
Chapter 2
Differential Operators and Approximation
Processes Generated by Markov Operators

F. Altomare, M. Cappelletti Montano, V. Leonessa, and I. Raşa

2.1 Introduction

In recent years several investigations have been devoted to the study of large classes
of (mainly degenerate) initial-boundary value evolution problems in connection with
the possibility to obtain a constructive approximation of the associated positive
C0-semigroups by means of iterates of suitable positive linear operators which
also constitute approximation processes in the underlying Banach function space.
Usually, as a consequence of a careful analysis of the preservation properties of
the approximating operators, such as monotonicity, convexity, Hölder continuity,
and so on, it is possible to infer similar preservation properties for the relevant
semigroups and, in turn, some spatial regularity properties of the solutions to
the evolution problems (see, e.g., [CaEtAl99, AtCa00, Ma02, AlEtAl07, AlLe09],
[AlCa94, Chapter 6] and the references therein).

More recently, by continuing along these directions, we started a research project
in order to investigate the possibility of associating to a given Markov operator on
the Banach space C.K/ of all real functions defined on a convex compact subset K
of�d (d � 1) some classes of differential operators as well as some suitable positive
approximation processes. The main aim is to investigate whether these differential
operators are generators of positive semigroups and whether the semigroups can
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be approximated by iterates of the approximation processes themselves. By means
of a qualitative study of the approximation processes, the approximation formulas
could guarantee a similar qualitative analysis of the positive semigroups and,
consequently, of the solutions to the evolution equations governed by them.

In this survey paper we report some of the main ideas and results we have
developed in this respect and which are documented in [AlEtAl14, AlEtAl14a,
AlEtAl14b, AlEtAl16a, AlEtAl16b].

The differential operators considered within the framework of the theory fall into
classes of operators of wide interest in the theory of evolution equations and in
models of population dynamics and mathematical finance. The generation problems
for these differential operators have been also studied with other methods which,
however, do not allow to get spatial regularity properties of the solutions as well as
information about their asymptotic behavior whereas these aspects are successfully
obtained with the methods of approximation by positive operators.

Furthermore, the involved approximation processes are inspired by some clas-
sical ones and, among other things, they generalize the Bernstein operators and
the Kantorovich operators in all one-dimensional and multi-dimensional convex
domains on which the latter have been considered. These approximation processes
seem to have an interest in their own also for the approximation of continuous
functions and, in some cases, of p-th power integrable functions. For these reasons
their study has been also deepened from several points of view of the approximation
theory. The paper contains some noteworthy examples which offer a short outline
of the possible application of the theory and show that diverse differential problems
scattered in the literature can be encompassed in the present unifying approach (see,
e.g., [CeCl01, MuRh11, Ta14]).

2.2 Canonical Elliptic Second-Order Differential Operators
and Bernstein-Schnabl Operators

From now on we shall fix a convex compact subset K of the real Euclidean space�d

(d � 1) with non-empty interior int.K/, and a Markov operator T W C.K/ ! C.K/

on the space C.K/ of all real continuous functions on K, i.e. T is a positive linear
operator on C.K/ such that T.1/ D 1, 1 being the constant function of value 1 on K.

By Riesz representation theorem it is known that, for every x 2 K, there exists a
(unique) probability Borel measure Q�T

x on K such that, for every f 2 C.K/,

T.f /.x/ D
Z

K
f d Q�T

x :

Then, for every n � 1, we define the n-th Bernstein-Schnabl operator Bn

associated with T by setting, for every f 2 C.K/ and x 2 K,

Bn.f /.x/ WD
Z

K
� � �
Z

K
f

�
x1 C : : : C xn

n

�
d Q�T

x .x1/ � � � d Q�T
x .xn/:
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For every n � 1, Bn is a positive linear operator from C.K/ into C.K/, Bn.1/ D 1
and hence, by positivity, kBnk D 1. Moreover, B1 D T .

If, in addition, the Markov operator T satisfies the assumption

T.h/ D h for every h 2 fpr1; : : : ; prdg (2.1)

where, for each i D 1; : : : ; d, pri stands for the ith coordinate function on K, i.e.
pri.x/ D xi for every x D .x1; : : : ; xd/ 2 K, then the sequence .Bn/n�1 is an approx-
imation process on C.K/, i.e. for every f 2 C.K/, limn!1 Bn.f / D f uniformly on
K (see [AlEtAl14a, Theorem 3.1]; see also [AlEtAl14, Theorem 3.2.1]).

The class of Bernstein-Schnabl operators associated with T contains several
examples of well-known sequences of operators as particular cases. In fact they gen-
eralize the classical Bernstein operators on the unit interval, on multi-dimensional
simplices and hypercubes, and they share with them several preservation properties
which are investigated in [AlEtAl14, Chapter 3] and [AlCa94, Chapter 6] (see also
[AlEtAl14a] and the references therein).

Among the properties fulfilled by the Bn’s, we recall here that, for every m � 1,
all the Bernstein-Schnabl operators leave invariant the space Pm.K/ of (restriction
to K of all) polynomials of degree at most m, under the additional hypothesis

T.Pm.K// � Pm.K/ (2.2)

for every m � 1 (see [AlEtAl14a, Theorem 3.2]; see also [AlEtAl14, Lemma 4.1.1]).
Moreover, for every u 2 C2.K/, the following asymptotic formula holds:

lim
n!1 n.Bn.u/ � u/ D WT.u/ uniformly on K; (2.3)

where WT is the elliptic second-order differential operator defined as

WT.u/ WD 1

2

dX
i;jD1

˛ij
@2u

@xi@xj
(2.4)

and the coefficients ˛ij, for each i; j D 1; : : : ; d and x 2 K, are given by ˛ij.x/ WD
T.priprj/.x/ � .priprj/.x/ (see [AlEtAl14a, Theorem 4.2]; see also [AlEtAl14,
Theorem 4.1.5]). WT is referred to as the canonical elliptic second-order differential
operator associated with T .

Operators (2.4) are of concern in the study of several diffusion problems arising
in biology, financial mathematics, and other fields. As a matter of fact the study
of such kind of differential operator presents some difficulties if tackled with the
methods of the theory of PDEs. First of all the boundary @K of K is generally non-
smooth due to the presence of possible sides and corners. Moreover, WT degenerates
on the set @TK of all interpolation points for T given by @TK WD fx 2 K j T.f /.x/ D
f .x/ for every f 2 C.K/g; which contains the extreme points of K by virtue of (2.1).
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Now consider the following initial-boundary value problem associated with the
couple .WT ; C2.K// and the initial datum u0 belonging to a suitable subset of C2.K/:

8̂
<
:̂

@u

@t
.x; t/ D 1

2

dP
i;jD1

˛ij.x/
@2u

@xi@xj
.x; t/ x 2 K; t � 0I

u.x; 0/ D u0.x/ x 2 K:

(2.5)

The possibility to approximate (or to reconstruct) the solutions to (2.5) lies in the
fact that, under hypotheses (2.1) and (2.2) on the Markov operator T , by applying a
Trotter-Schnabl-type result (see [AlEtAl14, Corollary 2.2.3 and Remark 2.2.4]; see
also [AlEtAl09, Theorem 2.1]), we get that

Theorem 1 The operator .WT ; C2.K// is closable and its closure .AT ; D.AT//

generates a Markov semigroup .T.t//t�0 on C.K/ such that, if t � 0 and .k.n//n�1

is a sequence of positive integers satisfying lim
n!1 k.n/=n D t, then

T.t/.f / D lim
n!1 Bk.n/

n .f / uniformly on K (2.6)

for every f 2 C.K/ (here Bk.n/
n denotes the iterate of Bn of order k.n/). Moreover, the

subalgebra P1.K/ WD S
m�1 Pm.K/ of C.K/, and hence C2.K/ as well, is a core

for .AT ; D.AT//.
The approximation formula (2.6) will be briefly referred by saying that the

sequence .Bn/n�1 is a strongly admissible sequence for the semigroup .T.t//t�0.
From the above theorem it follows that we can solve the abstract Cauchy problem

associated with .AT ; D.AT// and the initial datum u0 2 D.AT/

8<
:

du

dt
.x; t/ D AT.u.�; t//.x/ x 2 K; t � 0I

u.x; 0/ D u0.x/ x 2 K;

(2.7)

which turns into the particular problem (2.5) when u0 is in C2.K/, since AT D WT

on C2.K/, obtaining for it an approximation formula for the (unique) solution, i.e.

u.x; t/ WD T.t/.u0/.x/ D lim
n!1 Bk.n/

n .u0/ uniformly on K: (2.8)

For more details on semigroup theory, we refer the reader to [EnNa00] or to
[AlEtAl14, Chapter 2].

From (2.8) we can derive both numerical and qualitative information about the
solutions of the Cauchy problems of kind (2.5) from the study of operators Bn.

Below we list some spatial regularity properties of the solutions to (2.7) which
may be inferred by some preservation properties of the Bn’s by means of (2.8).
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Theorem 2 Under the same assumptions of Theorem 1, the following statements
hold true:

(i) Given M � 0 and 0 < ˛ � 1, let Lip.M; ˛/ be the space of all Hölder
continuous functions on K with exponent ˛ and Hölder constant M. If, in
addition, T.Lip.1; 1// � Lip.1; 1/ and u0 2 Lip.M; ˛/, then u.�; t/ 2 Lip.M; ˛/

for every t � 0, M � 0 and 0 < ˛ � 1.
(ii) Suppose that T maps continuous convex functions into (continuous) convex

functions and that the quantity

�.f I x; y/ WD B2.f /.x/ C B2.f /.y/ � 2

ZZ

K2

f

�
s C t

2

�
d Q�T

x .s/d Q�T
x .t/

is positive for every f 2 C.K/ and x; y 2 K. If u0 2 D.AT/ is convex, then u.�; t/
is convex for every t � 0.

We conclude this section by presenting several examples of Markov operators to
which the previous theorems apply.

Example 1 Assume that d � 2 and that @K is an ellipsoid, i.e.

K D
8<
:x 2 �d j Q.x � x/ WD

dX
i;jD1

rij.xi � xi/.xj � xj/ � 1

9=
; ;

where .rij/i;jD1;:::;d is a real symmetric and positive-definite matrix and x 2 �d. Let
L be a strictly elliptic differential operator of the form

L.u/.x/ D
dX

i;jD1

cij
@2u.x/

@xi@xj
.u 2 C2.int.K//; x 2 int.K//

associated with a real symmetric and positive matrix .cij/1�i;j�d and denote by TL W
C.K/ ! C.K/ the Poisson operator associated with L. Thus, for every f 2 C.K/,
TL.f / denotes the unique solution to the Dirichlet problem

(
Lu D 0 on int.K/; u 2 C.K/ \ C2.int.K//I
u D f on @K:

Note that TL is a Markov operator (in particular a Markov projection) satisfy-
ing (2.1). Moreover, also (2.2) is verified.

The differential operator WTL associated with TL, briefly denoted by WL, is
given by

WL.u/.x/ WD

8̂
ˆ̂<
ˆ̂̂:

1 � Q.x � x/

2
dP

i;jD1

rijcij

L.u/.x/ if x 2 int.K/I

0 if x 2 @K

(u 2 C2.K/, x 2 K).
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In particular, if K is the closed ball (with respect to k � k2) with center the origin
of �d and radius 1 and if L is the laplacian �, then

T�.f /.x/ WD
8<
:

1 � kxk2
2

�d

Z
@K

f .z/

kz � xkd
2

d�.z/ if kxk2 < 1I
f .x/ if kxk2 D 1

(f 2 C.K/, x 2 K), where �d and � denote the surface area of the unit sphere in �d

and the surface measure on @K, resp., and, for every u 2 C2.K/ and x 2 K,

W�.u/.x/ WD
8<
:

1 � kxk2
2

2d
�.u/.x/ if kxk2 < 1I

0 if kxk2 D 1:

An explicit expression for the Bernstein-Schnabl operators associated with TL

can be found in [AlEtAl14, Subsection 3.1.4].

Example 2 Consider the d-dimensional simplex

Kd WD
(

.x1; : : : ; xd/ 2 �d j xi � 0 for every i D 1; : : : ; d and
dX

iD1

xi � 1

)

and the canonical projection Td on Kd defined by

Td.f /.x/ WD
 

1 �
dX

iD1

xi

!
f .v0/ C

dX
iD1

xif .vi/

.f 2 C.Kd/; x D .x1; : : : ; xd/ 2 Kd/, where v0 WD .0; : : : ; 0/, v1 WD .1; 0; : : : ; 0/,
: : :, vd WD .0; : : : ; 0; 1/ are the vertices of the simplex.

Then Td is a Markov operator which satisfies (2.1) and (2.2) and the relevant
differential operator WTd associated with Td is given by

WTd .u/.x/ D 1

2

dX
iD1

xi.1 � xi/
@2u

@x2
i

.x/ �
X

1�i<j�d

xixj
@2u

@xi@xj
.x/

.u 2 C2.Kd/; x D .x1; : : : ; xd/ 2 Kd/. Note that the coefficients of WTd vanish on
the vertices of the simplex.

The operator WTd falls into the class of the so-called Fleming-Viot operators
which occur in the description of a stochastic process associated with a diffusion
approximation of a gene frequency model in population genetics; more recently,
they have been object of investigation by several authors.

Also in this case we have an explicit expression for the relevant operators Bn (see
[AlEtAl14, formula (3.1.18)]).



2 Approximation Processes Generated by Markov Operators 15

Example 3 Let S W C.Kd/ �! C.Kd/ be the Markov operator defined by

S.f /.x/ WD

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

0
@1 � x1

1�
dP

iD2

xi

1
A f .0; x2; : : : ; xd/ C x1

1�
dP

iD2

xi

�f

�
1 �

dP
iD2

xi; x2; : : : ; xd

�
if

dP
iD2

xi ¤ 1I

f .0; x2; : : : ; xd/ if
dP

iD2

xi D 1

.f 2 C.Kd/; x D .x1; : : : ; xd/ 2 Kd/. S verifies (2.1) and (2.2) and in this case the
differential operator associated with S is defined as

WS.u/.x/ D 1

2
x1

 
1 �

dX
iD1

xi

!
@2u

@x2
1

.x/

.u 2 C2.Kd/; x D .x1; : : : ; xd/ 2 Kd/. Note that WS degenerates on the faces

fx D .x1; : : : ; xd/ 2 Kd j x1 D 0g and

�
x D .x1; : : : ; xd/ 2 Kd j

dP
iD1

xi D 1

�
.

Example 4 Consider the convex combination of the above operators, that is the
Markov operator V WD .Td C S/=2. Then V satisfies (2.1) and (2.2) and the
differential operator associated with it becomes

WV.u/.x/ D 1

4

 
2x1.1 � x1/ � x1

dX
iD2

xi

!
@2u

@x2
1

.x/

C 1

4

dX
iD2

xi.1 � xi/
@2u

@x2
i

.x/ � 1

4

X
1�i<j�d

xixj
@2u

@xi@xj
.x/

.u 2 C2.Kd/; x D .x1; : : : ; xd/ 2 Kd/. Observe that WV degenerates on the vertices
of Kd as well. In this case Bn’s are defined as in the Subsection 3.1.6 of [AlEtAl14].

Example 5 Let Qd WD Œ0; 1�d, d � 1, and for every i D 1; : : : ; d consider a

Markov operator Ui on C.Œ0; 1�/ satisfying (2.1) and (2.2). If U WD
dN

iD1

Ui is the

tensor product of the family .Ui/1�i�d, then U is a Markov operator on C.Qd/

satisfying (2.1) and (2.2). The differential operator in this case has the following
form:

WU.u/.x/ D 1

2

dX
iD1

˛i.x/
@2u

@x2
i

.x/;
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.u 2 C2.Qd/; x D .x1; : : : ; xd/ 2 Qd/, where ˛i.x/ WD Ui.e2/.xi/ � x2
i .1 � i � d/;

e2 being the function e2.t/ D t2 for each t 2 Œ0; 1�.
Bernstein-Schnabl operators on hypercubes are given by formula (3.1.30) of

[AlEtAl14].

2.3 Other Classes of Differential Operators and
Approximation Processes

In this section we discuss other classes of differential operators which are pre-
generators of Markov semigroups along with the relevant strongly admissible
sequences of positive operators. The differential operators are multiplicative and
additive perturbations of the operator WT and the relevant approximation processes
can be obtained by means of suitable modification of Bernstein-Schnabl operators.

Multiplicative Perturbations and Lototsky-Schnabl Operators
Given a Markov operator T on C.K/ satisfying assumption (2.1), a new Markov
operator U� can be constructed by setting U� WD �T C .1 � �/I; where � 2 C.K/,
0 � � � 1, I being the identity operator of C.K/.

The Bernstein-Schnabl operators Bn;U�
associated with U� are referred to as the

Lototsky-Schnabl operators associated with T and � and they are simply denoted by
Bn;�, n � 1. Actually, if f 2 C.K/, x 2 K and n � 1,

Bn;�.f /.x/ WD

8̂
<
:̂

nX
kD0

 
n

k

!
�.x/k.1 � �.x//n�kBk.fx;k=n/.x/ if x … @TK;

f .x/ if x 2 @TK;

where fx;k=n.t/ D f
�

k
n t C �

1 � k
n

�
x
�

(t 2 K). It is possible to show that, on
one hand, the multiplicative perturbation �WT of the differential operator WT is
linked to the operators Bn;� by an asymptotic formula like (2.3), and on the other
hand that the couple .�WT ; C2.K// pre-generates a Markov semigroup for which
a formula similar to (2.6) involving iterates of Lototsky-Schnabl operators holds
under the same hypotheses (2.1) and (2.2) on T . For all details we refer the reader
to [AlEtAl14, Section 5.1].

Special additive Perturbation and Generalized Kantorovich Operators
In the recent paper [AlEtAl16a] we introduce and study a new sequence of positive
linear operators acting on C.K/ (and, in some particular cases, also in other function
spaces). Namely, if T is a Markov operator on C.K/ satisfying (2.1), if a is a real
positive number, and if .�n/n�1 is a weakly convergent sequence of probability
Borel measures on K, we define the positive linear operator Cn by setting, for every
x 2 K and f 2 C.K/,

Cn.f /.x/D
Z

K
� � �
Z

K
f

�
x1 C : : : C xn C axnC1

n C a

�
d Q�T

x .x1/ � � � d Q�T
x .xn/d�n.xnC1/:
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Through an asymptotic formula like (2.3) such operators are connected with
the following class of differential operators which turn into particular additive
perturbations of WT which are defined by setting, for every u 2 C2.K/ and x 2 K,

VT.u/.x/ WD WT.u/.x/ C
dX

iD1

a.bi � pri/
@u

@xi
;

where b D .b1; : : : ; bd/ 2 K is the barycenter of the weak limit of .�n/n�1 (see
[AlEtAl16b]). Then .VT ; C2.K// is a pre-generator of a Markov semigroup for
which the sequence .Cn/n�1 is a strongly admissible sequence. In some particular
cases, the same result holds true also in Lp-spaces.

Additive Perturbation and Modified Bernstein-Schnabl Operators
Consider the complete differential operator

ZT.u/.x/ D WT.u/.x/ C
dX

iD1

ˇi.x/
@u

@xi
C �.x/u.x/ .u 2 C2.K/; x 2 K/;

with ˇi; � 2 C.K/ for which there exists n0 � 1 such that x C ˇ.x/

n
2 K and

1 C �.x/

n
� 0 for each x 2 K and n � n0.

By adapting an idea first developed in [AlAm05] (see also [AlRa99]), in order
to study the solutions to the diffusion problem governed by ZT we introduced and
studied a further modification of the Bn’s, in symbols Mn, defined by setting

Mn.f / WD Bn ..1 C �=n/ � .f ı .id C ˇ=n///

for every f 2 C.K/, where id.y/ D y for every y 2 K (see [AlEtAl14, Section 5.2]).
Also in this case we showed that then .ZT ; C2.K// is a pre-generator of a Markov
semigroup for which the sequence .Mn/n�1 is a strongly admissible sequence.

In all the above-mentioned cases, by means of the relevant strongly admissible
approximating sequences, we carried out a careful qualitative analysis of the
preservation properties of the semigroups.

2.4 Final Remarks

1. Similar problems can be considered for convex compact subsets K of a (not
necessarily finite dimensional) locally convex Hausdorff space X.

2. The crucial assumption (2.2) that the Markov operator T maps polynomials into
polynomials of the same degree seems to have an independent interest on its own.
We discuss several situations where it is satisfied in the final part of Section 4.5
of [AlEtAl14] as well as in [AlEtAl14b].
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3. In some special cases we describe the asymptotic behavior of the Markov
semigroup, i.e. we determine lim

t!C1 T.t/, and we characterize the saturation class

of .Bn/n�1 and the Favard class of .T.t//t�0 (see Subsection 4.5.4 and Appendix
A.2 of [AlEtAl14]).

4. Fields of application of formula (2.6) include both probabilistic and numerical
applications.
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semigroups associated with generalized Kantorovich operators. Submitted.

[AtCa00] Attalienti, A., Campiti, M.: Denerate evolution problems and beta-type operators.
Stud. Math. 140, 117–139 (2000).

[CaEtAl99] Campiti, M., Metafune, G., Pallara, D.: General Voronvskaja formula and solutions
of second-order degenerate differential equations. Rev. Roum. Math. Pures Appl.
44(5–6), 755–766 (1999)

[CeCl01] Cerrai, C., Clément, Ph.: On a class of degenerate elliptic operators arising from the
Fleming-Viot processes. J. Evol. Equ. 1, 243–276 (2001)

10.1215/17358787-2017-0008
http://projecteuclid.org/euclid.bjma/1494036023
http://projecteuclid.org/euclid.bjma/1494036023


2 Approximation Processes Generated by Markov Operators 19

[EnNa00] Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations.
Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)

[Ma02] Mangino, E.M.: Differential operators with second-order degeneracy and positive
approximation processes. Constr. Approx. 18(3), 443–466 (2002)

[MuRh11] Mugnolo, D., Rhandi, A.: On the domain of a Fleming-Viot type operator on a
Lp-space with invariant measure. Note Mat. 31(1), 139–148 (2011)

[Ta14] Taira K.: Semigroups, Boundary Value Problems and Markov Processes. Springer
Monographs in Mathematics, 2nd edn. Springer, Heidelberg (2014)


	2 Differential Operators and Approximation Processes Generated by Markov Operators
	2.1 Introduction
	2.2 Canonical Elliptic Second-Order Differential Operators and Bernstein-Schnabl Operators
	2.3 Other Classes of Differential Operators and Approximation Processes
	2.4 Final Remarks
	References


