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1. Introduction

This paper is mainly concerned with the study of a new class of second-order differen-
tial operators on compact subsets of Rd, d � 1, which can be associated with a Markov
operator.

More precisely, given a convex compact subset K of Rd with non-empty interior and
a Markov operator T on C (K) (i.e., a positive linear operator T on C (K) such that
T (1) = 1), we shall consider and study the following elliptic second-order differential
operator WT , defined by setting, for every u ∈ C 2(K),

WT (u) := 1
2

d∑
i,j=1

αij
∂2u

∂xi∂xj
, (1)

where, for each i, j = 1, . . . , d, αij := T (priprj) − priprj and pri stands for the i-th
coordinate function.

One of the difficulties in studying operators (1) lies in the fact that the boundary
∂K of K is generally non-smooth, due to the presence of possible sides and corners;
moreover, since we assume that T preserves the coordinate functions, the operator
WT degenerates on a subset of K containing the set ∂eK of all the extreme points
of K.

On the other hand, operators (1) are of concern in the study of several diffusion
problems arising in biology, financial mathematics and other fields, so that they seem to
be worthy of a comprehensive and thorough study.

In this paper we are mainly interested in proving that, under suitable assumptions
on T , the operator (WT ,C

2(K)) is closable and its closure is the generator of a Markov
semigroup (T (t))t�0 on C (K).

Our approach is based on a Trotter-type result due to Schnabl [25]; in fact,
in order to prove our generation result, we consider a suitable sequence (Bn)n�1
of positive linear operators, the so-called Bernstein–Schnabl operators associated
with T , which are strictly connected with operator (1) via an asymptotic formula,
and then, by means of them, we obtain the generation result by also showing that
the generated semigroup (T (t))t�0 can be represented in terms of suitable iterates
of the Bn’s. As a consequence we show that the semigroups preserve polynomials
of a given degree as well as Hölder continuity, which, in turn, allows to highlight
some spatial regularity properties of the solutions of the relevant evolution equa-
tions.

The sequence of Bernstein–Schnabl operators is an approximation process in C (K),
so that, from the point of view of Approximation Theory, it seems to have an interest
on its own. For this reason, even if in this work we investigate several properties of
(Bn)n�1, we shall undertake a deeper and more accurate study of them in a forthcoming
monograph [14]. In the same monograph we shall also deepen the investigations of other
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additional preserving properties of the semigroups by relating them with the relevant
ones held by the operators Bn.

Our results generalize those of [2,4] (see also [6, Chapter 6]), in which the author is
concerned with operator (1), in the special case where T is a positive projection satisfying
suitable assumptions. The more general framework of the present paper guarantees to
notably enlarge the class of differential operators by including, in particular, those which
can be obtained by usual operations with Markov operators such as convex combinations,
compositions, tensor products and so on.

Finally we point out that in [13] the authors have undertaken a similar study
of operator (1) in the context of the unit interval [0, 1]. This paper represents a
full extension to higher dimensions which discloses new and more difficult prob-
lems.

2. Preliminaries

In this section we collect the main notation of the paper and we recall some results
that will be useful in the sequel.

From now on, let us consider a convex compact subset K of Rd, d � 1, whose interior
int(K) is assumed to be non-empty. We shall denote by ‖ · ‖2 the Euclidean norm on
Rd, i.e., ‖x‖2 :=

√∑d
i=1 x

2
i (x = (x1, . . . , xd) ∈ Rd).

As usual we shall denote by F (K) the space of all real-valued functions on K and by
C (K) the space of all real-valued continuous functions on K; the space C (K), endowed
with the natural (pointwise) ordering and the sup-norm ‖ · ‖∞, is a Banach lattice.

Moreover, we denote by C 2(K) the space of all real-valued (continuous) functions on
K that are twice continuously differentiable on int(K) and whose partial derivatives of
order � 2 can be continuously extended to K. For u ∈ C 2(K) and i, j = 1, . . . , d, we
shall continue to denote by ∂u

∂xi
and ∂2u

∂xi∂xj
the continuous extensions to K of the partial

derivatives ∂u
∂xi

and ∂2u
∂xi∂xj

.
For every i = 1, . . . , d, we shall denote by pri the i-th coordinate function on K (i.e.,

pri(x) = xi for every x = (x1, . . . , xd) ∈ K) and by 1 the constant function of constant
value 1 on K.

Moreover, we denote by BK the σ-algebra of all Borel subsets of K. The symbol
M+(K) (resp., M+

1 (K)) stands for the space of all regular Borel measures (resp., prob-
ability Borel measures) on K; in particular, for every x ∈ K, εx denotes the unit mass
concentrated at x, i.e., for every B ∈ BK ,

εx(B) :=
{

1 if x ∈ B;
0 if x /∈ B.

Consider a Markov operator T : C (K) −→ C (K), i.e., a positive linear operator on
C (K) such that T (1) = 1.
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It is well known that for every x ∈ K there exists a (unique) μ̃T
x ∈ M+

1 (K) such that,
for every f ∈ C (K),

T (f)(x) =
∫
K

f dμ̃T
x . (2.1)

The family (μ̃T
x )x∈K is also referred to as the continuous selection of probability Borel

measures on K associated with T .
Given a Markov operator T on C (K), first of all we are interested in describing a

particular subset of K, the so-called set of interpolation points for T , that is denoted by
∂TK and defined as

∂TK :=
{
x ∈ K

∣∣ T (f)(x) = f(x) for every f ∈ C (K)
}
. (2.2)

To this end we recall that, given a linear subspace L of C (K), the Choquet boundary
∂LK of L is the subset of all points x ∈ K such that, if μ̃ ∈ M+(K) and

∫
K
h dμ̃ = h(x)

for every h ∈ L, then
∫
K
f dμ̃ = f(x) for every f ∈ C (K), i.e., μ̃ = εx.

If L contains the constants and separates the points of K, then ∂LK is non-empty and
every h ∈ L attains its minimum and maximum on ∂LK (see, e.g., [6, Corollary 2.6.5]).

We shall also set

M :=
{
h ∈ C (K)

∣∣ T (h) = h
}
. (2.3)

Clearly, M is contained in the range of T that will be also denoted by

H := T
(
C (K)

)
=
{
T (f)

∣∣ f ∈ C (K)
}
. (2.4)

The subspace M contains the constants and, if it separates the points of K, then its
Choquet boundary ∂MK is non-empty. Moreover, since each g ∈ M attains its minimum
and its maximum on ∂MK, if g = 0 on ∂MK, then necessarily g = 0.

The next result has been obtained in [5, Theorem 2.1].

Theorem 2.1. Consider a Markov operator T : C (K) −→ C (K) such that the subspace
M defined by (2.3) separates the points of K. Then

∅ �= ∂MK ⊂ ∂TK ⊂ ∂HK (2.5)

(see (2.2) and (2.4)).
Moreover, if V is an arbitrary subset of M separating the points of K, then

∂TK =
{
x ∈ K

∣∣ T (h2)(x) = h2(x) for every h ∈ V
}
. (2.6)
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Finally, if (hn)n�1 is a finite or countable family in M separating the points of K and
such that the series Φ :=

∑∞
n=1 h

2
n is uniformly convergent, then

∂TK =
{
x ∈ K

∣∣ T (Φ)(x) = Φ(x)
}
. (2.7)

Remarks 2.2. 1. There always exists a sequence (hn)n�1 in M such that the series∑∞
n=1 h

2
n converges uniformly on K.

Indeed, M is separable (because C (K) is separable) and hence there exists a countable
dense family (ϕn)n�1 of M . Then, it is sufficient to set hn := ϕn

2n(‖ϕn‖∞+1) for every n � 1.
2. Assume that T is a Markov operator such that T (h) = h for all h ∈ {1, pr1, . . . , prd}

i.e., P1(K) ⊂ M , where P1(K) is the space of (the restriction to K of) all polynomials
of degree at most 1.

Then, by combining [6, Proposition 2.6.3] and (2.5), we have that

∂eK ⊂ ∂MK ⊂ ∂TK ⊂ ∂HK, (2.8)

where the symbol ∂eK denotes the set of the extreme points of K; more precisely, ∂eK
is the set of those points x0 ∈ K such that K \ {x0} is convex, i.e., if x1, x2 ∈ K and
λ ∈ R, 0 < λ < 1, and if x0 = λx1 + (1 − λ)x2, then x0 = x1 = x2.

We pass now to recall an asymptotic formula for an arbitrary sequence of positive
linear operators on C (K).

Given x ∈ K, we denote by Ψx : K −→ Rd the mapping defined by

Ψx(y) := y − x (y ∈ K) (2.9)

and by Φx : K −→ R the function defined by

Φx(y) := ‖y − x‖2 (y ∈ K). (2.10)

Furthermore, we consider a second-order differential operator of the form

A(u)(x) := 1
2

d∑
i,j=1

αij(x) ∂2u

∂xi∂xj
(x) +

d∑
i=1

βi(x) ∂u
∂xi

(x) + γ(x)u(x) (2.11)

(u ∈ C 2(K), x ∈ K), where αij , βi, γ ∈ F (K), i, j = 1, . . . , d.
The following result is a special case of a general asymptotic formula proved in [7,

Theorem 3.5].

Theorem 2.3. Let αij , βi, γ ∈ F (K), i, j = 1, . . . , d, and consider the differential operator
A defined by (2.11). Furthermore, consider a divergent sequence (ϕ(n))n�1 of positive
integers and a sequence (Ln)n�1 of positive linear operators from C (K) into F (K).
Assume that there exists a subset G of K such that
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(i) limn→∞ ϕ(n)(Ln(1)(x) − 1) − γ(x) = 0 uniformly w.r.t. x ∈ G;
(ii) limn→∞ ϕ(n)Ln(pri ◦ Ψx)(x) − βi(x) = 0 uniformly w.r.t. x ∈ G for every i =

1, . . . , d;
(iii) limn→∞ ϕ(n)Ln((pri ◦ Ψx)(prj ◦ Ψx))(x) − αij(x) = 0 uniformly w.r.t. x ∈ G, for

every i, j = 1, . . . , d;
(iv) sup x∈G

n�1
ϕ(n)Ln(Φ2

x)(x) < +∞;
(v) there exists q ∈ R, q > 2, such that limn→∞ ϕ(n)Ln(Φq

x)(x) = 0 uniformly w.r.t.
x ∈ G.

Then, for every u ∈ C 2(K),

lim
n→∞

ϕ(n)
(
Ln(u) − u

)
= A(u) (2.12)

uniformly on G.

3. Bernstein–Schnabl operators associated with Markov operators

In this section we shall consider a sequence of positive linear operators, the so-called
Bernstein–Schnabl operators, that will be the main tool to study the differential operators
we shall present in Section 4.

Bernstein–Schnabl operators, introduced by Schnabl in [25] and successively by Gross-
mann [20] and Nishishiraho [22,23] in different contexts, were intensively studied by
Altomare (see [2], [6, Section 6.1] and the references therein) in association with a posi-
tive projection on C (K) and through the last twenty years they have been the subject of
several researches and generalizations. For more details, we refer the interested reader to
the survey [12] and its numerous references, but also to [9–11,24], among many others.

From now on, fix a Markov operator T : C (K) −→ C (K), K being a convex compact
subset of Rd, d � 1, and the continuous selection (μ̃T

x )x∈K of probability Borel measures
associated with T as in (2.1).

Moreover, we assume that

T (h) = h for each h ∈ {1, pr1, . . . , prd}. (3.1)

Then, for any n � 1, we consider the positive linear operator Bn : C (K) −→ C (K)
defined by setting, for every f ∈ C (K) and x ∈ K,

Bn(f)(x) =
∫
K

· · ·
∫
K

f

(
x1 + · · · + xn

n

)
dμ̃T

x (x1) · · · dμ̃T
x (xn). (3.2)

Bn will be referred to as the n-th Bernstein–Schnabl operator associated with T .
Clearly, Bn(1) = 1 and hence ‖Bn‖ = 1. Moreover, B1 = T .
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We point out that, if K = [0, 1] and we consider the canonical projection T1 :
C ([0, 1]) −→ C ([0, 1]) defined by setting, for every f ∈ C ([0, 1]) and x ∈ [0, 1],

T1(f)(x) := xf(1) + (1 − x)f(0), (3.3)

then the Bn’s turn into the classical Bernstein operators on [0, 1].
For some further examples of Bernstein–Schnabl operators we refer the interested

reader to [6,8,13] and the references quoted therein.
In defining Bernstein–Schnabl operators, assumption (3.1) is not essential. In fact, it

will be needed in order to prove that the sequence (Bn)n�1 is an approximation process
in C (K), as the following result shows.

Theorem 3.1. Let (Bn)n�1 be the sequence of Bernstein–Schnabl operators associated
with a Markov operator T on C (K) satisfying (3.1). Then, for every i, j = 1, . . . , d and
n � 1,

Bn(pri) = pri (3.4)

and

Bn(priprj) = 1
n
T (priprj) + n− 1

n
priprj . (3.5)

In particular,

Bn

(
pr2

i

)
= 1

n
T
(
pr2

i

)
+ n− 1

n
pr2

i . (3.6)

Moreover, for every f ∈ C (K),

lim
n→∞

Bn(f) = f uniformly on K. (3.7)

Finally, for every n � 1 and f ∈ C (K),

Bn(f) = f on ∂TK. (3.8)

Proof. Fix n � 1; then (3.4) easily follows taking (3.1) and (3.2) into account.
Moreover, for every i, j = 1, . . . , d, n � 1 and x1, . . . , xn ∈ K, with xl = (x1

l , . . . , x
d
l )

for every l = 1, . . . , n,

pri

(
x1 + · · · + xn

n

)
prj

(
x1 + · · · + xn

n

)
= 1

n2

(
n∑

l=1
xi
l

n∑
m=1

xj
m

)

= 1
n2

(
n∑

l=1
xi
lx

j
l +

∑
l,m∈{1,...,n}

l�=m

xi
lx

j
m

)
;
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hence, for every x ∈ K, we get

Bn(priprj)(x) =
∫
K

· · ·
∫
K

(priprj)
(
x1 + · · · + xn

n

)
dμ̃T

x (x1) · · · dμ̃T
x (xn)

= 1
n

∫
K

(priprj)(xl) dμ̃T
x (xl) + n− 1

n
(priprj)(x),

and this completes the proof of (3.5) and (3.6).
Finally, (3.7) immediately follows from (3.4) and (3.6), because of the Korovkin-type

Theorem 4.4.6 of [6] (see also [26]), and (3.8) is a consequence of (2.2). �
In order to determine some shape preserving properties of the sequence (Bn)n�1, for

every m � 1 we denote by Pm(K) the (restriction to K of all) polynomials of degree at
most m. Moreover, we set

P∞(K) :=
⋃
m�1

Pm(K); (3.9)

clearly, P∞(K) a subalgebra of C (K) and, by the Stone–Weierstrass theorem, it is dense
in C (K).

Finally, for every m � 1 and n � 1 we introduce the symbol F (m,n) to denote the
set of all mappings σ : {1, . . . ,m} −→ {1, . . . , n}.

If σ ∈ F (m,n), consider the equivalence relation Rσ on {1, . . . ,m} defined by

Rσ :=
{
(i, j)

∣∣ i, j = 1, . . . ,m and σ(i) = σ(j)
}

(3.10)

and the corresponding subdivisions Rσ
1 , . . . , R

σ
sσ of {1, . . . ,m} in equivalence classes.

Clearly,
∑sσ

j=1 card(Rσ
j ) = m.

After these preliminaries, we can state the following result.

Proposition 3.2. If h1, . . . , hm ∈ P1(K) (m � 1), then, for every n � 1,

Bn

(
m∏
j=1

hj

)
= 1

nm

∑
σ∈F (m,n)

sσ∏
j=1

T

( ∏
i∈Rσ

j

hi

)
. (3.11)

Therefore, if T (Pm(K)) ⊂ Pm(K) for every m � 1, then

Bn

(
Pm(K)

)
⊂ Pm(K) (3.12)

for every n,m � 1.



Author's personal copy

3620 F. Altomare et al. / Journal of Functional Analysis 266 (2014) 3612–3631

Proof. Fix n,m � 1; first we recall that, if (αij) 1�i�n
1�j�m

is a matrix of real numbers, then

m∏
j=1

n∑
i=1

αij =
∑

σ∈F (m,n)

m∏
j=1

ασ(j)j .

Accordingly, if x1, . . . , xn ∈ K, we get(
m∏
j=1

hj

)(
x1 + · · · + xn

n

)
= 1

nm

m∏
j=1

n∑
i=1

hj(xi) = 1
nm

∑
σ∈F (m,n)

m∏
j=1

hj(xσ(j))

= 1
nm

∑
σ∈F (m,n)

sσ∏
j=1

∏
i∈Rσ

j

hi(xσ(j)).

On account of (3.2) and (3.4) the result follows. �
As a consequence of Proposition 3.2, the following result easily follows.

Corollary 3.3. Let x ∈ K and h1, h2, h3, h4 ∈ P1(K) satisfying hi(x) = 0 for i = 1, . . . , 4.
Then, for every n � 1,

Bn(h1h2h3h4)(x) = 1
n3
[
T (h1h2h3h4)(x) + (n− 1)T (h1h2)(x)T (h3h4)(x)

+ (n− 1)T (h1h3)(x)T (h2h4)(x)
+ (n− 1)T (h1h4)(x)T (h2h3)(x)

]
. (3.13)

In particular, if h, k ∈ P1(K) and h(x) = k(x) = 0, then

Bn

(
h2k2)(x) = 1

n3
[
T
(
h2k2)(x) + (n− 1)T

(
h2)(x)T

(
k2)(x)

+ 2(n− 1)T (hk)2(x)
]
. (3.14)

4. Differential operators associated with Markov operators

This article is mainly concerned with the study of particular second-order differential
operators associated with Markov operators. More precisely, given a Markov operator
T on C (K) satisfying (3.1), it is possible to construct a suitable differential operator
WT : C 2(K) −→ C (K) defined by setting, for every u ∈ C 2(K),

WT (u) := 1
2

d∑
i,j=1

αij
∂2u

∂xi∂xj
(4.1)

where, for each i, j = 1, . . . , d and x = (x1, . . . , xd) ∈ K,

αij(x) := T (priprj)(x) − (priprj)(x) = T
(
(pri − xi)(prj − xj)

)
(x). (4.2)
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Accordingly, if ξ1, . . . , ξd ∈ R, then

d∑
i,j=1

αij(x)ξiξj = T

((
d∑

i=1
ξi(pri − xi)

)2)
(x) � 0,

which implies that WT is elliptic. Moreover, it degenerates on ∂TK (see (2.2)) and, in
particular, on ∂eK (see Remark 2.2, 2)), because αij = 0 on ∂TK for every i, j = 1, . . . , d.

The operator WT will be referred to as the elliptic second-order differential operator
associated with the Markov operator T .

Differential operators of the form (4.1) are of concern in the study of diffusion problems
arising from different areas such as biology, mathematical finance, physics. As far as we
know, these differential operators have been studied in the special case when T is a
positive projection. For a rather complete overview we refer to Chapter 6 of [6], where
several examples are presented. Below we discuss some further ones.

Examples 4.1. 1. Consider a Markov operator T on C ([0, 1]) satisfying (3.1), i.e.,

T (e1) = e1, (4.3)

where e1(x) := x (0 � x � 1).
Then, for every u ∈ C 2([0, 1]) and x ∈ [0, 1],

WT (u)(x) = α(x)
2 u′′(x), (4.4)

with

α(x) := T (e2)(x) − x2 (4.5)

and e2(x) := x2 (0 � x � 1).
In particular, if T1 is the positive projection on C ([0, 1]) defined by (3.3), then

WT1(u)(x) = x(1 − x)
2 u′′(x)

(
u ∈ C 2([0, 1]

)
, 0 � x � 1

)
. (4.6)

The differential operator WT1 was intensively studied by Altomare (see [3,6]) and
typically occurs in a one-dimensional diffusion model arising from population dynamics
(see [6, Section 6.3.4]).

Coming back to the general case, since e2 � e1 on [0, 1], from (4.3) and the Hölder
inequality, it follows that

0 � α(x) � x(1 − x) (0 � x � 1). (4.7)
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By Theorem 2.1, ∂T ([0, 1]) = {x ∈ [0, 1] | T (e2)(x) = x2} and hence, if ∂T ([0, 1]) =
{0, 1}, then

0 < α(x) (0 < x < 1). (4.8)

Moreover, α ∈ C ([0, 1]) and α(0) = α(1) = 0.
Conversely, if α ∈ C ([0, 1]) satisfies (4.7), then there always exists a Markov operator

T on C ([0, 1]) satisfying (3.1) such that α = T (e2) − e2.
Indeed, it is enough to consider the function λ : ]0, 1[ −→ R defined by

λ(x) := α(x)
x(1 − x) (0 < x < 1) (4.9)

and the Markov operator T : C ([0, 1]) −→ C ([0, 1]) defined by setting, for every f ∈
C ([0, 1]),

T (f)(x) :=
{
λ(x)T1(f)(x) + (1 − λ(x))f(x) if 0 < x < 1;
f(x) if x = 0, 1

(4.10)

(see (3.3)).
2. Consider the d-dimensional simplex

Kd :=
{

(x1, . . . , xd) ∈ Rd
∣∣∣ xi � 0 for every i = 1, . . . , d and

d∑
i=1

xi � 1
}

(4.11)

and the projection Td on the Kd defined by

Td(f)(x) :=
(

1 −
d∑

i=1
xi

)
f(v0) +

d∑
i=1

xif(vi) (4.12)

(f ∈ C (Kd), x = (x1, . . . , xd) ∈ Kd), where

v0 := (0, . . . , 0), v1 := (1, 0, . . . , 0), . . . , vd := (0, . . . , 0, 1)

are the vertices of the simplex. Then the differential operator WTd
associated with Td is

given by

WTd
(u)(x) = 1

2

d∑
i,j=1

xi(δij − xj)
∂2u

∂xi∂xj
(x)

= 1
2

d∑
i=1

xi(1 − xi)
∂2u

∂x2
i

(x) − 2
∑

1�i<j�d

xixj
∂2u

∂xi∂xj
(x) (4.13)

(u ∈ C 2(Kd), x = (x1, . . . , xd) ∈ Kd); δij stands for the Kronecker symbol.
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The operator (4.13) falls into the class of the so-called Fleming–Viot operators, that
were introduced by Feller in [19] in the description of a stochastic process associated
with a diffusion approximation of a gene frequency model in population genetics; more
recently, they have been object of investigation by several authors (see, e.g., [1,16,18]
and the references quoted therein).

The coefficients of WTd
vanish on the vertices of the simplex. Below we describe other

differential operators with different degeneracies.
Let S : C (Kd) −→ C (Kd) be the Markov operator defined by

S(f)(x) :=

⎧⎪⎪⎨⎪⎪⎩
(1 − x1

1−
∑d

i=2 xi
)f(0, x2, . . . , xd)

+ x1
1−
∑d

i=2 xi
f(1 −

∑d
i=2 xi, x2, . . . , xd) if

∑d
i=2 xi �= 1;

f(0, x2, . . . , xd) if
∑d

i=2 xi = 1

(4.14)

(f ∈ C (Kd), x = (x1, . . . , xd) ∈ Kd).
Then

S(pr1prj) =
{

(1 −
∑d

i=2 pri)pr1 if j = 1;
pr1prj if 1 < j � d

(4.15)

and S(priprj) = priprj for every 1 < i � j � d.
Therefore the differential operator associated with S is given by

WS(u)(x) = 1
2x1

(
1 −

d∑
i=1

xi

)
∂2u

∂x2
1
(x) (4.16)

(u ∈ C 2(Kd), x = (x1, . . . , xd) ∈ Kd).
Thus, WS degenerates on the faces {x = (x1, . . . , xd) ∈ Kd | x1 = 0} and {x =

(x1, . . . , xd) ∈ Kd |
∑d

i=1 xi = 1}.
Finally, note that the differential operator associated with the Markov operator V :=

Td+S
2 is given by

WV (u)(x) = 1
4

((
2x1(1 − x1) − x1

d∑
i=2

xi

)
∂2u

∂x2
1
(x)

+
d∑

i=2
xi(1 − xi)

∂2u

∂x2
i

(x) −
∑

1�i<j�d

xixj
∂2u

∂xi∂xj
(x)
)

(4.17)

(u ∈ C 2(Kd), x = (x1, . . . , xd) ∈ Kd).
Therefore, WV degenerates on the vertices of Kd as well.
3. Let Qd := [0, 1]d, d � 1, and for every i = 1, . . . , d consider a Markov operator Ui

on C ([0, 1]) satisfying (4.3).
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If U :=
⊗d

i=1 Ui is the tensor product of the family (Ui)1�i�d (see [6, pp. 32–36]),
then U is a Markov operator on C (Qd) satisfying (3.1) and

WU (u)(x) = 1
2

d∑
i=1

αi(x)∂
2u

∂x2
i

(x), (4.18)

(u ∈ C 2(Qd), x = (x1, . . . , xd) ∈ Qd), where

αi(x) := Ui(e2)(xi) − x2
i (1 � i � d). (4.19)

Moreover,

0 � αi(x) � xi(1 − xi)
(
1 � i � d, x = (x1 . . . , xd) ∈ Qd

)
. (4.20)

Conversely, on account of Example 4.1, 1), if (αi)1�i�d is a family of continuous
functions on [0, 1] satisfying (4.20), then there always exists a Markov operator U on
C (Qd) satisfying (3.1) whose differential operator satisfies (4.18).

Finally note that, if Ui = T1 for every i = 1, . . . , d (see (3.3)), then

WU (u)(x) = 1
2

d∑
i=1

xi(1 − xi)
∂2u

∂x2
i

(x) (4.21)

(u ∈ C 2(Qd), x = (x1, . . . , xd) ∈ Qd).

Coming back to the general definition (4.1), in the next result we prove that the
differential operator WT is strictly connected with the Bernstein–Schnabl operators Bn

(see (3.2)), since it occurs in an asymptotic formula involving the sequence (Bn)n�1.

Theorem 4.2. For every u ∈ C 2(K),

lim
n→∞

n
(
Bn(u) − u

)
= WT (u) uniformly on K. (4.22)

Proof. The proof consists in applying Theorem 2.3; in particular, we keep the same
notation as there.

For any n � 1, i = 1, . . . , d and x = (x1, . . . , xd) ∈ K, we have that Bn(1) = 1 and,
by this last equality and (3.4), Bn(pri ◦ Ψx)(x) = 0, which shows conditions (i) and (ii)
of Theorem 2.3 with γ = 0 and βi = 0.

On the other hand, by applying (3.5) and (3.1), for i, j = 1, . . . , d,

Bn

(
(pri ◦ Ψx)(prj ◦ Ψx)

)
(x) = Bn

(
(pri − xi)(prj − xj)

)
(x)

= 1
n
T
(
(pri − xi)(prj − xj)

)
(x) = 1

n
αij(x)

and, from this, condition (iii) of Theorem 2.3 holds true.
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Similar reasoning shows condition (iv) in Theorem 2.3, since

Bn

(
Φ2
x

)
(x) = Bn

(
d∑

i=1
(pri − xi)2

)
(x)

= 1
n
T

(
d∑

i=1
(pri − xi)2

)
(x) = 1

n

[
T (e)(x) − e(x)

]
;

here Φx is defined by (2.10) and e(x) :=
∑d

i=1 x
2
i .

Finally, by (3.14), we get

nBn

(
Φ4
x

)
(x) =

d∑
i,j=1

nBn

(
(pri − xi)2(prj − xj)2

)
(x)

= 1
n2

d∑
i,j=1

[
T
(
(pri − xi)2(prj − xj)2

)
(x)

+ (n− 1)T
(
(pri − xi)2

)
(x)T

(
(prj − xj)2

)
(x)

+ 2(n− 1)T
(
(pri − xi)(prj − xj)

)2(x)
]
.

Therefore, there exists a suitable positive constant M , depending on K only, such
that

nBn

(
Φ4
x

)
(x) � 3n− 2

n2 M for every x ∈ K,

which implies condition (v) of Theorem 2.3, for q = 4. This completes the proof. �
Finally, the next result allows us to show, not only that the operator (WT ,C 2(K))

(pre)-generates a Markov semigroup on C (K), but also to determine an approximation
formula for such a semigroup by means of suitable iterates of the Bernstein–Schnabl
operators associated with T .

Before stating it, we recall that a core for a linear operator A : D(A) −→ C (K) is
a linear subspace D0 of D(A) which is dense in D(A) with respect to the graph norm
‖u‖A := ‖A(u)‖∞ + ‖u‖∞ (u ∈ D(A)).

Theorem 4.3. Let K be a convex compact subset of Rd, d � 1, having non-empty interior
and consider a Markov operator T on C (K) satisfying (3.1). Furthermore, assume that

T
(
Pm(K)

)
⊂ Pm(K) for every m � 2. (4.23)

Then the operator (WT ,C
2(K)) is closable and its closure (AT , D(AT )) generates a

Markov semigroup (T (t))t�0 on C (K) such that, if t � 0 and (k(n))n�1 is a sequence of
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positive integers satisfying limn→∞
k(n)
n = t,

T (t)(f) = lim
n→∞

Bk(n)
n (f) uniformly on K (4.24)

for every f ∈ C (K).
Moreover, P∞(K), and hence C 2(K) as well, is a core for (AT , D(AT )).
Finally, for every t � 0 and m � 1,

T (t)
(
Pm(K)

)
⊂ Pm(K) (4.25)

and, if t � 0 and f ∈ C (K),

T (t)(f) = f on ∂TK. (4.26)

Proof. Let (B,D(B)) be the linear operator defined by

B(u) := lim
n→∞

n
(
Bn(u) − u

)
for every u ∈ D(B), where

D(B) :=
{
v ∈ C (K)

∣∣ there exists lim
n→∞

n
(
Bn(v) − v

)
uniformly on K

}
.

From Theorem 4.2 we get that C 2(K) (and, in particular, P∞(K)) is contained in
D(B) and B = WT on C 2(K). Moreover, each Pm(K), m � 1, is closed and invariant
under every operator Bn by virtue of Proposition 3.2 and assumptions (3.1) and (4.23).
Because of [6, Theorem 1.6.8], (B,D(B)) is closable and its closure (B,D(B)) generates
a contraction C0-semigroup (T (t))t�0 on C (K) satisfying (4.24). Since (B,D(B)) is a
closable extension of (WT ,C

2(K)), then (WT ,C
2(K)) is closable as well and, denoting

its closure by (AT , D(AT )), we get D(AT ) ⊂ D(B) and B = AT on D(AT ).
From (3.12), (3.1) and (4.24) it also follows that T (t)(Pm(K)) ⊂ Pm(K) for every t � 0

and hence P∞(K) is invariant under (T (t))t�0. By [17, Chapter II, Proposition 1.7], we
infer that P∞(K) is a core for (B,D(B)). In particular, it turns out that C 2(K) is
a core for (B,D(B)). On the other hand, C 2(K) is a core for (AT , D(AT )), so that
(AT , D(AT )) = (B,D(B)).

Finally, (4.25) is a consequence of (4.23) and Proposition 3.2, and (4.26) follows at
once from (3.8). �

An inspection of the proof of Theorem 4.3 shows that if u, v ∈ C (K) and
limn→∞ n(Bn(u) − u) = v uniformly on K, then u ∈ D(AT ) and AT (u) = v.

As a consequence, we get the following “small” saturation result for Bernstein–Schnabl
operators.

Corollary 4.4. Under the same assumptions of Theorem 4.3, if u ∈ C (K) and
limn→∞ n(Bn(u) − u) = 0 uniformly on K, then u ∈ D(AT ) and AT (u) = 0.



Author's personal copy

F. Altomare et al. / Journal of Functional Analysis 266 (2014) 3612–3631 3627

Below we show some examples of differential operators (4.1) satisfying the assumptions
of Theorem 4.3.

Examples 4.5. 1. Consider the Markov operators Td and S on the d-dimensional simplex
Kd and their convex combination V := Td+S

2 as in Example 4.1, 2). Clearly, the operator
Td satisfies (3.1) and (4.23) (note that Td(C (Kd)) ⊂ P1(Kd)). Similarly, S (and hence
V ) verifies the same properties since, if m1, . . . ,md are positive integers, then

S
(
prm1

1 · · · prmd

d

)
=
{
prm2

2 · · · prmd

d if m1 = 0;
(1 −

∑d
i=2 pri)m1−1pr1pr

m2
2 · · · prmd

d if m1 � 1.

Therefore, Theorem 4.3 and Corollary 4.4 apply to the differential operators (4.13),
(4.16) and (4.17).

2. Consider a family (Ui)1�i�d of Markov operators on C ([0, 1]) satisfying (4.3) and
(4.23). Then the tensor product U :=

⊗d
i=1 Ui on C (Qd) (see Example 4.1, 3)) verifies

(4.23) (and (3.1)) as well because

U
(
prm1

1 · · · prmd

d

)
=
(
U1
(
em1
1
)
◦ pr1

)
· · ·
(
Ud

(
emd
1
)
◦ prd

)
for every positive integers m1, . . . ,md.

Therefore, Theorem 4.3 applies to the differential operator (4.18).

Remark 4.6. Consider the abstract Cauchy problem⎧⎨⎩
∂u

∂t
(x, t) = AT

(
u(·, t)

)
(x) x ∈ K, t � 0,

u(x, 0) = u0(x) u0 ∈ D(AT ), x ∈ K.
(4.27)

It is well-known that, since (AT , D(AT )) generates a Markov semigroup, (4.27) admits
a unique solution u : K × [0,+∞[ −→ R given by u(x, t) = T (t)(u0)(x) for every x ∈ K

and t � 0 (see, e.g., [21, Chapter A-II]). Hence, by Theorem 4.3, we can approximate
such a solution in terms of iterates of Bernstein–Schnabl operators, namely

u(x, t) = T (t)(u0)(x) = lim
n→∞

Bk(n)
n (u0)(x), (4.28)

where (k(n))n�1 is a sequence of positive integers satisfying limn→∞
k(n)
n = t, and the

limit is uniform with respect to x ∈ K.
We recall that AT coincides with WT on C 2(K); therefore, if u0 ∈ Pm(K) (m � 1)

then u(x, t) is the unique solution to the Cauchy problem⎧⎪⎨⎪⎩
∂u

∂t
(x, t) = 1

2

d∑
i,j=1

αij(x) ∂2u

∂xi∂xj
(x, t) x ∈ K, t � 0,

u(x, 0) = u0(x) x ∈ K
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(see (4.2)), and

u(·, t) ∈ Pm(K) for every t � 0. (4.29)

Formula (4.28) can be fruitfully employed in order to obtain other “spatial regularity
properties” of the solutions u(·, t) of (4.27) (as in (4.29)), by deducing them from the
corresponding ones held by the Bn’s.

As an example, we preliminarily prove that Bernstein–Schnabl operators preserve
Hölder-continuity and, to this end, we need to fix some further notation.

First of all, given M � 0 and 0 < α � 1, we denote by

Lip(M,α) :=
{
f ∈ C (K)

∣∣ ∣∣f(x) − f(y)
∣∣ � M‖x− y‖α for every x, y ∈ K

}
the space of all Hölder continuous functions with exponent α and Hölder constant M

on K; here ‖ · ‖ stands for an arbitrary norm on Rd. Clearly, Lip(M, 1) is the space of
all Lipschitz-continuous functions with Lipschitz constant M on K.

Moreover, we consider a Markov operator T on C (K) (not necessarily satisfying (3.1))
and we assume that

T
(
Lip(1, 1)

)
⊂ Lip(1, 1), (4.30)

or, equivalently,

T
(
Lip(M, 1)

)
⊂ Lip(M, 1) (4.31)

for every M � 0.
For any n � 2, f ∈ C (K) and x1, . . . , xn−1 ∈ K, consider the function fx1,...,xn−1 :

K −→ R defined by

fx1,...,xn−1(t) := f

(
x1 + · · · + xn−1 + t

n

)
(t ∈ K). (4.32)

Furthermore, for every x ∈ K, consider the function

fx
x1,...,xn−2(t) := T (fx1,...,xn−2,t)(x) (t ∈ K) (4.33)

and, for every k = 3, . . . , n− 1, define recursively the functions fx
x1,...,xn−k

: K −→ R by
setting

fx
x1,...,xn−k

(t) := T
(
fx
x1,...,xn−k,t

)
(x) (t ∈ K). (4.34)

Finally, set

fx(t) = T
(
fx
t

)
(x) (t ∈ K). (4.35)



Author's personal copy

F. Altomare et al. / Journal of Functional Analysis 266 (2014) 3612–3631 3629

After these preliminaries, we prove that the sequence (Bn)n�1 preserves Hölder-
continuous functions.

Theorem 4.7. Under assumption (4.30), for any n � 1,

Bn

(
Lip(M,α)

)
⊂ Lip(M,α) (4.36)

for every n � 1, M � 0 and α ∈ ]0, 1].

Proof. To prove (4.7), by virtue of [15, Corollary 7], it is enough to show that, for every
M � 0,

Bn

(
Lip(M, 1)

)
⊂ Lip(M, 1). (1)

For n = 1, we have that B1 = T , so that (1) is a consequence of (4.31).
Fix n � 2, f ∈ Lip(M, 1) for some M � 0, x ∈ K and consider the functions defined

by (4.32)–(4.35). By finite induction, it is easy to prove that

∥∥fx
x1,...,xk−1,u − fx

x1,...,xk−1,v

∥∥
∞ � M

n
‖u− v‖

for any u, v ∈ K and k = 1, . . . , n − 1; hence, fx
x1,...,xk

∈ Lip(M/n, 1) and fx ∈
Lip(M/n, 1).

Moreover, for every y ∈ K and k = 1, . . . , n− 1, from (4.31) it follows that

T
(
fy
x1,...,xk

)
(x) � T

(
fy
x1,...,xk

)
(y) + M

n
‖x− y‖

and

T
(
fy
)
(x) � T

(
fy
)
(y) + M

n
‖x− y‖.

Since fy
x1,...,xn−1 = fx

x1,...,xn−1 , we obtain

Bn(f)(x) =
∫
K

· · ·
∫
K

f

(
x1 + · · · + xn

n

)
dμ̃T

x (x1) · · · dμ̃T
x (xn)

=
∫
K

· · ·
∫
K

T
(
fx
x1,...,xn−1

)
(x) dμ̃T

x (x1) · · · dμ̃T
x (xn−1)

=
∫
K

· · ·
∫
K

T
(
fy
x1,...,xn−1

)
(x) dμ̃T

x (x1) · · · dμ̃T
x (xn−1)

�
∫
K

· · ·
∫
K

T
(
fy
x1,...,xn−1

)
(y) dμ̃T

x (x1) · · · dμ̃T
x (xn−1) + M

n
‖x− y‖
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� · · · �
∫
K

T
(
fy
x1

)
(y) dμ̃T

x (x1) + (n− 1)M
n

‖x− y‖

=
∫
K

fy(x1) dμ̃T
x (x1) + (n− 1)M

n
‖x− y‖

= T
(
fy
)
(x) + (n− 1)M

n
‖x− y‖ � T

(
fy
)
(y) + M‖x− y‖.

Moreover,

Bn(f)(y) =
∫
K

· · ·
∫
K

f

(
x1 + · · · + xn

n

)
dμ̃T

y (x1) · · · dμ̃T
y (xn)

=
∫
K

· · ·
∫
K

T
(
fy
x1,...,xn−1

)
(y) dμ̃T

y (x1) · · · dμ̃T
y (xn−1)

= · · · =
∫
K

T
(
fy
x1

)
(y) dμ̃T

y (x1) = T
(
fy
)
(y).

Accordingly,

∣∣Bn(f)(x) −Bn(f)(y)
∣∣ � M‖x− y‖

and this completes the proof. �
From the previous result we infer that if, in addition, T satisfies (3.1) and (4.23),

then the Markov semigroup (T (t))t�0 (see Theorem 4.3), on account of (4.24), preserves
Hölder continuous functions, as the following corollary shows.

Corollary 4.8. If T is a Markov operator on C (K) satisfying (3.1), (4.23) and (4.30),
then

T (t)
(
Lip(M,α)

)
⊂ Lip(M,α) (4.37)

for every t � 0, M � 0 and α ∈ ]0, 1].

Hence, if u0 ∈ D(AT ) ∩ Lip(M,α), for some M � 0 and α ∈ ]0, 1], and if we consider
the abstract Cauchy problem (4.27) with initial datum u0, then, because of (4.28), we
have that the solution u(·, t) of (4.27) belong to Lip(M,α) for every t � 0.

In the same spirit of the preceding remarks further properties of the semigroup
(T (t))t�0 will be investigated in [14].
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