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Abstract—This paper examines the application of a deep
learning approach to automatic coin recognition, via a mobile
device and client-server architecture. We show that a con-
volutional neural network is effective for coin identification.
During the training phase, we determine the optimum size of
the training dataset necessary to achieve high classification
accuracy with low variance. In addition, we propose a client-
server architecture that enables a user to identify coins by
photographing it with a smartphone. The image provided
by the user is matched with the neural network on a
remote server. A high correlation suggests that the image
is a match. The application is a first step towards the
automatic identification of coins and may help coin experts
in their study of coins and reduce the associated expense of
numismatic applications.
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I. INTRODUCTION

Numismatics is the scientific study of all forms of cur-
rency. Various criteria are used to classify a coin, including
its history, geography, and market value. In recent decades,
image recognition techniques have been investigated for
the identification and classification of coins, as currently
these procedures still rely on expensive human inter-
vention. In [1], the authors survey numismatic research
into the classification, identification, and segmentation of
coins based on image recognition. Numismatics research
can be divided into different historical periods: ancient,
medieval, modern, and contemporary. Here, we consider
contemporary numismatics, which focuses on coins from
the 17th century onward. The advantage of studying this
category is that any engravings can still be clearly seen
by the human eye, and there is a plentiful supply of coins,
which is useful in machine learning approaches.

Recent studies of coin classification are based on image
recognition techniques. Several families of algorithms
have been developed, based on neural networks (NN) [2],
decision trees [3], edge detection [4], gradient directions
[5], and contour and texture features [6] [7]. Although
many algorithms are NN variants, Deep Learning (DL)
is often used for image recognition. DL is a branch
of artificial intelligence (AI) where the aim is to de-
velop computational models that are composed of multiple
processing layers and can learn a representation of the
data at multiple levels of abstraction [8]. DL algorithms
need complex structures and huge datasets, while back-
propagation techniques enable internal parameters to be
changed (training) to improve prediction accuracy. These

internal parameters are called weights, and are used to
represent the data from one level to the next. Image
recognition and DL form the boundary of convolutional
neural networks (CNN). A CNN is a special type of NN
whose functioning is inspired by the organization of the
visual cortex of the human brain. In general, each NN layer
is composed of several neurons that are connected with
upper and lower layers via arches that are called synapses.

There are two categories of learning: unsupervised and
supervised. In unsupervised learning, the NN takes the
inputs that are provided and reclassifies and organizes
them according to a set of shared features, in order to
reason and make predictions about any subsequent input.
In supervised learning, the NN is provided with a series
of inputs for which the output is known; the output
is also provided to the NN so that it can resolve the
task autonomously. The aim of supervised learning is to
develop a function that can replicate results obtained in
the training phase using similar, but new, structured input.

In this paper, we present an implementation of a system
for automatic coin recognition based on DL. The represen-
tation of coins is learned in a training phase that is based
on a supervised learning approach. We show that a well-
known CNN can be effective for coin identification. In
particular, we determine the optimum size of the training
dataset that is necessary to achieve high classification
accuracy with low variance. Based on a set of 8320
images of euro coins, we trained the CNN using different-
sized training samples and tested the resulting system.
Using this data, we employ a learning curve approach to
predict classification accuracy for a given training sample
size. Furthermore, we propose a client-server architecture
that makes it possible to query the classification model
obtained from the NN training set, and allows a user to
identify a coin by photographing it with, for instance, a
mobile device camera. A coin is identified when the image
provided by the user can be matched with the NN on a
remote server.

The remainder of this paper is structured as follows.
Section II, provides an overview of related works. Sec-
tion III provides some background information about
the NN and software tools used to perform training.
Section IV is a detailed presentation of the framework.
Section V describes the training phase. We end with some
final remarks and future directions for our research in
Section VI.



II. RELATED WORKS

Among the different coin recognition methods, Brem-
ananth [9] proposes a system that focuses on numerals
rather than images on the front or back. The idea is to
capture an image of the coin and extract the numeral using
a technique based on pattern matching. The approach
uses several techniques, such as statistical color, threshold
method, Gabor filtering, and back propagation networks
for accurate recognition of these numbers.

Kim [10] proposes an automatic recognition method for
Imperial Roman coins using CNN. The study implements
a hierarchical framework that employs CNN models for
coin classification tasks. The aim is to find a landmark
on coin images. An optimization problem is formulated as
the selection of a set of the coin’s elements that represents
the class. The selected parts are considered to be elements
that can be used to discriminate the coin. These landmarks
can be critical for the analysis of the features of coins for
numismatic experts.

Modi [11] developed an artificial NN based on the
automatic recognition of Indian coins. The system is able
to recognize both sides of coins. Information is extracted
from images using methods such as the Hough Transfor-
mation, Pattern Averaging, etc. The extracted information
is used as input to train a NN.

The main difference between these methods and the
work we present here is that we consider the entire coin,
and classify it according to membership classes. The in-
formation is extracted directly from the coin and is passed
to the NN in the training phase. In this way, we obtain a
classification model that can predict the classification of
other coins.

III. BACKGROUND

Any discussion of Deep Learning (DL), also indirectly
refers to Neural Networks (NN). A standard NN consists
of connected, artificial neurons that are modelled on bio-
logical neurons. These simple nodes (neurons) are often
called processing elements or units. Each neuron produces
a sequence of real-value activations [13]. Within the NN,
artificial neurons (AN) are organized into layers. ANs in
each layer are connected to upper and lower layers through
weighed arcs called synapses. There are three types of
layer: input, hidden, and output.

A layer is a container that receives a weighted input,
transforms it with a set of (mostly non-linear) functions,
and passes these values as input to the next layer [14]. The
first and last layers in a network are the input and output
layers, respectively, while all layers in between are hidden
layers. Input neurons are activated by data provided by the
external system. In contrast, output and hidden neurons are
activated by data provided from already activated neurons
[13]. Each neuron is activated by an activation function,
which receives weighted data (matrix multiplication be-
tween input data and weights) and outputs a non-linear
transformation of it. In the context of DL, neural networks
are often called Deep Neural Networks (DNN), as they are
distinguished from the more common neural networks by

their depth. In DNN, each layer of neurons is trained on a
distinct set of features based on the previous layer’s output.
Deeper layers of the NN can recognize more complex
features, as they reprocess features from the previous
layer. This is known as the feature hierarchy [14]. Image
recognition requires a very deep neural network composed
of multiple layers. It must be able to extract non-linear
features and pass them to a classifier that can combine all
of the features and make predictions.

[14] show mathematically that for image processing,
the best features of a single layer are edges and blobs. This
is because they contain the most information that can be
extracted from a single, non-linear transformation. It has
been shown that the human brain does the same thing.
The first hierarchy of visual cortex neurons is sensitive to
specific edges and blobs, while deeper regions of the brain
that are further down the visual pipeline are sensitive to
more complex structures, such as faces.

One type of DNN that is often used in image recognition
is the convolutional neural network (CNN). The CNN
is a type of feed-forward neural network in which the
connectivity pattern between neurons is inspired by the
specific organization of the brain’s visual cortex. The
architecture of a CNN is designed to take advantage of
the 2D structure of an input image. Every image is a
matrix of pixel values that describe intensity at that point.
The range of values that can be encoded in each pixel
are a function of its bit size. CNNs are given an array of
intensities as input, and the output is numbers that describe
the probability of the image belonging to a certain class.
One benefit of CNNs is that they are easier to train and
have fewer parameters than fully-connected networks with
the same number of hidden units [14].

For coin recognition, we used a CNN created by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton, which
is called AlexNet [12]. The input to the AlexNet is a
resized image, while the output is a class-label probability.
AlexNet includes object recognition steps such as local
feature extraction, feature coding, and learning (see Figure
1). The advantage of such a CNN is that it can adap-
tively estimate optimal feature representations for datasets,
which is a feature that is lacking in the conventional, hand-
crafted approach. The effectiveness of the AlexNet was
proven for large-scale object recognition at the ImageNet
Large-Scale Visual Recognition Challenge 2012. In addi-
tion, AlexNet has already been tested on image recognition
in several contexts including, for instance, face detection
[15], maritime vessel identification [16], food recognition
[17], and playing video games [18].

There are several frameworks for the training and use of
DNNs. Most exploit GPU acceleration and include: Caffe,
Torch7, Theano, and CUDA-Convnet2. Here, we used the
NVIDIA Deep Learning GPU Training System (DIGITS)
[14]. This system is the first interactive software for DNN
training using the GPU. It makes it possible to develop,
train, and visualize the DNN. The interface is browser-
based, and NN behavior can be viewed in real-time. For
training, DIGITS uses the popular Caffé Deep Learning



Figure 1. The AlexNet architecture, which consists of an 8-layer CNN [12].

Framework and GPU capabilities to reduce training time
[19].

Using DIGITS requires two steps. The first is the
creation of the dataset and the classification model through
the training process. A set of folders are provided to the
system; each contains a series of images of the same
class. Then, a text file is defined that contains the labels
belonging to each class. The overall dataset is divided into
three subsets: training, validation, and testing. The training
set is a collection of data for which both the input and the
output are known. It is used in the NN training phase and
for the creation of the related classification model. The
validation set is similar to the dataset used in the validation
phase, but designed to avoid overfitting and compare NN
performance. This set is used to assess features such
as prediction accuracy, loss training and loss validation.
Accuracy is the reliability of the prediction based on val-
idation data provided in the training phase. Loss training
is the error on the training set. Loss validation is the error
after running the validation set through the trained NN.
As epochs increase, both validation and training error fall.
Training error can continue to fall even after many epochs,
allowing the NN to improve its learning. In this case, the
validation error increases, eventually leading to overfitting.
Finally, the test set is a collection of data used to test and
evaluate the performance of the classification model after
the training phase.

The second step consists of the creation of a classifica-
tion model and defining the parameters of the model itself.
In particular, this consists of the dataset that was created
in the previous step, and the training epochs that represent
the number of times the data is passed to the NN. In
more specific terms, back-propagation learning algorithms
involve two steps. The first step (forward propagation),
consists of passing the training data to the NN in order to
generate the activation output. The second step (backward
propagation), consists of passing the activation output to
the NN using the target data to generate a value that is
the difference between the output target and NN’s current
output values for all hidden and output neurons. The aim
of backward propagation is to minimize the loss function.

The epoch is a forward and backward pass of all training
data in the NN.

The snapshot interval represents the number of epochs
of training between two snapshots. The validation interval
represents the number of epochs of training, running
through one pass of the validation data. If a random
seed is provided and the same model and dataset are
running, the same results should be obtained. The batch
size measures the number of inputs processed. The solver
type represents the gradient descent optimization method
and can be the stochastic gradient descent, the adaptive
gradient, or Nasterov’s accelerated gradient.

DIGITS makes it possible to edit the pre-configured
NN; it is possible to change parameters, add layers, change
the bias, etc. Once the dataset has been created, training
can begin. In the training phase, DIGITS provides a
visualization of the data used and the training state. It also
provides an accuracy chart and loss value in real time.

As DIGITS runs on a web server, the dataset and the
network configuration can be easily shared with the client.
Once the NN has been trained, its (related) model can
be queried by supplying an image in the form of an
HTTP request. The DIGITS web service responds with
predictions that take the form of couple labels (classes)
and percentage accuracy. Messages can be exchanged
between a client (e.g., a web or mobile application) and
DIGITS using the Representational State Transfer (REST)
architecture.

IV. THE ARCHITECTURE

The software uses a client-server architecture. DIGITS
is installed on the server side and provides services
through the Digit Rest API programming interface. The
interface makes it possible to query a classification or
regression model that has been trained on a NN. The
API can be used to create a dataset and models, or
make predictions using a trained model. The interface is
based on the REST architecture. In formal terms, REST
consists of a set of components, connectors, and other data
within a distributed system, where the focus is on the role
of components rather than implementation details. REST
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Figure 2. The client-server architecture.

uses the HTTP protocol [20] to transmit data, while the
network allows components to exchange representations of
resources [21] [22]. Connection elements are connectors
that handle communication between components. A com-
ponent can be a client or a server, and it acts as a mediator,
making it possible for the application to interact with a
resource given the identifier of the resource itself, and
the action to perform. The application must interpret the
response, and be able to represent the information. DIGITS
includes a server-side component that, once a request is
accepted by a client, provides a response in JavaScript
Object Notation (JSON)format. In particular, it makes it
possible to create a classification (or regression) model
and a dataset, to classify an element or an inference using
a previously-trained model, and to remove a classification
or regression model.

In our work, we focus on the classification of an image
of a coin using a trained model. To exploit the remote
classification model, we developed a client-side mobile
application for Android devices (see Figure 2). This ap-
plication uses the device’s camera to take a photograph
of a coin to classify. The resulting image is sent by the
client over FTP to the server, then an HTTP POST request
that contains the query string is sent to the web service
(DIGITS). This query contains the address of the server,
the id of the trained classification model, and the location
and name of the image to classify. Although it is possible
to use a HTTP POST multipart request [23] to send the
image directly to the server (together with the parameters
specified above), FTP was chosen because the protocol
is generally considered faster for sending individual files
such as photographs.

Next, the web service’s response (in JSON format) is
interpreted by the client. The response consists of a list
of predictions, each composed of a pair of labels (class),
and a percentage accuracy (reliability) of the prediction.
This response is displayed on the mobile device running
the client application.

An example will help to demonstrate the procedure:
the user takes a photograph of the coin and the client
software sends it to the server via FTP; it sends an HTTP
request specifying the query string name and the location
of the image, together with the classification model’s id

DATASET Euro1 Euro2 Euro3 Euro4 Euro5
MODEL M1 M2 M3 M4 M5
TRAINING 60% 50% 55% 60% 59%
VALIDATION 35% 45% 37% 37% 38%
TEST 5% 5% 8% 3% 3%
EPOCH 10 10 10 10 10
ACCURACY 62.93% 42.65% 71.09% 75% 77.21%
LOSS TRAIN 0.63% 1.11% 0.51% 0.47% 0.30%
LOSS VAL 0.65% 1.10% 0.53% 0.45% 0.41%

Table I
TRAINING DATASET AND CLASSIFICATION MODEL WITH RELATED

PARAMETERS.

that should be used. The server processes the image given
in the query string, classifies it using the named model,
and sends the client a list of predictions in JSON format.
These predictions include the coin’s membership classes
and prediction accuracy percentage ordered from the most
to least accurate. The application presents the user with the
results of the classification.

V. THE TRAINING PHASE

Input images consist of 500 × 500 pixels, giving an
input dimensionality of 250,000. There are eight classes
(corresponding to 0.01C, 0.02C, 0.05C, 0.10C, 0.20C,
0.50C, 1C, and 2Ccoins). It should be noted that here
we only take into account the reverse side of the coin
(portraying a map of Europe). For each of the eight classes,
the training dataset consisted of 80 images taken with a
camera at a distance of 10cm. To increase the number of
coins, we performed 13, 2D transformations. In particular,
coins were rotated by 60° around their center, mirrored,
then and rotated again by 60°. The final dataset consisted
of 1,040 images for each coin, and a total of 8,320 coin
images.

To obtain the best model, we performed several exper-
iments on the input images using five different datasets.
Each dataset had a different percentage of training, val-
idation, and test data. The number of epochs was set
to 10, and the batch size was set to 24 (the default).
This approach is a useful way to establish the minimum
number of input images needed to produce a useful model.
Table I shows how the datasets and classification models
were divided. The first and second row specify the name



COIN M1 M2 M3 M4 M5
0.01C 0% 0% 100% 100% 100%
0.02C 100% 100% 100% 100% 100%
0.05C 100% 0% 100% 100% 90.3%
0.10C 5.7% 21.2% 48.2% 32.3% 96.8%
0.20C 50% 24.7% 89.2% 19.3% 77.4%
0.50C 0% 53.8% 62.6% 22.6% 80.6%
1.00C 100% 90.4% 90.4% 90.3% 100%
2.00C 92.31% 90.4% 84.3% 100% 100%

Table II
TEST PERFORMED ON THE TRAINED CLASSIFICATION MODELS.
MODEL M5 PERFORMS BEST IN THE CLASSIFICATION OF TEST

IMAGES.

Figure 3. Loss training, accuracy validation (Test) and loss validation
for model M5.

of the dataset and model (respectively), while the other
rows represent, in order: the percentage of training data,
validation data, test data, the number of epochs, percentage
accuracy, loss training, and loss validation.

Table II shows the tests that were performed on all of
the classification models. These tests consisted of passing
the test image folder to the respective classification model.
Each test image folder is composed of a percentage of
images defined in the dataset creation step (see Table I).
As Table II shows, each test is associated with a class of
coin that is defined in the first column. If the percentage for
each coin is greater than 50% the test is passed, otherwise
it is failed. Table II shows that the model M5 provided
the most accurate classification. Therefore, for our input
image dataset, this is the optimal recognition model.

In more detail, the accuracy of model M5 is 72.21%.
Figure 3 shows trends for each epoch in the training phase.
The blue line indicates loss value trends, the orange line
indicates accuracy trends, while the green line presents the
loss value trend for the validation set. It should be noted
that from the fourth epoch onward, accuracy percentage is
stable at around 80%, and loss value remains low. Training
and testing were performed on a NVIDIA 6GB TITAN
GPU, which significantly improved the performance of the
deep learning classifier.
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Figure 4. The partial euro coins used to test the neural network.

We also evaluated the response of the optimal model
M5 on partial images of 1.0e, 0.05e, and 0.20e coins
as shown in Figure 4. This test was not exhaustive, but
did give an indication of performance in the wide range
of production conditions associated with coin recognition.
The percentage accuracy of the prediction was 77.25%,
100%, and 49.7% for 1.0e, 0.05e, and 0.20e coins
respectively. It should be noted that the accuracy of the test
on 0.20ecoins was 49.7%, which is highest percentage
compared to other accuracies obtained from the same
image.

Finally, Figure 5 shows the mobile app in use. The
interface is very simple and enables the user to take a
photograph using the smartphone’s camera, or select an
image from a local folder and send it to the server. Once
the server-side model performs the recognition, the best
five relevant results are highlighted.

VI. CONCLUSIONS

DCNN cannot be applied to all datasets because it
requires a lot of training images in order to be able
to achieve comparable (or better) performance than con-
ventional, local-feature-based methods. In our preliminary
coin recognition experiments, we trained a DCNN on a
pre-prepared dataset of images, which confirmed that the
amount of training data was enough. The performance of
the best model showed that 70-80 coin images are needed
in the training phase. More specifically, coins had medium
to light overall wear, and all details were visible.

The software architecture that we implemented proved
to have substantial advantages: these include an immediate
response to the client, and the ability to use GPUs for
training, validation and testing of the NN in order to
classify models quickly. We developed an application for



Figure 5. Mobile coin recognition application. On the left, the best five
results.

Android-based mobile devices that provide a visualization
of the results of the prediction based on an image of a
coin, obtained using the device’s camera. In the future,
we will use the Android-based application and a serious
game to create a large training dataset [24].

We argue that by using embedded devices (such as the
NVIDIA Jetson TX2 System) this approach can be used
in other contexts. These could include, for instance, a
currency detector for retail kiosks, self-checkout machines,
or gaming machines to detect counterfeit coins. The basic
principle of the application is to test the coin’s physical
properties. With respect to future work, we plan to use
the approach for recognizing ancient coins. The challenge
in this field mainly concerns the reconstruction of worn
coins. In this case, the NN can be applied to the partial
recognition of images, by isolating the best-preserved parts
of an ancient image. As deep learning techniques continue
to progress, we are confident that this technology could be
applied to ancient numismatics with important results.
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