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The paper is concerned with a special class of positive linear operators acting on the
space C(K) of all continuous functions defined on a convex compact subset K of Rd,
d � 1, having non-empty interior. Actually, this class consists of all positive linear
operators T on C(K) which leave invariant the polynomials of degree at most 1 and
which, in addition, map polynomials into polynomials of the same degree. Among
other things, we discuss the existence of such operators in the special case where K
is strictly convex by also characterizing them within the class of positive projections.
In particular we show that such operators exist if and only if ∂K is an ellipsoid.
Furthermore, a characterization of balls of Rd in terms of a special class of them is
furnished. Additional results and illustrative examples are presented as well.

© 2014 Elsevier Inc. All rights reserved.

0. Introduction

The paper is concerned with a special class of positive linear operators acting on the space C(K) of
all continuous functions defined on a convex compact subset K of Rd, d � 1, having non-empty interior.
Actually, this class consists of all positive linear operators T on C(K) which leave invariant the polynomials
of degree at most 1 and which, in addition, map polynomials into polynomials of the same degree.

The interest for such operators comes from the study of a special differential operator (WT , C
2(K)) which

we carefully investigated in [6] and which is defined as

WT (u) := 1
2

d∑
i,j=1

αij
∂2u

∂xi ∂xj

(u ∈ C2(K)), where αij := T (pr iprj) − pr iprj (i, j = 1, . . . , d) and each pr i denotes the i-th coordinate
function on K.

* Corresponding author.
E-mail addresses: francesco.altomare@uniba.it (F. Altomare), mirella.cappellettimontano@uniba.it

(M. Cappelletti Montano), vita.leonessa@unibas.it (V. Leonessa), Ioan.Rasa@math.utcluj.ro (I. Raşa).

0022-247X/$ – see front matter © 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jmaa.2014.01.069



Author's personal copy

478 F. Altomare et al. / J. Math. Anal. Appl. 415 (2014) 477–495

The differential operator WT is elliptic and it degenerates on a subset of K which contains the set of
the extreme points ∂eK of K. In [6] we showed that, if T maps polynomials into polynomials of the same
degree, then (WT , C

2(K)) is closable in C(K) and its closure generates a Markov semigroup on C(K) which
can be represented as a limit of suitable iterates of particular positive linear operators associated with T ,
namely the Bernstein–Schnabl operators associated with T , which have been deeply investigated in [5] and,
more recently, in [6] and in the forthcoming monograph [7].

The main aim of the paper is to look more closely at this preservation property which seems to have
an independent own interest. Among other things, we discuss the existence of such operators in the special
case where K is strictly convex, i.e., ∂eK = ∂K, by also characterizing them within the class of positive
projections on C(K) (for the bi-dimensional case see [11]). In particular we show that such operators exist
if and only if ∂K is an ellipsoid. Furthermore, a characterization of balls of Rd in terms of a special class of
them is furnished. Illustrative examples and additional results involving the tensor products and the convex
convolution products of positive linear operators are presented as well.

1. Preliminaries on positive linear operators

Throughout this paper K will be a convex compact subset of Rd, d � 1, with non-empty interior int(K).
As usual we denote by C(K) the space of all real-valued continuous functions on K and by C2(K) the
space of all real-valued continuous functions on K that are twice continuously differentiable on int(K) and
whose partial derivatives up to the order two can be continuously extended to K. For u ∈ C2(K) and
i, j = 1, . . . , d, we shall continue to denote by ∂u

∂xi
and ∂2u

∂xi∂xj
the continuous extensions to K of the partial

derivatives ∂u
∂xi

and ∂2u
∂xi ∂xj

. The space C(K), endowed with the supremum norm ‖f‖∞ := supx∈K |f(x)|
(f ∈ C(K)) and the natural (pointwise) ordering, is a Banach lattice.

We also denote by 1 the constant function of constant value 1 on K and, for every i ∈ {1, . . . , d}, by pr i
the i-th coordinate function on K, i.e., pr i(x) = xi for every x = (xi)1�i�d ∈ K.

Let BK be the σ-algebra of all Borel subsets of K and denote by M+(K) (resp., M+
1 (K)) the subset of

all Borel measures (resp., the subset of all probability Borel measures) on K. In particular, for every x ∈ K,
the symbol εx stands for the unit mass concentrated at x, i.e., for every B ∈ BK ,

εx(B) :=
{

1 if x ∈ B;
0 if x /∈ B.

If μ̃ ∈ M+(K), then Supp(μ̃) denotes the support of μ̃, i.e., the complement of the largest open subset
of K having measure zero with respect to μ̃.

Given a Markov operator T : C(K) → C(K), i.e., a positive linear operator such that T (1) = 1, by the
Riesz representation theorem there exists a unique family (μ̃T

x )x∈K in M+
1 (K) such that

T (f)(x) =
∫
K

f dμ̃T
x

(
f ∈ C(K), x ∈ K

)
. (1.1)

Such a family is said to be the continuous selection of probability Borel measures on K associated with T .
By means of (μ̃T

x )x∈K we can construct the so-called Bernstein–Schnabl operators associated with T which
are defined by setting, for every n � 1, x ∈ K and f ∈ C(K),

Bn(f)(x) =
∫
K

· · ·
∫
K

f

(
x1 + · · · + xn

n

)
dμ̃T

x (x1) · · · dμ̃T
x (xn). (1.2)

Note that by the continuity property of the product measure it follows that Bn(f) ∈ C(K). Moreover,
B1 = T .
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For a comprehensive survey on these operators (including noteworthy examples), we refer to [5, Chapter 6]
and to the references contained in the relevant notes. More recent results can be also found in [3,6–10,12].

Here we only point out that, if in addition the Markov operator T satisfies

T (h) = h for every h ∈ {1, pr1, . . . , prd}, (1.3)

then the sequence (Bn)n�1 is a positive approximation process in C(K), that is

lim
n→∞

Bn(f) = f uniformly on K for every f ∈ C(K). (1.4)

Another useful tool that we shall use in the sequel is the notion of Choquet boundary.
Given a linear subspace H of C(K), the Choquet boundary of H is the subset of all points x ∈ K such

that, if μ̃ ∈ M+(K) and
∫
h dμ̃ = h(x) for every h ∈ H, then

∫
f dμ̃ = f(x) for every f ∈ C(K), i.e.,

μ̃ = εx. It will be denoted by ∂HK. If H contains the constants and separates the points of K, then ∂HK

is non-empty and every h ∈ H attains its minimum and maximum on ∂HK (see, e.g., [5, Corollary 2.6.5]).
Therefore, if f, g ∈ H and if f = g on ∂HK, then f = g on K.

An important example of Choquet boundary is the set ∂eK of the extreme points of K. They are defined
as those points x0 ∈ K such that K \ {x0} is convex, i.e., if x1, x2 ∈ K and λ ∈ R, 0 < λ < 1, and if
x0 = λx1 + (1 − λ)x2, then x0 = x1 = x2.

Indeed, denote by P1(K) the space of (the restriction to K of) all polynomials of degree at most 1.
Clearly, P1(K) contains the constants and separates the points of K. As a matter of fact, it turns out that

∂P1(K)K = ∂eK (1.5)

(for a proof see, e.g., [5, Proposition 2.6.3]).
Now let us consider a Markov operator T : C(K) → C(K) and set

M :=
{
h ∈ C(K)

∣∣ T (h) = h
}
. (1.6)

Clearly, M is contained in the range of T which will be denoted by

H := T
(
C(K)

)
=
{
T (f)

∣∣ f ∈ C(K)
}
. (1.7)

The subspace M contains the constants and hence, if it separates the points of K, its Choquet boundary
∂MK is non-empty.

In the sequel, the following subset

∂TK :=
{
x ∈ K

∣∣ T (f)(x) = f(x) for every f ∈ C(K)
}

(1.8)

will play an important role. Its elements are also called the interpolation points of the operator T .
The next result has been obtained in [4, Theorem 2.1].

Theorem 1.1. Consider a Markov operator T : C(K) → C(K) such that the subspace M defined by (1.6)
separates the points of K. Then

∅ �= ∂MK ⊂ ∂TK ⊂ ∂HK (1.9)

(see (1.7) and (1.8)).
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Moreover, if V is an arbitrary subset of M separating the points of K, then

∂TK =
{
x ∈ K

∣∣ T (h2)(x) = h2(x) for every h ∈ V
}
. (1.10)

Finally, if (hn)n�1 is a finite or countable family of M , separating the points of K and such that the
series Φ :=

∑∞
n=1 h

2
n is uniformly convergent, then Φ � T (Φ) and

∂TK =
{
x ∈ K

∣∣ T (Φ)(x) = Φ(x)
}
. (1.11)

Remarks 1.2. 1. There always exists a sequence (hn)n�1 in M separating the points of K and such that the
series

∑∞
n=1 h

2
n converges uniformly on K. Indeed, M is separable (because C(K) is so) and hence there

exists a countable dense family (ϕn)n�1 of M which separates the points of K. Then, it is sufficient to set
hn := 2−nϕn(‖ϕn‖∞ + 1)−1 (n � 1).

2. Whenever T satisfies condition (1.3), i.e., P1(K) ⊂ M , then, from Theorem 1.1 and (1.5), it follows
that

∂eK ⊂ ∂MK ⊂ ∂TK ⊂ ∂HK. (1.12)

Below we discuss some cases where the inclusions in (1.9) are equalities (see [4, Proposition 2.4 and
Theorem 1.1] and [5, Remark 3 to Theorem 3.3.3]). To this end, we recall that a Markov operator T on
C(K) is said to be a projection if T 2(f) = T (f) for every f ∈ C(K).

Proposition 1.3. Under the same assumptions of Theorem 1.1, the following statements are equivalent:

(a) There exists a subset V of M separating the points of K such that T 2(h2) = T (h2) for every h ∈ V ,
i.e., T (V 2) ⊂ M .

(b) T is a projection.
(c) There exists a finite or countable family (hn)n�1 in M separating the points of K such that the series

Φ :=
∑∞

i=1 h
2
n is uniformly convergent and T 2(Φ) = T (Φ).

Finally, if (a), (b) or (c) holds true, then M = H (see (1.7)) and hence ∂MK = ∂TK = ∂HK. Moreover,
for every x ∈ K,

Supp
(
μ̃T
x

)
⊂ ∂TK = ∂HK, (1.13)

μ̃T
x being defined by (1.1), and hence, for every f, g ∈ C(K),

T (f) = T (g) provided f = g on ∂HK. (1.14)

Finally we recall that a simplex of Rd is the convex hull of some d + 1 affinely independent points (we
recall that p points x1, . . . , xp ∈ Rd are said to be affinely independent if for every λ1, . . . , λp ∈ R satisfying∑p

i=1 λixi = 0 and
∑p

i=1 λi = 0, it turns out that λ1 = · · · = λp = 0).
Therefore, the subset

Kd :=
{

(x1, . . . , xd) ∈ Rd
∣∣∣ xi � 0 for every i = 1, . . . , d and

d∑
i=1

xi � 1
}
, (1.15)

being the convex hull of {v0, . . . , vd}, where

v0 := (0, . . . , 0), v1 := (1, 0, . . . , 0), . . . , vd := (0, . . . , 0, 1), (1.16)
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is a simplex in Rd and it is called the canonical simplex of Rd. Note that, if such is the case, ∂eKd =
{v0, . . . , vd}.

According to the next theorem [5, Corollary 1.5.9], when K is a simplex then on C(K) there exists a
(unique) natural positive projection T on C(K) such that T (C(K)) = P1(K).

Theorem 1.4. Given a convex compact subset K of Rd, d � 1, the following statements are equivalent:

(a) K is a simplex.
(b) For every x ∈ K there exists a unique μ̃x ∈ M+

1 (K) such that μ̃x(K \ ∂eK) = 0 and∫
K

h dμ̃x = h(x) for every h ∈ P1(K).

(c) Every continuous function f : ∂eK → R can be continuously extended to a (unique) function f̃ ∈ P1(K).
(d) There exists a (unique) positive projection T : C(K) → C(K) such that T (C(K)) = P1(K).

Moreover, if one of these statements holds true, then for every f ∈ C(K) and x ∈ K,

T (f)(x) =
∫
K

f dμ̃x = f̃ |∂eK(x). (1.17)

Given a simplex K of Rd, the positive projection T : C(K) → C(K) given by (1.17) is referred to as the
canonical positive projection associated with K. Thus, for every f ∈ C(K), T (f) is the unique continuous
affine function on K that coincides with f on ∂eK.

In the case K = Kd, d � 1, the canonical projection is given by

Td(f)(x) :=
(

1 −
d∑

i=1
xi

)
f(v0) +

d∑
i=1

xif(vi) (1.18)

(f ∈ C(Kd), x = (x1, . . . , xd) ∈ Kd, v0, . . . , vd as in (1.16)).
In particular, for d = 1,

T1(f)(x) := (1 − x)f(0) + xf(1) (1.19)

(f ∈ C([0, 1]), 0 � x � 1).

2. Differential operators associated with Markov operators

In this section we shall recall some results from [6] which will be useful in the sequel. Actually, given a
Markov operator T on C(K), we shall consider a second-order differential operator WT on C2(K) which is
strictly connected with the Bernstein–Schnabl operators Bn defined by (1.2). Under suitable assumptions
on T , the operator (WT , C

2(K)) is the (pre)-generator of a Markov semigroup on C(K) which can be
approximated by means of suitable iterates of the Bn’s. Some examples will be also discussed.

From now on fix a Markov operator T : C(K) → C(K) satisfying (1.3), that is,

T (h) = h for every h ∈ {1, pr1, . . . , prd},

K being a convex compact subset Rd, d � 1, whose interior is assumed to be non-empty.
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For every m � 1, we denote by Pm(K) the linear subspace of the (restrictions to K of) polynomials of
degree no greater than m.

Clearly, Pm(K) ⊂ Pm+1(K) and P∞(K) :=
⋃

m�1 Pm(K) is a subalgebra of C(K) which separates the
points of K and which is dense in C(K).

Now consider the differential operator WT : C2(K) → C(K) defined by

WT (u) := 1
2

d∑
i,j=1

αij
∂2u

∂xi ∂xj
(2.1)

(u ∈ C2(K)), where, for each i, j = 1, . . . , d and x = (xi)1�i�d ∈ K,

αij(x) := T (pr iprj)(x) − (pr iprj)(x) = T
(
(pr i − xi)(prj − xj)

)
(x). (2.2)

Accordingly, if ξ1, . . . , ξd ∈ R, then

d∑
i,j=1

αij(x)ξiξj = T

((
d∑

i=1
ξi(pr i − xi)

)2)
(x) � 0,

which implies that WT is elliptic. Moreover, it degenerates on ∂TK (see (1.8)) and, in particular, on ∂eK

(see Remark 1.2, 2) because αij = 0 on ∂TK for every i, j = 1, . . . , d.
The operator WT will be referred to as the elliptic second-order differential operator associated with the

Markov operator T .
Note also that, for each i, j = 1, . . . , d,

WT (pr iprj) = αij = T (pr iprj) − pr iprj

and hence, if P ∈ P2(K), then WT (P ) = T (P )−P . Therefore, if T is a Markov projection and T (P2(K)) ⊂
P2(K), then

WT

(
T (P )

)
= 0 for every P ∈ P2(K). (2.3)

Differential operators of the form (2.1) are of concern in the study of diffusion problems arising from
different areas such as biology, mathematical finance, physics. In the special case where T is a positive
projection, a rather complete overview on them can be found in Chapter 6 of [5].

It turns out that the differential operator WT is generated by an asymptotic formula for Bernstein–Schnabl
operators (see [6, Theorem 4.2]).

Theorem 2.1. For every u ∈ C2(K),

lim
n→∞

n
(
Bn(u) − u

)
= WT (u) uniformly on K. (2.4)

In [6, Theorem 4.3] we also show that, under some additional assumptions on the Markov operator T on
C(K), the differential operator WT is closable in C(K) and its closure generates a Markov semigroup on
C(K). Moreover, this semigroup is obtained as a limit of suitable iterates of Bernstein–Schnabl operators
associated with T .
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Before stating this result, we recall that a core for a linear operator A : D(A) → C(K) is a linear subspace
D0 of D(A) which is dense in D(A) with respect to the graph norm ‖u‖A := ‖A(u)‖∞ + ‖u‖∞ (u ∈ D(A)).

Moreover, if (A,D(A)) is the generator of a semigroup (T (t))t�0 on C(K), then it determines the semi-
group uniquely and, if (B,D(B)) is a closed operator and if there exists a linear subspace D0 ⊂ D(A)∩D(B)
which is a core for (A,D(A)) and A = B on D0, then (B,D(B)) = (A,D(A)).

After these preliminaries, we state the following result (see [6, Theorem 4.3 and Corollary 4.4]).

Theorem 2.2. Let K be a convex compact subset of Rd, d � 1, having non-empty interior, and consider a
Markov operator T on C(K) satisfying (1.3). Furthermore, assume that

T
(
Pm(K)

)
⊂ Pm(K) for every m � 2. (2.5)

Then, the differential operator (WT , C
2(K)) is closable and its closure (AT , D(AT )) generates a Markov

semigroup (T (t))t�0 on C(K) such that, for every t � 0 and for every sequence (k(n))n�1 of positive integers
satisfying limn→∞ k(n)/n = t, one gets

T (t)(f) = lim
n→∞

Bk(n)
n (f) uniformly on K (2.6)

for every f ∈ C(K).
Moreover, P∞(K) is a core for (AT , D(AT )) and, if u, v ∈ C(K) and limn→∞ n(Bn(u)−u) = v uniformly

on K, then u ∈ D(AT ) and AT (u) = v.
In particular, if limn→∞ n(Bn(u) − u) = 0 uniformly on K, then u ∈ D(AT ) and AT (u) = 0.

The representation formula (2.6) can be useful to investigate several qualitative and quantitative proper-
ties of both the semigroups (T (t))t�0 (i.e., of the solutions to the initial-boundary value problems associated
with the generator AT ) and the transition functions of the corresponding Markov processes. These aspects
will be carefully treated in [7].

Below we show some examples of Markov operators satisfying (2.5) together with their relevant differential
operators.

Examples 2.3. 1. (See [10].) Consider a Markov operator T on C([0, 1]) satisfying (1.3), i.e.,

T (e1) = e1, (2.7)

where e1(x) := x (0 � x � 1).
Then, for every u ∈ C2([0, 1]) and x ∈ [0, 1],

WT (u)(x) = α(x)
2 u′′(x), (2.8)

with

α(x) := T (e2)(x) − x2 (2.9)

and e2(x) := x2 (0 � x � 1).
Examples of Markov operators on C([0, 1]) which, in addition, satisfy (2.5) can be easily achieved. Con-

sider, for instance, for a given n � 1, the n-th Bernstein operator
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Bn(f)(x) :=
n∑

k=0

(
n

k

)
f

(
k

n

)
xk(1 − x)n−k

(f ∈ C([0, 1]), 0 � x � 1). In this case, α(x) = x(1−x)
n (0 � x � 1).

2. (See [2], [5, Chapter 6].) The differential operator associated with the canonical projection Td on the
d-dimensional simplex Kd (see (1.15) and (1.18)) is given by

WTd
(u)(x) := 1

2

d∑
i,j=1

xi(δij − xj)
∂2u

∂xi ∂xj
(x)

= 1
2

d∑
i=1

xi(1 − xi)
∂2u

∂x2
i

(x) −
∑

1�i<j�d

xixj
∂2u

∂xi ∂xj
(x) (2.10)

(u ∈ C2(Kd), x = (xi)1�i�d ∈ Kd), where δij stands for the Kronecker symbol.
The operator (2.10) falls into the class of the so-called Fleming–Viot operators, which were studied by

Feller in [17] in the description of a stochastic process associated with a diffusion approximation of a gene
frequency model in population genetics; subsequently, they have been object of investigation by several
authors (see, e.g., [1,13,16] and the references quoted therein).

The coefficients of WTd
vanish on the vertices of the simplex. Furthermore, in this case Td(Pm(Kd)) ⊂

P1(Kd) for every m � 2 and hence (2.5) holds true.
3. (See [6].) As above, let Kd be the canonical simplex of Rd (see (1.15)) and consider the Markov

operator S : C(Kd) → C(Kd) defined by

S(f)(x) :=
{

(1 − x1
1−
∑d

i=2 xi
)f(0, x2, . . . , xd) + x1

1−
∑d

i=2 xi
f(1 −

∑d
i=2 xi, x2, . . . , xd) if

∑d
i=2 xi �= 1;

f(0, x2, . . . , xd) if
∑d

i=2 xi = 1

(f ∈ C(Kd), x = (xi)1�i�d ∈ Kd).
Then,

S(pr1prj) =
{

(1 −
∑d

i=2 pr i)pr1 if j = 1;
pr1prj if 1 < j � d

(2.11)

and S(pr iprj) = pr iprj for every 1 < i � j � d.
Therefore, the differential operator associated with S is given by

WS(u)(x) = 1
2x1

(
1 −

d∑
i=1

xi

)
∂2u

∂x2
1
(x) (2.12)

(u ∈ C2(Kd), x = (xi)1�i�d ∈ Kd).
Thus, WS degenerates on the faces {x = (xi)1�i�d ∈ Kd | x1 = 0} and {x = (xi)1�i�d ∈ Kd |∑d
i=1 xi = 1}.
Moreover, S(Pm(Kd)) ⊂ Pm(Kd) for every m � 2, because, if m1, . . . ,md are positive integers, then

S
(
prm1

1 · · · prmd

d

)
=
{ prm2

2 · · · prmd

d if m1 = 0;
(1 −

∑d
i=2 pr i)m1−1pr1prm2

2 · · · prmd

d if m1 � 1.

Finally, if we consider the Markov operator Z := (Td +S)/2, where Td is given by (1.18), the differential
operator associated with it is given by
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WZ(u)(x) = 1
4

((
2x1(1 − x1) − x1

d∑
i=2

xi

)
∂2u

∂x2
1
(x)

+
d∑

i=2
xi(1 − xi)

∂2u

∂x2
i

(x) −
∑

1�i<j�d

xixj
∂2u

∂xi∂xj
(x)
)

(2.13)

(u ∈ C2(Kd), x = (xi)1�i�d ∈ Kd).
Therefore, WZ degenerates on the vertices of Kd and Z satisfies (2.5) as well.

We end this section with a further important example. Consider a symmetric matrix (aij)1�i,j�d of
Hölder continuous functions on int(K) with exponent β ∈ ]0, 1[. Let L be the differential operator

L(u)(x) :=
d∑

i,j=1
aij(x) ∂2u

∂xi ∂xj
(x) (2.14)

(u ∈ C2(int(K)), x ∈ int(K)) and assume that it is strictly elliptic, i.e., for every x ∈ int(K) the matrix
(aij(x))1�i,j�d is positive-definite and, denoted by σ(x) its smallest eigenvalue, we have σ(x) � σ0 > 0, for
some σ0 ∈ R.

Denote by TL : C(K) → C(K) the Poisson operator associated with L. Thus, for every f ∈ C(K), TL(f)
denotes the unique solution to the Dirichlet problem{

Lu = 0 on int(K), u ∈ C(K) ∩ C2(int(K)
)
;

u = f on ∂K.
(2.15)

TL is a Markov projection satisfying (1.3) and ∂TK = ∂K.
For instance, if K is the closed unit ball (with respect to the Euclidean norm ‖ · ‖2) of center the origin

of Rd and L is the Laplace operator Δ, i.e.,

Δu =
d∑

i=1

∂2u

∂x2
i

(2.16)

(u ∈ C2(int(K))), then

TΔ(f)(x) =
{

1−‖x‖2
2

σd

∫
∂K

f(z)
‖z−x‖d

2
dσ(z) if ‖x‖2 < 1;

f(x) if ‖x‖2 = 1
(2.17)

(f ∈ C(K), x ∈ K), where σd and σ denote the surface area of the unit sphere in Rd and the surface
measure on ∂K, respectively.

In order to determine (in some particular cases) the differential operator associated with the Poisson
operator we need to point out some preliminary results.

Consider a convex compact subset K of Rd, d � 2, such that its boundary ∂K is an ellipsoid, i.e., there
exist a real symmetric and positive-definite matrix R = (rij)1�i,j�d and x = (xi)1�i�d ∈ Rd such that

∂K =
{
x ∈ Rd

∣∣∣ Q(x− x) :=
d∑

i,j=1
rij(xi − xi)(xj − xj) = 1

}
. (2.18)

Furthermore, consider a strictly elliptic differential operator

L(u)(x) :=
d∑

i,j=1
cij

∂2u

∂xi ∂xj
(x) (2.19)
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(u ∈ C2(int(K)), x ∈ int(K)) associated with a real symmetric and positive-definite matrix C = (cij)1�i,j�d

and denote by TL the relevant Poisson operator on C(K) (see (2.15)).
We can now describe the differential operator WTL

, that we shall briefly denote by WL, defined according
to (2.1) and (2.2) (see [19,2]).

Theorem 2.4. Let K and L be as in (2.18) and (2.19). Then the differential operator WL associated with
TL is given by

WL(u)(x) =
{

(2
∑d

i,j=1 rijcij)−1(1 −Q(x))L(u)(x) if x ∈ int(K);
0 if x ∈ ∂K

(u ∈ C2(K), x ∈ K). Moreover, for every m � 1, TL maps Pm(K) into Pm(K).
In particular, if K is the closed ball (with respect to the Euclidean norm ‖ · ‖2) with center x ∈ Rd and

radius r > 0 and if L = Δ, then

WΔ(u)(x) =
{

r2−‖x−x‖2
2

2d Δ(u)(x) if ‖x− x‖2 < r;
0 if ‖x− x‖2 = r

(2.20)

(u ∈ C2(K), x ∈ K) and TΔ maps Pm(K) into Pm(K) for every m � 1.

Remark 2.5. Replacing, if necessary, each coefficient cij of the matrix C in (2.19) by cij(
∑d

i,j=1 rijcij)−1,
i, j = 1, . . . , d, we may always assume that

∑d
i,j=1 rijcij = 1. In this case, the differential operator WL turns

into

WL(u)(x) =
{ 1−Q(x)

2 L(u)(x) if x ∈ int(K);
0 if x ∈ ∂K

(u ∈ C2(K), x ∈ K).

3. Markov operators preserving polynomials

The main assumption in Theorem 2.2 involves the invariance under T of the spaces of polynomials of
degree m, m � 1. Such a property, that seems to have its own independent interest, will be discussed below
in more details.

As a first simple remark, note that, if T satisfies (1.3) and (2.5), then for every λ ∈ [0, 1] the operator
Uλ := λT + (1 − λ)I satisfies the same property.

We begin by presenting a counterexample to (2.5).

Example 3.1. Let K = K2 be the canonical simplex of R2 (see (1.15)) and consider the Poisson op-
erator TΔ : C(K2) → C(K2) associated with the Laplace operator Δu(x, y) := ∂2u

∂x2 (x, y) + ∂2u
∂y2 (x, y)

(u ∈ C2(int(K2)), (x, y) ∈ int(K2)) (see (2.16) and (2.17)). Then TΔ(P2(K2)) �⊂ P2(K2).
Indeed, consider the function f(x, y) = x2 ((x, y) ∈ K2) and assume that TΔ(f) ∈ P2(K2), i.e., there

exist a, b, c,m, n, p ∈ R such that

TΔ(f)(x, y) = ax2 + bxy + cy2 + mx + ny + p

for every (x, y) ∈ K2.
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Since TΔ(f) = f on ∂K2, we have

TΔ(f)(0, y) = f(0, y)
(
y ∈ [0, 1]

)
,

TΔ(f)(x, 0) = f(x, 0)
(
x ∈ [0, 1]

)
and

TΔ(f)(x, 1 − x) = f(x, 1 − x)
(
x ∈ [0, 1]

)
.

Accordingly, we get b = c = m = n = p = 0 and a = 1. Thus, TΔ(f) = f and this is not possible because
f is not harmonic on int(K2).

Below we shall consider another property similar to (2.5), namely,

T
(
P2(K)

)
⊂ P1(K), i.e., T (h1h2) ∈ P1(K) for every h1, h2 ∈ P1(K). (3.1)

Note that assumption (3.1) is satisfied when K is a simplex and T is the canonical projection on C(K)
(see Theorem 1.4).

Next we show that this is the only case where (3.1) can occur.

Theorem 3.2. Assume that there exists a Markov operator T on C(K) satisfying (1.3) and (3.1). Then K

is a simplex and T is the canonical projection associated with it.
In particular, T (Pm(K)) ⊂ P1(K) for every m � 2.

Proof. Setting M as in (1.6), from (1.3) it follows that P1(K) ⊂ M . Thus, M separates the points of K
and, by (3.1),

T
(
P1(K)2

)
⊂ T

(
P2(K)

)
⊂ P1(K) ⊂ M.

Therefore, by Proposition 1.3, T is a projection and ∂TK = ∂HK, where H := T (C(K)) (see (1.8)).
We now proceed by induction to show that T (Pm(K)) ⊂ P1(K) for every m � 2. Indeed, assume

that the inclusion holds true for some m � 2 and fix u ∈ Pm+1(K) having the form u =
∏m+1

i=1 hi, with
h1, . . . , hm+1 ∈ P1(K).

Setting v :=
∏m

i=1 hi ∈ Pm(K), we have that u = vhm+1 and T (v) ∈ P1(K), so that hm+1T (v) ∈ P2(K)
and T (hm+1T (v)) ∈ P1(K).

But hm+1T (v) = hm+1v = u on ∂TK = ∂HK, and hence, by (1.14), T (u) = T (hm+1T (v)) ∈ P1(K).
From the above, it follows that T (P∞(K)) ⊂ P1(K) and hence, by continuity, T (C(K)) = P1(K). From

Theorem 1.4 it turns out that K is a simplex and T is its canonical projection. �
From Theorem 2.4 it follows that, if K is an ellipsoid, then several classes of Poisson operators associated

with strictly elliptic operators verify (2.5).
The next result, which generalizes Theorem 3.5 of [11], shows that the inclusion T (P2(K)) ⊂ P2(K)

characterizes the ellipsoids between those convex compact subsets of Rd that are strictly convex, i.e., ∂eK =
∂K. In such a case, necessarily int(K) �= ∅ unless K is trivial, i.e., K reduces to a singleton.

Theorem 3.3. Given a non-trivial strictly convex compact subset K of Rd, d � 2, the following statements
are equivalent:
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(i) There exists a non-trivial Markov operator T on C(K), i.e., T �= I, satisfying (1.3) and (2.5).
(ii) There exists a non-trivial Markov operator T on C(K) satisfying (1.3) such that

T
(
P2(K)

)
⊂ P2(K). (3.2)

(iii) There exists a non-trivial Markov operator T on C(K) satisfying (1.3) such that

T (Φ) ∈ P2(K), (3.3)

where Φ :=
∑d

i=1 pr2
i = ‖ · ‖2

2.
(iv) ∂K is an ellipsoid defined by a quadratic form Q(x−x) :=

∑d
i,j=1 rij(xi−xi)(xj−xj) (x = (xi)1�i�d ∈

Rd) with center x = (xi)1�i�d ∈ Rd (see (2.18)).

Moreover, if T is a non-trivial Markov projection on C(K) satisfying (1.3) and (3.2) (or (3.3)), then one
and only one of the following statements holds true:

(a) T is the Poisson operator associated with a suitable strictly elliptic differential operator of the form
(2.19), whose coefficients (cij)1�i,j�d are constant and satisfy

∑d
i,j=1 rijcij = 1.

(b) For every x ∈ int(K) the support Supp(μ̃T
x ) (see (1.1)) is contained in an affine hyperplane Rx through

x and hence, for every f ∈ C(K),

T (f)(x) =
∫

∂K∩Rx

f dμ̃T
x . (3.4)

Proof. The implications (i) ⇒ (ii) and (ii) ⇒ (iii) are obvious.
(iii) ⇒ (iv). From (3.3) we infer that T (Φ) − Φ is the restriction to K of a polynomial P of degree at

most two. Consider the hypersurface

S :=
{
x ∈ Rd

∣∣ P (x) = 0
}
.

From Theorem 1.1 we get that

∂TK =
{
x ∈ K

∣∣ T (Φ)(x) = Φ(x)
}

= K ∩ S. (1)

Now we proceed to show that

∂K = ∂TK = S. (2)

Indeed, (1.12) implies that ∂K = ∂eK ⊂ ∂TK ⊂ S. Before showing the converse inclusion, we first observe
that S �= K, otherwise, by (1), ∂TK = K and, as a consequence of the classical Korovkin theorem (see,
e.g., [5, Theorem 4.2.7]), we should have T = I. On account of this preliminary remark, we deduce that
int(K) �⊂ S and hence we can choose x0 ∈ int(K) \ S ⊂ int(K) \ ∂TK.

Now, in order to complete the proof of (2), assume, on the contrary, that there exists y ∈ S \ ∂K.
Then the straight line R through y and x0 cannot be contained in S (because x0 /∈ S) and hence, since

P is a polynomial of degree at most two, R ∩ S contains at most two points.
On the other hand, R ∩ S contains exactly two points because K is strictly convex, and R ∩ ∂K ⊂

R ∩ ∂TK ⊂ R ∩ S, so that R ∩ S = R ∩ ∂K = R ∩ ∂TK and hence y ∈ ∂K, a contradiction.
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Having now (2) at our disposal, assume that

P (x) =
d∑

i,j=1
aijxixj +

d∑
i=1

bixi + c (3)

(x = (xi)1�i�d ∈ Rd), where the matrix A := (aij)1�i,j�d is symmetric and b1, . . . , bd, c ∈ R. Since ∂K is
a bounded quadric, then it is an ellipsoid and, in particular, detA �= 0. Therefore, considering the point
x = (xi)1�i�d whose coordinates are the unique solutions to the system

2
d∑

j=1
aijξj + bi = 0, i = 1, . . . , d, (4)

then

P (x) :=
d∑

i,j=1
aij(xi − xi)(xj − xj) − γ

(x = (xi)1�i�d ∈ Rd), where γ :=
∑d

i,j=1 aijxixj − c.
Therefore,

∂K =
{
x ∈ Rd

∣∣∣ d∑
i,j=1

aij(xi − xi)(xj − xj) = γ

}
.

Since ∂K is an ellipsoid, then γ �= 0 and the matrix (rij)1�i,j�d is positive-definite, where rij := aij

γ

(i, j = 1, . . . , d). Thus,

∂K =
{
x ∈ Rd

∣∣ Q(x− x) = 1
}
, (5)

where Q(x− x) :=
∑d

i,j=1 rij(xi − xi)(xj − xj) (x = (xi)1�i�d ∈ Rd).
(iv) ⇒ (i). It is a consequence of Theorem 2.4.
In order to show the last part of the statement, consider a Markov projection T on C(K) satisfying (1.3)

and (3.2). In case (b), for every x ∈ int(K), since Supp(μ̃T
x ) ⊂ ∂K (see (1.13) and the preceding formula (2)),

we get

T (f)(x) =
∫
K

f dμ̃T
x =

∫
∂K∩Rx

f dμ̃T
x

for every f ∈ C(K).
Suppose that case (b) does not occur and fix z ∈ int(K) such that Supp(μ̃T

z ) is not contained in any
affine hyperplane through z.

Without loss of generality we can assume that ∂K is an ellipsoid with center the origin of Rd, so that
we can consider a positive definite quadratic form Q(x) =

∑d
i,j=1 rijxixj (x = (xi)1�i�d ∈ Rd) such that

K =
{
x ∈ Rd

∣∣ Q(x) � 1
}
.

Given i, j = 1, . . . , d, since the function αij := T (pr iprj) − pr iprj is a polynomial of degree at most two
which vanishes on ∂TK = ∂K = {x ∈ Rd | Q(x) = 1}, by Hilbert’s Nullstellen Satz there exists cij ∈ R
such that

αij = cij(1−Q). (6)
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Note that the matrix (αij(z))1�i,j�d is positive-definite. Indeed, if ξ = (ξi)1�i�d ∈ Rd \ {0}, then the
quantity

d∑
i,j=1

αij(z)ξiξj = T

((
d∑

i=1
ξi
(
pr i − pr i(z)

))2)
(z)

is strictly positive, otherwise we should have

d∑
i=1

ξi
(
pr i − pr i(z)

)
= 0 on Supp

(
μ̃T
z

)
i.e.,

Supp
(
μ̃T
z

)
⊂
{
y ∈ Rd

∣∣ 〈ξ, y − z〉 = 0
}
,

a contradiction (here 〈·,·〉 denotes the canonical scalar product on Rd).
As a consequence, from (6) it follows that the matrix (cij)1�i,j�d is symmetric and positive-definite.
Let us consider the differential operator WT defined by (2.1). From (2.3) and (6) it follows that, for every

i, j = 1, . . . , d,

WT

(
pr iprj + cij(1 −Q)

)
= WT

(
T (pr iprj)

)
= 0,

so that

WT (Q) =
d∑

i,j=1
rijWT (pr iprj) =

d∑
i,j=1

rijcijWT (Q).

On the other hand, since Q = 1 on ∂K = ∂TK, from (1.14) it follows that T (Q) = 1 and, by (2.3), we
have that

WT (Q) = T (Q) −Q = 1 −Q.

Thus, WT (Q) does not vanish on int(K), so that
∑d

i,j=1 rijcij = 1 and the proof is now complete. �
A special case of the previous result is worth being stated separately.

Corollary 3.4. Given a non-trivial strictly convex compact subset K of Rd, d � 2, the following statements
are equivalent:

(i) There exists a non-trivial Markov operator T on C(K) satisfying (1.3), such that

T (Φ) − (1 + λ)Φ ∈ P1(K) (3.5)

for some λ ∈ R, λ �= 0, where Φ :=
∑d

i=1 pr2
i .

(ii) K is a ball with respect to the Euclidean norm ‖ · ‖2 on Rd.

Moreover, if

T (Φ) = (1 + λ)Φ +
d∑

i=1
bixi + c
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with λ ∈ R, λ �= 0, and b1, . . . , bd, c ∈ R, then K is the ball of center x = (xi)1�i�d ∈ Rd and radius r,
where

xi := − bi
2λ for every 1 � i � d and r :=

√
‖x‖2

2 −
c

λ
.

Proof. (i) ⇒ (ii). It is enough to apply the same reasoning as in the proof of the implication (iii) ⇒ (iv) of
Theorem 3.3 with P (x) =

∑d
i=1 λxi

2 +
∑d

i=1 bixi + c (x = (xi)1�i�d ∈ Rd) (see also (3)–(5)).
(ii) ⇒ (i). Assume that K is the ball of center x = (xi)1�i�d ∈ Rd and radius r and consider the Poisson

operator TΔ associated with the Laplace operator Δ (see (2.15) and (2.16)). Then TΔ is a Markov operator
satisfying (1.3) and

TΔ(Φ) = 2
d∑

i=1
xipr i + r2 − ‖x‖2

2. �

Remark 3.5. In [11] the reader can find a complete description of those convex compact subsets K of R2

such that there exists a Markov projection T on C(K) satisfying (1.3) and (2.5).

We proceed further to study condition (2.5) in the setting of product spaces.
Consider a finite family (Ki)1�i�d of convex compact subsets having non-empty interior, each contained

in some Rsi , si � 1, i = 1, . . . , d. For every i = 1, . . . , d, let Ti : C(Ki) → C(Ki) be a Markov operator
satisfying (1.3) and (2.5). Setting K :=

∏d
i=1 Ki and denoting by T :=

⊗d
i=1 Ti the tensor product of

(Ti)1�i�d (see [5, pp. 32–36]), then T is a Markov operator on C(K) which satisfies (1.3).
For every i = 1, . . . , d, set

Ai := ATi
(3.6)

and, for j = 1, . . . , d,

Ai,j :=
{
Ai if j = i;
ID(Aj) if j �= i.

(3.7)

Moreover, for every i = 1, . . . , d, denote by (Ti(t))t�0 the Markov semigroup on C(Ki) generated by
(Ai, D(Ai)). Then we can define a linear operator A :

⊗d
i=1 D(Ai) → C(K) such that, for every (ui)1�i�d ∈∏d

i=1 D(Ai),

A

(
d⊗

i=1
ui

)
=

d⊗
i=1

Ai(ui), (3.8)

where
⊗d

i=1 D(Ai) denotes the linear subspace generated by{
d⊗

i=1
ui

∣∣∣ ui ∈ D(Ai), 1 � i � d

}
.

The operator A will be denoted by
⊗d

i=1 Ai and it will be again referred to as the tensor product of the
family (Ai)1�i�d.

Finally, consider the Bernstein–Schnabl operators Bn (n � 1) associated with T =
⊗d

i=1 Ti and, for every
i = 1, . . . , d, let Bn,i be the Bernstein–Schnabl operators associated with Ti (see (1.2)). From the commu-
tativity as well as the associativity properties of tensor products of measures (see [14, Vol. I, Section 13]),
it follows that
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Bn

(
d⊗

i=1
fi

)
=

d⊗
i=1

Bn,i(fi), (3.9)

for every
⊗d

i=1 fi ∈
∏d

i=1 C(Ki).

Theorem 3.6. The Markov operator T =
⊗d

i=1 Ti satisfies (2.5). Moreover, if (AT , D(AT )) is the generator
of the semigroup (T (t))t�0 as in Theorem 2.2, then

(i) T (t) =
⊗d

i=1 Ti(t) for every t � 0.
(ii) The subspace

⊗d
i=1 D(Ai) is contained in D(AT ), it is a core for (AT , D(AT )) and

AT =
d∑

i=1

d⊗
j=1

Ai,j on
d⊗

i=1
D(Ai)

(see (3.8)).
(iii)

⊗d
i=1 C

2(Ki) is a core for (AT , D(AT )) and, if (ui)1�i�d ∈
∏d

i=1 C
2(Ki), then

AT

(
d⊗

i=1
ui

)
=

d∑
i=1

u1 ⊗ · · · ⊗ ui−1 ⊗WTi
(ui) ⊗ ui+1 ⊗ · · · ⊗ ud.

Proof. Note that, given (ui)1�i�d, (vi)1�i�d ∈
∏d

i=1 P1(Ki), then, for every i = 1, . . . , d,

(uivi) ◦ pr i = (ui ◦ pr i)(vi ◦ pr i) ∈ P2(K)

and

T
(
(ui ◦ pr i)(vi ◦ pr i)

)
= Ti(uivi) ◦ pr i ∈ P2(K).

Moreover, for i, j = 1, . . . , d, i �= j,

T
(
(ui ◦ pr i)(vj ◦ prj)

)
=
(
Ti(ui) ◦ pr i

)(
Tj(vj) ◦ prj

)
= (ui ◦ pr i)(uj ◦ prj) ∈ P2(K).

On the other hand, for every u ∈ P1(K), there exist α0, α1, . . . , αd ∈ R and (ui)1�i�d ∈
∏d

i=1 P1(Ki)
such that u = α0 +

∑d
i=1 αi(ui ◦ pr i). Therefore, on account of the preceding identities, it follows that

T (P2(K)) ⊂ P2(K).
By induction, it is now easy to show that T (Pm(K)) ⊂ Pm(K) for every m � 2. According to Theorem 2.2

we can consider the Markov semigroup (T (t))t�0 on C(K), along with its generator (AT , D(AT )).
Looking at the family of generators ((Ai, D(Ai)))1�i�d defined by (3.6), from [18, Section A-I-3.7, p. 23]

it follows that the operator
∑d

i=1
⊗d

j=1 Ai,j defined on
⊗d

i=1 D(Ai) is closable on C(K) and its closure
(B,D(B)) generates a C0-semigroup (S(t))t�0 on C(K) given by

S(t) =
d⊗

i=1
Ti(t) (t � 0).

Moreover,
⊗d

i=1 D(Ai) is a core for (B,D(B)).
We now proceed to show that

d⊗
i=1

C2(Ki) ⊂ D(AT ) and AT = B on
d⊗

i=1
C2(Ki). (1)
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Indeed, given (ui)1�i�d ∈
⊗d

i=1 C
2(Ki) and considered the sequence (Bn)n�1 of Bernstein–Schnabl

operators associated with T (see (1.2)), then, on account of (3.9) and Theorem 2.1 for u =
⊗d

i=1 ui, we get

lim
n→∞

n
(
Bn(u) − u

)
= lim

n→∞
n

(
d⊗

i=1
Bn,i(ui) −

d⊗
i=1

ui

)

= lim
n→∞

n

(
d∑

i=1
Bn,1(u1) ⊗ · · · ⊗Bn,i−1(ui−1) ⊗

(
Bn,i(ui) − ui

)
⊗ ui+1 ⊗ · · · ⊗ ud

)

=
d∑

i=1
lim
n→∞

Bn,1(u1) ⊗ · · · ⊗Bn,i−1(ui−1) ⊗
[
n
(
Bn,i(ui) − ui

)]
⊗ ui+1 ⊗ · · · ⊗ ud

=
d∑

i=1
u1 ⊗ · · · ⊗ ui−1 ⊗WTi

(ui) ⊗ ui+1 ⊗ · · · ⊗ ud = B(u).

Therefore, by Theorem 2.2, u ∈ D(AT ) and AT (u) = B(u).
On the other hand, for every m � 1,

Pm(K) ⊂
⋃

m1+···+md�m

d⊗
i=1

Pmi
(Ki) ⊂

d⊗
i=1

C2(Ki),

which implies that P∞(K) ⊂
⊗d

i=1 C
2(Ki) ⊂

⊗d
i=1 D(Ai) and AT = B on P∞(K) by virtue of (1).

Furthermore, due to Theorem 2.2, P∞(K) is a core for (AT , D(AT )) and hence (B,D(B)) = (AT , D(AT ))
(see the remarks before Theorem 2.2). In particular, T (t) = S(t) for every t � 0 and the proof is now
complete. �

The special case where Ki = [0, 1] for every i = 1, . . . , d, is worth being studied separately.
Let Qd := [0, 1]d, d � 1, and for every i = 1, . . . , d consider a Markov operator Ti on C([0, 1]) satisfying

(2.7) and (2.5).
If T :=

⊗d
i=1 Ti : C(Qd) → C(Qd), then, for every u ∈ C2(Qd) and x = (xi)1�i�d ∈ Qd,

WT (u)(x) = 1
2

d∑
i=1

αi(x)∂
2u

∂x2
i

(x), (3.10)

where αi(x) := Ti(e2)(xi) − x2
i (1 � i � d).

Finally note that, if Ti = T1 for any i = 1, . . . , d (see (1.19)), then

WT (u)(x) = 1
2

d∑
i=1

xi(1 − xi)
∂2u

∂x2
i

(x) (3.11)

(u ∈ C2(Qd), x = (xi)1�i�d ∈ Qd).

Corollary 3.7. Under the preceding assumptions, the operator T maps Pm(Qd) into Pm(Qd) for every m � 1.
Therefore, the differential operator (WT , C

2(Qd)) is closable and its closure generates a Markov semigroup
(T (t))t�0 on C(Qd) satisfying all the properties stated in Theorems 2.2 and 3.6.

We end the paper by discussing property (2.5) for Markov operators which are the convex convolution
product of two given ones.



Author's personal copy

494 F. Altomare et al. / J. Math. Anal. Appl. 415 (2014) 477–495

Consider two Markov operators S and T on C(K) satisfying (1.3) and the relevant selections of probability
Borel measures (μ̃S

x )x∈K and (μ̃T
x )x∈K associated with them according to (1.1).

Considering the mapping π2 : K ×K → K defined by

π2(x1, x2) := x1 + x2
2

(
(x1, x2) ∈ K ×K

)
, (3.12)

for each f ∈ C(K), we define the following function on K by setting

U(f)(x) :=
∫

K×K

f ◦ π2 dμ̃
S
x ⊗ dμ̃T

x =
∫
K

∫
K

f

(
x1 + x2

2

)
dμ̃S

x (x1) dμ̃T
x (x2) (3.13)

(x ∈ K). Then U(f) ∈ C(K) and the operator U is a Markov operator satisfying (1.3). Moreover, ∂SK ∩
∂TK ⊂ ∂UK.

The operator U will be called the convex convolution product of S and T . The Bernstein–Schnabl oper-
ators associated with U are given by

Bn,U (f)(x) = Bn,S(Bn,T,f,x)(x)
(
f ∈ C(K), x ∈ K

)
, (3.14)

where

Bn,T,f,x(x1) := Bn,T

(
f
(
π2(x1, ·)

))
(x) (x1 ∈ K). (3.15)

We finally mention that the differential operator WU associated with the Markov operator (3.13) is given
by

WU = WT + WS

4 . (3.16)

Theorem 3.8. Let K be a convex compact subset of Rd, d � 1, having non-empty interior, and consider two
Markov operators S and T on C(K) satisfying (1.3) and (2.5). Then the convex convolution product U of
S and T defined by (3.13) maps Pm(K) into Pm(K) for each m � 1.

Therefore, the differential operator WU = (WS + WT )/4 (see (3.16)) defined on C2(K) is closable and
its closure generates a Markov semigroup on C(K) satisfying all the properties stated in Theorem 2.2.

Proof. The case m = 1 being obvious, we can assume m � 2. Consider h1, . . . , hm ∈ P1(K) and x1, x2 ∈ K.
Denote by F (m, 2) the set of all mappings σ : {1, . . . ,m} → {1, 2} and, for σ ∈ F (m, 2), set Rσ

1 := {i =
1, . . . ,m | σ(i) = 1} and Rσ

2 := {i = 1, . . . ,m | σ(i) = 2}. Therefore,(
m∏
i=1

hi

)(
x1 + x2

2

)
= 1

2m
∑

σ∈F (m,2)

∏
i∈Rσ

1

hi(x1)
∏
i∈Rσ

2

hi(x2),

where the product
∏

i∈Rσ
k
hi is, by convention, equal to 1 if Rσ

k = ∅ for some k = 1, 2. Then, from (3.13), it
follows that

U

(
m∏
i=1

hi

)
= 1

2m
∑

σ∈F (m,2)

S

( ∏
i∈Rσ

1

hi

)
T

( ∏
i∈Rσ

2

hi

)
∈ Pm(K),

because of the assumptions on S and T and since cardRσ
1 + cardRσ

2 = m. �
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Remark 3.9. From Theorem 3.8 it turns out that the sum WS +WT = 4WU , defined on C2(K), is closable
and its closure generates a Markov semigroup (T (t))t�0, which is the rescaled semigroup with parameter 4
(see, e.g., [15, Chapter III, Section 1]) of the semigroup generated by the closure of (WU , C

2(K)).
This result is not trivial because, in general, the investigation of the generation property of the sum of

two generators is a delicate problem (see, e.g., [15, Chapter III, Section 1]).
However, the sum WS+WT is also equal to 2WS+T

2
and S+T

2 is a Markov operator on C(K) satisfying (1.3)
and (2.5). Therefore, the semigroup (T (t))t�0 also coincides with the rescaled semigroup with parameter 2
generated by the closure of (WS+T

2
, C2(K)). Thus it can be represented as in (2.6) in terms of iterates of

Bernstein–Schnabl operators associated with U or with S+T
2 . We refer to [7] for more details in this respect.

References

[1] A.A. Albanese, E.M. Mangino, Analyticity of a class of degenerate evolution equations on the canonical simplex of Rd

arising from Fleming–Viot processes, J. Math. Anal. Appl. 379 (1) (2011) 401–424.
[2] F. Altomare, Limit semigroups of Bernstein–Schnabl operators associated with positive projections, Ann. Sc. Norm. Super.

Pisa Ser. IV 16 (2) (1989) 259–279.
[3] F. Altomare, Asymptotic formulae for Bernstein–Schnabl operators and smoothness, Boll. Unione Mat. Ital. (9) II (2009)

135–150; Corrigendum: Boll. Unione Mat. Ital. (9) IV (2011) 259–262.
[4] F. Altomare, On some convergence criteria for nets of positive operators on continuous function spaces, J. Math. Anal.

Appl. 398 (2013) 542–552.
[5] F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and Its Applications, de Gruyter Stud. Math., vol. 17,

W. de Gruyter, Berlin, New York, 1994.
[6] F. Altomare, M. Cappelletti Montano, V. Leonessa, I. Raşa, On differential operators associated with Markov operators,

J. Funct. Anal. (2014), http://dx.doi.org/10.1016/j.jfa.2014.01.001, in press.
[7] F. Altomare, M. Cappelletti Montano, V. Leonessa, I. Raşa, Differential Operators, Markov Semigroups and Positive

Approximation Processes Associated with Markov Operators, in preparation.
[8] F. Altomare, V. Leonessa, An invitation to the study of evolution equations by means of positive linear operators, Lect.

Notes Semin. Interdiscip. Mat. 8 (2009) 1–41.
[9] F. Altomare, V. Leonessa, S. Milella, Bernstein–Schnabl operators on noncompact real intervals, Jaen J. Approx. 1 (2)

(2009) 223–256.
[10] F. Altomare, V. Leonessa, I. Raşa, On Bernstein–Schnabl operators on the unit interval, Z. Anal. Anwend. 27 (2008)

353–379.
[11] F. Altomare, I. Raşa, Towards a characterization of a class of differential operators associated with positive projections,

Atti Semin. Mat. Fis. Univ. Modena Suppl. XLVI (1998) 3–38.
[12] F. Altomare, I. Raşa, Feller semigroups, Bernstein type operators and generalized convexity associated with positive

projections, in: New Developments in Approximation Theory, Dortmund, 1998, in: Internat. Ser. Numer. Math., vol. 132,
Birkhäuser Verlag, Basel, 1999, pp. 9–32.

[13] M. Campiti, I. Raşa, Qualitative properties of a class of Fleming–Viot operators, Acta Math. Hungar. 103 (1–2) (2004)
55–69.

[14] G. Choquet, Lectures on Analysis, vols. I and II, A. Benjamin Inc., New York, Amsterdam, 1969.
[15] K.-J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Grad. Texts in Math., vol. 194, Springer-

Verlag, New York, 2000.
[16] S.N. Ethier, A class of degenerate diffusion processes occurring in population genetics, Comm. Pure Appl. Math. 23 (1976)

483–493.
[17] W. Feller, Diffusion processes in genetics, in: Proc. 2nd Berkeley Sympos. Math. Statist. and Probab., 1951, pp. 227–246.
[18] R. Nagel (Ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math., vol. 1184, Springer-Verlag,

Berlin, 1986.
[19] M. Romito, Lototsky–Schnabl operators associated with a strictly elliptic differential operator and their corresponding

Feller semigroup, Monatsh. Math. 126 (4) (1988) 329–352.


