
in Blender.

Ambient obscurance and, generically, global illumination approximations (for
real-time rendering) are constantly improving, following the evolution of hard-
ware, APIs, and the literature. Here, we share some ideas that we wish to ex-
plore in the near future. Our pyramid of “triangle buckets” does not only tell
us how much a point is covered, but also from where (with a customizable level
of precision). This may be exploited to achieve other types of results such as
“directional occlusion” [15] and may be used to calculate direct lighting by us-
ing “bent normals”, which are normals adjusted to consider the direction from



which more incoming light will potentially reach the surface (i.e., where there
are no occluders).

The compute shaders, introduced in OpenGL 4.3, add another level of free-
dom in utilization of the GPU (in the direction of other general-purpose APIs
that exploit GPUs and other parallel hardware, such as OpenCL and CUDA).
Compute shaders operate differently from other shader stages: for example, they
have no well-defined set of input values and no frequency of execution specified
by the nature of the stage (once per vertex, once per fragment...). More efficient
sampling may be key : our technique performs a number of texture fetch opera-
tions (particularly relevant to the efficiency of the technique) for each fragment,
and a possible way of optimizing fetch operations is to use the GPU shared
memory. Recent results in the SSAO field, based on CUDA implementations,
recently appeared in [18] and [17] with interesting implications for SaSSAO.

Fig. 6: Lion head close up - max distance 0.5, angle bias 0.3. Up: SaSSAO, SSIM
92.80%, 35.90 fps - Down left: Blender - Down right: Alchemy, SSIM 92.71%,
22.26 fps.



Fig. 7: Lion head close up - max distance 1.0, angle bias 0.3. Up: SaSSAO, SSIM
91.87%, 22.86 fps - Down left: Blender - Down right: Alchemy, SSIM 92.95%,
22.26 fps.

Fig. 8: Lion head and drapes - max distance 0.25, angle bias 0.6. Up: SaSSAO,
SSIM 92.64%, 14.32 fps - Down left: Blender - Down right: Alchemy, SSIM
91.07%, 55.41 fps.



Fig. 9: Lion head and drapes - max distance 1.5, angle bias 0.4. Up: SaSSAO,
SSIM 90.46%, 11.53 fps - Down left: Blender - Down right: Alchemy, SSIM
84.81%, 83.19 fps.

Fig. 10: Atrium (from top) - max distance 0.8, angle bias 0.3. Up: SaSSAO, SSIM
85.51%, 35.59 fps - Down left: Blender - Down right: Alchemy, SSIM 81.16%,
84.10 fps.



Fig. 11: Atrium - max distance 0.8, angle bias 0.3. Up: SaSSAO, SSIM 87.77%,
13.28 fps - Down left: Blender - Down right: Alchemy, SSIM 86.91%, 84.52 fps.

References

1. Aalund, F.P.: A comparative study of screen-space ambient occlusion methods.
Tech. rep., Technical University of Denmark (2013)

2. Bavoil, L., Sainz, M., Dimitrov, R.: Image-space horizon-based ambient occlusion.
In: ACM SIGGRAPH 2008 talks. p. 22. ACM (2008)

3. Bunnell, M.: Dynamic ambient occlusion and indirect lighting. Gpu gems 2(2),
223–233 (2005)

4. Crytek: Atrium Sponza Palace, www.crytek.com/cryengine/cryengine3/

downloads
5. Filion, D., McNaughton, R.: Effects & techniques. In: ACM SIGGRAPH 2008

Games. pp. 133–164. ACM (2008)
6. Grav̊as, L.O.: Image-space ambient obscurance in webgl. Tech. rep., Institutt for

datateknikk og informasjonsvitenskap (2013)
7. Khanna, P., Slater, M., Mortensen, J., Yu, I.: A non-parametric guide for radiance

sampling in global illumination. Computer Graphics, Imaging and Visualisation,
2007. CGIV’07 pp. 41–48 (2007)

8. Langer, M.S., Bülthoff, H.H.: Depth discrimination from shading under diffuse
lighting. Perception 29(6), 649–660 (2000)

9. McGuire, M., Mara, M., Luebke, D.: Scalable ambient obscurance. In: Proceedings
of the Fourth ACM SIGGRAPH/Eurographics conference on High-Performance
Graphics. pp. 97–103. Eurographics Association (2012)

10. McGuire, M., Osman, B., Bukowski, M., Hennessy, P.: The alchemy screen-space
ambient obscurance algorithm. In: Proceedings of the ACM SIGGRAPH Sympo-
sium on High Performance Graphics. pp. 25–32. ACM (2011)

11. Mittring, M.: Finding next gen: Cryengine 2. In: ACM SIGGRAPH 2007 courses.
pp. 97–121. ACM (2007)

www.crytek.com/cryengine/cryengine3/downloads
www.crytek.com/cryengine/cryengine3/downloads


12. Oosterom, A.V., Strackee, J.: The solid angle of a plane triangle. IEEE Transactions
on Biomedical Engineering BME-30(2), 125–126 (Feb 1983)

13. Pharr, M., Humphreys, G.: Physically Based Rendering: From Theory to Imple-
mentation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2010)

14. Ritschel, T., Dachsbacher, C., Grosch, T., Kautz, J.: The state of the art in inter-
active global illumination. Comput. Graph. Forum 31(1), 160–188 (Feb 2012)

15. Ritschel, T., Grosch, T., Seidel, H.P.: Approximating dynamic global illumination
in image space. In: Proceedings of the 2009 symposium on Interactive 3D graphics
and games. pp. 75–82. ACM (2009)

16. Shanmugam, P., Arikan, O.: Hardware accelerated ambient occlusion techniques
on gpus. In: Proceedings of the 2007 symposium on Interactive 3D graphics and
games. pp. 73–80. ACM (2007)

17. Timonen, V.: Line-Sweep Ambient Obscurance. Computer Graphics Forum (Pro-
ceedings of EGSR 2013) 32(4), 97–105 (2013)

18. Timonen, V.: Screen-space far-field ambient obscurance. In: Proceedings of the 5th
High-Performance Graphics Conference. pp. 33–43. HPG ’13, ACM, New York,
NY, USA (2013)

19. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
From error visibility to structural similarity. Image Processing, IEEE Transactions
on 13(4), 600–612 (2004)

20. Zhukov, S., Iones, A., Kronin, G.: An ambient light illumination model. In: Ren-
dering Techniques’ 98, pp. 45–55. Springer (1998)


	Solid Angle based Ambient Obscurance in Image Space

