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1. ABSTRACT 

Very recently, both experimental and theoretical investigations have 

shown that micro-structured surfaces covered with mushroom shaped 

micropillars present strongly enhanced adhesive properties if compared to 

surfaces covered with cylindrical micropillars made of the same material. 

However, different geometries lead to different adhesive performance, and 

finding the optimal solution has become of utmost importance. In this 

chapter we summarize the main detachment mechanisms of flat-topped and 

mushroom-topped soft micro pillars and show how the geometry of the 

pillars should be designed in order to obtain the best adhesive performances. 

We also discuss the effect of air entrapment at the interface between the 

pillar and the substrate and investigate the influence of the non-uniform 

pillar height and thermal fluctuations on pull-off force. Comparisons with 

experiments are shown, to assess the theoretical findings, and the influence 

of the effect of tilted pull-off on the adhesion of individual mushroom 

shaped pillar is evaluated. 

1.1 Introduction 

Biomimetics has always played a crucial role in suggesting, conceiving 

and developing breakthrough solutions in mechanical, material and civil 

engineering, e.g.: (i) Velcro has been inspired by the hooks of burs, (ii) the 

shape of lumberjack blades has been inspired by wood-burrowing beetle, 
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(iii) cat's eye reflectors have been inspired by the cats' system of reflecting 

cells, known as tapetum lucidum, (iv) `morphing aircraft wings' that change 

shape according to the speed have been inspired by different bird species, (v) 

some paints and window surfaces have been engineered to be self-cleaning 

as in the case of lotus leaf, (vi) the cooling system of the Eastgate Centre 

building, in Harare, has been inspired by a termite mound [1]. In the last 

years, bio-inspired adhesive structures have drawn great attention from the 

research community [2-13], due to their extremely high adhesive 

performance. In nature, many biological attachment systems (e.g. Gecko foot 

pad [14]) are made of hairs which are constituted mainly of a relatively stiff 

material, the β -keratin (elastic modulus 1≈E GPa). In this case, as 

suggested by some experimental findings and theoretical investigations [15-

26], the compliant fibrillar hierarchical geometry of such structures provides 

them with amazing adhesive properties. However, examples exist in Nature, 

e.g. the attachment pad of the males of some beetle species from the family 

Chrysomelidae, which do not present a hierarchical geometry as Gecko does, 

but are simply surfaces covered with mushroom-shaped microstructures [27-

29]. In such cases[7], the shape of the terminal plate is crucial for the 

achievement of high adhesive strength values of the bio-inspired artificial 

surfaces [30]. In particular, experimental observations [7] have shown that 

mushroom shaped microstructures [Figure Fig1(a, b, c)] strongly 

outperform, in terms of pull-off force, surfaces covered with miniaturized 

flat-punches made of the same material [polyvinylsiloxane (PVS), Young's 

modulus 3=E  MPa]. 

 This property has been very recently exploited to develop bio-inspired 

band-aids [31,32]. However, different mushroom-pillar geometries have led 

to different experimental results [21,33] and to some differences if compared 

to theoretical predictions [30]. In this chapter we summarize the main 

findings, that explain the origin of the superior performance of mushroom 

shaped micropillars. The chapter is organized as follow. In Sec. 1.2 we 

present the mechanisms which govern the detachment of flat-topped 

cylindrical micro-pillars. In Sec. 1.3 we show that the presence of the plate 

in mushroom shaped pillar inhibits one of the detaching modes, leading to a 

strong increase of the pull-off force. In Sec. 1.4 we show how the geometry 

of the mushroom-shaped pillar may be optimized to increase the adhesive 

performance. In Sec. 1.5 we discuss the effect of entrapment of air at the 

interface on pull-off force. In Sec. 1.6 we show how the non-uniform micro-

pillar height distribution affects the adhesive performance of the system. In 

Sec. 1.7 we present a different detaching mode which may occur on 

perfectly clean surfaces as a consequence of stress aided thermally activated 

defect nucleation. In Sec. 1.8 we show some comparisons with experiments 

to assess the theoretical findings, and the influence of the effect of tilted 
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pull-off on the adhesion of individual mushroom shaped pillar is evaluated. 

In Sec. 1.9 we provide concluding remarks and outline future developments.  

1.2 The cylindrical micropillar 

Let us first consider in detail the case of a cylindrical micropillar in 

contact with a perfectly flat substrate [Figure 1(d)]. Let us assume the micro-

pillar is loaded with a tractive force P .  

(a) (b)

(c) (d)
 

Figure 7-1. A schematic drawing of a single mushroom shaped pillar, (a); a SEM image of 

microfabricated PVS mushroom shaped pillars (courtesy of prof. Gorb [33]), (b); the 

mushroom shaped pillar (c) and the cylindrical pillar (d) in contact with a rigid substrate. The 

terminal plate in the mushroom shape (c) is the origin of the enhanced adhesive performance. 

In principle the detachment of the pillar from the substrate may be 

governed by three different mechanisms depending on the work of adhesion 

(also referred to as the Duprè energy of adhesion) 1221 γγγγ −+=∆  (where 

1γ  is the surface energy of solid 1, 2γ  is the surface energy of solid 2 and 

12γ  is the surface interaction energy when the two surfaces are in direct 

contact), on the geometry of the pillar, and Young's modulus E  of the 

material: (I) crack propagation from the pillar edge [Figure 2(a)], (II) 

propagation of interfacial defects from the inner side [Figure 2(b)], (III) 

decohesion due to the achievement of theoretical contact strength 

ργσ /∆=III  where nm101−≈ρ  is the typical range of van der Waals forces 
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[Figure 2(c)]. Dimensional arguments for mode I debonding of micro-pillars 

of radius R  in contact with the substrate, allow to assert that crack 

propagation from the edge initiates when the average tractive stress at the 

interface exceeds the value 

λ
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π
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where ( )21/ µ−=∗ EE , 5.0=µ  is Poisson's ratio, ∗∆= E/γδ  is the 

adhesion length, 0>λ  is the order of stress singularity at the edge of the 

pillar [34]. λ  depends on the corner angle θ  and on the boundary conditions 

at the interface (no-slip, partial-slip, no friction). In the case of cylindrical 

pillars 2/πθ = , thus, assuming sticking friction at the interface, one has 

4.0=λ  for incompressible materials [34]. The dimensionless quantity C  is a 

constant factor which mainly depends on the geometry and boundary 

conditions at the interface. In the case of a flat punch in adhesive frictionless 

contact with an elastic half-space ( πθ = ) one has 2/1=λ  and 1=C . 

 

Figure 7-2. Debonding of a cylindrical pillar may occur because of crack propagation from 

the pillar edge (a), nucleation and propagation of interfacial defects (b), decohesion due to the 

achievement of the theoretical contact strength (c). Map of debonding mechanisms of a 

cylindrical pillar (d). The quantities γρπ ∆= ∗ /½ 2EaC  and ( ) γρπ ∆= ∗ //8 2ERC  are 

respectively a reference defect size and a reference pillar radius. 

Equation (1) can be easily derived by observing that at the edge of the 

contact the stress λσ −≈ rij  where r  is the distance from the edge [34]. 

Therefore also the critical stress Iσ  for mode I debonding is λσ −≈ RI . 

However Iσ  also depends on ∗
E  and γ∆ , hence, invoking Buckingham's 

theorem one can write ( )λδσ REI // ≈∗ , from which Equation (1) follows. 

The strength of stress singularity at the edge is identified by the stress 
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intensity factor K , which is defined through the relation 

( )ϕπσ λ
ijij frK −= )2( , where ( )ϕijf  is a non-dimensional function of material 

parameters, corner angle, λ , and polar co-ordinate ϕ . Dimensional 

arguments allow to assert that λπσ )(0 RK ≈  where the 0σ  is the far field 

applied stress. Therefore mode I detachment will occur when K  reaches the 

critical value  
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where α  is a constant of order unity. Equation (2) allows us to define an 

effective energy release rate G  as  
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so that the critical condition for crack propagation from the edge of the 

pillar can be written in the usual Griffith form γ∆=G . Of course in the case 

of a rigid flat punch in frictionless adhesive contact with an elastic half-

space ( 2/1=λ ) one obtains the usual definition ( )∗= EKG I 2/2 , with 

1== Cα . 

Note that Equation (1) is confirmed by more accurate calculations [37], 

which have been carried out within the framework of the Dugdale-Barenblatt 

cohesive zone. These calculations show that, for elastic cylindrical pillars in 

sticking contact with a flat rigid substrate, the critical mode I debonding 

stress is 
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which is the same as Equation (1) except for a factor ( ) λ
σ

21
/

−∗EIII  of 

order unity. 

As already observed, the exponent λ  depends on the real geometry and 

on the real boundary conditions (e.g. no-slip, partial slip, no friction) at the 

interface, which usually differs from the nominal values. It follows that the 

real value of λ  is not predictable with sufficient accuracy. Therefore, in 

what follows we will assume 5.0≈λ . This assumption limits nowise the 

general validity of our treatment and main conclusions. The mode I pull-off 

stress, needed to separate an elastic cylindrical pillar in adhesive contact 

with a rigid substrate, then becomes 
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Now let us estimate the mode II debonging stress, i.e. the stress needed to 

propagate existing interfacial defect [Figure 2(b)]. The presence of a circular 

defect of radius a  determines a variation of adhesion energy γπ ∆=∆ 2aUad  

and a corresponding variation of the elastic energy ( ) ( )∗−≈∆ EaUel 3/4 32σ . 

Therefore, the total energy variation is 

γπ
σ

∆+−≈∆
∗

2
32
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Enforcing the condition ( ) 0/ =∂∆∂ aU tot  one can calculate for any given 

defect size a  the critical stress for mode II debonding as 
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Among the three different failure mechanisms (mode I, mode II and 

mode III) only the one corresponding to the minimum value of the critical 

stresses Iσ , IIσ  and ργσ /∆=III  could actually take place. Therefore, a 

map of the debonding mechanisms can be proposed, as shown in Figure 

2(d), where the quantities γρπ ∆= ∗ /½ 2EaC  and ( ) γρπ ∆= ∗ //8 2ERC  are 

respectively a reference defect size, and a reference pillar radius. Let us 

observe that for soft micro flat-punch shaped pillars (e.g. PVS pillar [28]) 

assuming 2/16 mmJ≈∆γ , 5.0=µ , ,3MPa=E  and recalling that the range of 

van der Waals forces is about nm1≈ρ  one obtains nm39.0=Ca  and 

nm63.0=cR , so that mode III debonding cannot occur in real cases where 

the pillar radius is of order several micrometers. Figure 2(d) also shows that 

cylindrical micropillars will detach by following the mode II mechanism 

only in the very seldom case of very large defects or impurities at the 

interface. In fact only when CC RRaa // > , i.e. only if 

62.016/// 2 ≈=> πCC RaRa , the stress IIσ  is smaller than Iσ . Hence, soft 

cylindrical micropillars must necessarily detach by following mode I 

debonding. Assuming as in [28] that the pillar has a diameter mm152 ≈R  one 

obtains a pull-off stress kPa6.4≈Iσ , and consequently a pull-off force 

N8.0=outF  in perfect agreement with experimental findings [28]. 
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1.3 The mushroom shaped pillar 

Some studies [7, 28] have shown that if a very compliant annular plate is 

added to the base of the flat-punch pillar the pull-off stress is unexpectedly 

strongly increased. This suggests that a different debonding mechanism 

should occur. Let us first observe that, the presence of the plate, if optimally 

designed (see also Sec. 4), may eliminate the square root stress singularity at 

Rr ≈  [Figure 3(a)]. 

 

Figure 7-3. Stress distribution in case of a flat punch (a) and for a mushroom shaped pillar, 

for three different thickness of the plate, thin (b), medium (c) and thick (d). The presence of 

the plate eliminates the stress singularity of the flat punch at r≈R. Stress peak in the 

mushroom pillar at r≈R will gradually vanish as the plate thickness t is increased up to its 

optimal value (c). 

However, for too thin plates a large stress peak will still be present at the 

interface [see Figure 3(b)], which may facilitate the formation and 

propagation of cracks from the edge Rr ≈  of the central pillar. The stress 

peak at Rr ≈  will gradually vanish if the plate thickness t  is increased up to 

an optimal value [see Figure 3(c)], at which the stress distribution becomes 

almost uniform below the pillar and smoothly decreases until it vanishes at 

the plate perimeter eRr =  [38]. In this case the uniform stress acts on a 

region of radius RR 1.1≈σ  [38]. If the thickness of the plate is increased 

further [see Figure 3(d)] then the stress singularity may appear again at 

eRr =  and the mushroom pillar will behave as a bigger and less performing 

flat punch. To confirm this behaviour, we have carried out a Finite Element 

Analysis of the optimized mushroom shaped pillar, using the commercial 

code ANSYS. The results are shown in Figure 4, in terms of dimensionless 

interfacial normal stress distribution underneath the plate ∗= E/~ σσ , plotted 

against the ratio between the distance from the pillar center r  and the 

internal radius R . 
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Figure 7-4. The dimensionless normal stress distribution zzσ~  as a funtion of the ratio Rr / , 

for an optimal mushroom shaped pillar. 

As expected, the stress singularity at the edge of the plate is almost 

completely disappeared, even more the interfacial normal stress almost 

completely vanishes as the external contact perimeter is approached. Hence, 

the main role of the plate is to prevent mode I debonding by canceling the 

stress singularity at the pillar edge. Therefore, in the case of optimally 

designed mushroom shaped micro-pillars, the most critical conditions are 

actually established under the central pillar at Rr < , and detachment must 

follow mode II or mode III mechanisms, depending on which one of them is 

energetically more favorable. The debonding map is then modified as shown 

in Figure 5, from which it follows that in the specific case of PVS samples 

under investigation ( 2/16 mmJ≈∆γ , MPa4=∗E , nm39.0=Ca ), mode II 

should be the real debonding mechanism as indeed confirmed 

experimentally in [21].  
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Figure 7-5. Map of debonding mechanisms for an optimally designed mushroom shaped 

pillar. Detachments in this case must be governed by mode II or mode III debonding, 

depending on which one of them is energetically more favorable. 

This actually means that since mode II debonding is independent of the 

pillar size but depends on the defect size [see Equation (7)], the pull-off 

force should be exactly the same both for thin and wide pillars, provided that 

the defect size is also the same in the two cases. This is indeed in perfect 

agreement with the experimental results presented in Ref. [28, 39]. A last 

consideration about the defect shape must be done. Some experimental 

observations, indeed, have shown that defects at the interface may assume 

the shape of simply connected closed regions with a size much smaller than 

the radius R  of the pillar (see Figure 6). 
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(a)

(b)
 

Figure 7-6. Small dirt particles of about 3-5μm in size contaminate the interface between the 

mushroom-shaped pillar and the substrate [33], (a). The presence of impurities at the interface 

determines a decrement of plate-substrate contact area, but, as our calculations show, does not 

compromise the plate stability, i.e. cannot cause defect propagation (b). 

Therefore let us assume that a circular particle is found under the plate 

[see Figure 6], it produces a circular defect of radius a  and height h . Let us 

analyse the stability of the defect. This time the propagation of the defect 

will occur at constant height h  since the size of the external particle does not 

change during propagation, hence the only contribution to the change of total 

energy will come from the change of elastic and adhesion energies. To 

calculate the change of elastic energy, consider that the external particle 

exerts on the plate a detaching force F  given by 2/16 aDhF π=  [40, 41], 

where 12/3tED ∗= . This gives FhU el ½=∆ , whereas the adhesion energy is 

γπ ∆=∆ 2aU ad . Thus, the change of total energy is 

2
2

8 a
a

h
DU tot γππ ∆+








=∆  (8) 
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As before, enforcing the condition 0/ =∂∆∂ aU tot  the size of the detached 

area at equilibrium can be calculated as 

4/1
2

8















∆
=

γ

Dh
aeq  (9) 

and the corresponding detaching force at equilibrium becomes 

γπ ∆= DFeq 24 , which remarkably does not depend on the size of the 

defect, i.e. external impurities will always exert the same detaching force 

independent of their size. Observing that 22 / aU tot ∂∆∂  is always positive it 

follows that the presence of the plate stabilizes defects at the plate-substrate 

interface, i.e. defects under the plate cannot propagate but stay there. 

Therefore, the presence of the particle at the interface does not prevent the 

plate from adhering to the substrate. We also observe that this result is in 

agreement with Glassmaker's work [42], who showed that the presence of a 

terminal film connecting the ends of the pillars reduces the amount of energy 

available to propagate the interfacial defects. 

1.4 Shape optimization 

Let us consider the pillar shape [33] shown in Figures 1(a)-(b). FEM 

calculations have been carried out for the simplified geometry represented in 

Figure 7(a).The grid [Figure 7(b)] has been specifically generated in order to 

have higher elements density both at the inner radius iR  of the pillar (where 

interfacial stress peaks may occur) and at the outer perimeter of the pillar 

(where stress square-root singularities appear for non optimized geometries). 
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Figure 7-7. A CAD model of the mushroom shaped pillar shown in Fig.1, (a); and the FEM 

grid, (b). 

The pillar is considered to fully adhere to the flat rigid substrate, and 

sticking friction, observed in some experiments [21], is taken into account by 

properly constraining all the nodes of the adhering surface. An external 

normal load 0
2σπ iRP =  is, then, applied to the free end of the pillar, and the 

interfacial normal zzσ  and shear zrσ  stresses have been determined by 

means of FEM calculations. Both stress distributions show a singular 

behaviour close to the external perimeter of the contact. The strength of such 

singularities is quantified by the corresponding stress intensity factors [43] 
I

K  and II
K . The pull-off stress is calculated by enforcing the generalized 

Griffith condition [43] γ∆=G , i.e. by requiring that G  is equal to the work 

of adhesion γ∆ . The stress intensity factors I
K  and II

K  can be calculated 

by recalling that they are proportional to the externally applied stress 0σ  and 

depend, given the material properties, only on the shape of the pillar [44]. 

Therefore, once fixed the external applied stress 0σ , a single Finite Element 

analysis is sufficient [44] to calculate the reduced normal and tangential 

stress distributions ( 0/σσ zz , 0/σσ zr ) at the interface and the stress intensity 

factors. The FE analysis has been carried out with the aid of the commercial 

software ANSYS[45]. 

As a first example, we have carried out calculation for the micropillar 

shown in Figure Fig1(b) whose geometry has been taken from Ref.[33]. In 

particular the external diameter of the thin plate is mµ402 ≈= ee RD , the 
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internal diameter is mµ252 ≈= ii RD  and the thickness s  of the plate is 

mµ2=s . Calculations have shown [44] that this type of geometry is 

suboptimal. Indeed, the reduced normal and shear interfacial stress 

distributions 0/σσ zz  and 0/σσ zr , as functions of the ratio iRr / , present an 

unwanted singular behavior at the external edge of the thin plate. The critical 

stress Iσ  needed to activate mode I debonding mechanism [30] is, then, 

determined by enforcing the condition for crack propagation 

( ) γ∆== ∗
EKG eq 2/

2  yields ( )[ ]λπδσ iI RCE /8∗= , i.e. 

λ

π

γ
σ













 ∆
=

∗

∗

ER
E

K ieq

I ~
1

 (10) 

where ( ) 2.0
~

≈eqK  is a shape factor related to the pillar geometry. 

Recalling that MPa3=E , 5.0=ν  and 2/16 mmJ≈∆γ , the calculated critical 

stress is MPa33.0≈Iσ . We may compare these results with the 

measurements reported on the same microstructures [see Figure 1(b)] by 

Gorb et al. [33], where a surface with diameter mm9.2=d  is covered with 

the mushroom-shaped pillars and presents a coverage factor %40=α  

[Figure 1(b)]. They measured on clean surfaces a pull-off force mN350≈outF  

, whereas our estimated pull-off force is ( ) mN3404/ 222 ≈= iIeout RRdF πσα  in 

very good agreement with the experimental value. Of course the presence of 

impurities or defects at the interface may change the scenario and, in 

particular, may switch the debonding mechanism from mode I to mode II 

[30] and determine a reduction of the critical debonding stress. 

The above results [see Equation 10] show that the critical stress for mode 

I debonding rapidly increases as the shape factore eqK
~

 decreases. In 

principle Iσ  should diverge when the shape factor eqK
~

 goes to zero, i.e. 

when the stress singularity at the pillar edge vanishes. In this case, for soft 

materials [30], the mode II mechanism should become the dominant one. 

Noticing that, on smooth and clean surfaces, the mode II debonding 

mechanism is activated by stress aided thermal fluctuations (see Sec. 7 and 

Ref. [30]), this should lead to very high adhesive forces. However the 

presence of stress peaks at the interface weakens the adhesion of the pillar to 

the substrate and should be avoided. Therefore, an optimally designed 

mushroom pillar should prevent the formation of stress intensification at the 

interface. This can be achieved, by properly engineering the geometry of the 

terminal plate and, in particular, by choosing the dimensionless quantities 

iRs /  and ie RR /  to guarantee an almost uniform stress distribution in the 

central part of the pillar iRr <<0  and a vanishing stress at the edge of the 

contact. 
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The FE analysis hereafter presented, has been carried out to investigate 

the influence of the two parameters ie RR /  and iRs /  on the stress 

distribution under the plate. 

Figure 8 shows the reduced normal stress distribution 0/σσ zz  at the 

interface between the mushroom shaped pillar and the rigid substrate, as a 

function of iRr / , for three different values of ie RR / , i.e. 2/ =ie RR  (a), 

3/ =ie RR  (b) and 4/ =ie RR  (c). Results confirm what has been qualitatively 

discussed in Sec. 3. Indeed calculations show that, thick plates present a 

square root flat-punches at the edge of the contact. On the other hand, for very 

thin plates a stress peak appears at iRr = . The physical reason behind this is 

very simple. When the thickness of the plate is very thin, the presence of the 

plate itself negligibly modify the stress distribution which would be 

observed if the plate were completely absent, i.e. in the case of a flat punch 

micropillar. But, flat punch pillars present a square root singularity of stress 

distribution at iRr = . 
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Figure 7-8. The reduced normal stress distribution 0/σσ zz  as a function of iRr / , for 

2/ =ie RR , (a); 3/ =ie RR , (b); and 4/ =ie RR  (c). For 2/ =ie RR  (or smaller) and 

0.2< iRs / <1 the stress increases at the external perimeter of the plate. For thinner plates 

( iRs / <0.2), on the contrary, a stress peak appears at the internal radius iR . At larger values 

of ie RR /  it is possible to find optimal configurations with iRs / ≈0.2-0.3. In this case the 

singularity at the eRr =  almost disappears as well as the stress peak at iRr = . 

Thus, thin plates will be only able to slightly smoothen the stress 

singularity, without making the peak disappear. On the other hand, very 

thick plates behave as flat punch pillars of radius eR  and the stress 
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singularity will then appear at eRr = . The plate thickness is therefore the 

very crucial quantity that must be controlled to optimize the adhesive 

performance of the system. However, for 2/ =ie RR  [Figure 8(a)] it is not 

very easy to find the optimal value of iRs /  that guarantees zero stress at 

eRr =  and avoids the stress peak at iRr = , a good value is 2.0/ =iRs . For 

larger values of ie RR /  [Fig. 8(b)-(c)] this optimal choice can be identified 

with 3.0/ ≈iRs . In conclusion the optimized geometry should be 

characterized by 3.02.0/ −≈iRs  and values of 2/ ≥ie RR  and preferably 

close to 3 . Values of ie RR /  much larger than 3  should be avoided since 

they might reduce the coverage factor of the surface and worsen the 

performance of the whole adhesive (see below). 

Recalling that for a cylindrical micropillar of radius iR  the mode I 

debonding stress is ( ) ( )[ ] ( )[ ]λπγσ iFPeqFPI REEK
∗∗ ∆= /

~
/1 , we can easily 

calculate for the case of a mushroom shaped pillar with internal radius iR  

the stress enhancement factor 

( )
( )

eq

FPeq

FPI

I

K

K
~

~

=
σ

σ
 (11) 

which provides a measure of how much the presence of the terminal plate 

is beneficial in enhancing the adhesive performance. Figure 9 shows, under 

the assumption 5.0≈λ , the debonding maps for different type of 

micropillars: (i) flat punch shaped pillar, (ii) the non-optimized mushroom 

shaped pillar, and (iii) the optimized mushroom shaped pillar. We recall that 

the mode III debonding mechanism shown in Figure 9 is due to the 

achievement of the theoretical contact strength ργσ /∆=III  where nm1≈ρ  

is the typical range of van der Waals forces (for more details see Ref.[30]). 

In Figure 9, the quantities γρπ ∆= ∗ /½ 2EaC  and ])
~

(/[
22
FPeqC KER γπρ ∆= ∗  are 

respectively a reference defect size, and a reference pillar radius. Assuming, 

as before, 2/16 mmJ≈∆γ , 5.0=ν , ,3MPa=E  and recalling that nm1≈ρ  we 

calculate nm39.0=Ca  and nm2=CR . For the mushroom shaped pillar [see 

Figure 9(b)], the real debonding mechanism, given the defect size, depends 

on ratio ( )
FPII σσ / . 
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Figure 7-9. The map of debonding mechanisms for a flat punch shaped pillar, (a); the 

modified map for a non-optimized mushroom shaped pillar, (b); the debonding map of an 

optimized mushroom shaped pillar, (c). The quantities γρπ ∆= ∗ /½ 2EaC  and 

])
~

(/[
22
FPeqC KER γπρ ∆= ∗

 are a reference defect size and a reference pillar radius 

respectively. 

In particular, for a possible optimal pillar shape 3/ ≈ie RR  and 3.0/ ≈iRs , 

we calculate ( ) 31032.0/ ×≈
FPII σσ , so that the mode I debonding will occur 

for pillars of radius ( )[ ] mm2.0/
2

=×≥ CFPIIi RR σσ , i.e. for optimally 

designed mushroom shaped micro-pillars with mµ10≈iR  and 3/ ≈ie RR  
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mode I debonding mechanism cannot take place [see Figure 9(c)]. Our 

predictions are confirmed by some experimental results [21]. 

Therefore we may propose a design rule of mushroom shaped micro-

pillars. Indeed, on basis of our analysis the optimal pillar should be 

fabricated in such a way to fulfill the following geometrical constraints: 

3/2 ≤≤ ie RR  and 3.02.0/ −≈iRs . Recently, Aksak et al. [46] have 

investigated the adhesion mechanism of bio-inspired mushroom shaped 

pillars by implementing the Dugdale-Barenblatt cohesive zone model into 

FE calculations. In their geometry, they introduce a wedge angle θ  in the 

mushroom plate zone in contact with the substrate, which is considered as an 

optimization variable, together with the ratio ie RR / . They find the optimal 

mushroom shaped pillar configuration with 2.11.1/ −=ie RR  and °= 45θ , 

which is different by our results, i.e. 3/2 ≤≤ ie RR . However, as also 

stressed by Aksak et al. [46], the two models present some differences in the 

model geometry (we only consider the case °= 90θ ), optimization function 

(their optimization function is the pull-off stress per unit contact area of a 

single fiber) and adhesion modeling (they neglect fracture Mode II). 

1.5 Interfacial entrapped air 

Often during the approach of the adhesive to the substrate, air bubbles 

may remain entrapped at the interface. This may lead to a strong reduction of 

the adhesive performance, which need to be investigated. In order to carry 

out the analysis the total energy change of the system when a bubble of air is 

present at the interface must be precisely calculated. We assume that the 

bubble of air is much smaller than the diameter and height of the pillar so 

that one can treat the pillar as an elastic half-space in contact with a rigid flat 

surface. Assuming isothermal conditions and a constant uniform asymptotic 

far field tractive stress σ , the equilibrium of the system can be sought by 

requiring that the total free energy at the interface (i.e. the interfacial Gibbs 

energy) is stationary. Given the defect size and assuming the material linear 

elastic, the calculation of the energy change of the system must consider four 

different contributions (see also [47] for a different derivation): (i) the 

contribution to the interfacial elastic energy due to the asymptotic applied 

uniform tractive stress σ , (ii) the contribution to the interfacial elastic 

energy due the air pressure p , (iii) the internal energy of the air bubble, (iv) 

the variation of surface energies due to the presence of van der Waals forces. 

Let us consider the system shown in Figure 10 where the bottom (initially 

flat) surface of an elastic half-space is glued to a rigid plate except on a 

circular region of radius a . Let us displace the rigid plate of a quantity 0u  

(see Figure 10) so that a small void is formed at the interface. Assume that 

the air pressure in the void is p . 
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Figure 7-10. The displacement, gap and stress distributions involved in the calculation of the 

free interfacial energy. 

To calculate the elastic energy of the system, let us first observe that the 

contact problem may have an equivalent formulation in terms of interfacial 

elastic energy, i.e. in terms of the amount of elastic energy stored at the 

interface as a consequence of local interfacial deformations [48]. 

Accordingly, the elastic interfacial energy is [48] 

( ) ( ) ( )[ ]xxx zzzz uuxd −= ∫ σ2

2

1
E  (12) 

where x  is the in-plane position vector, ( )xzzσ  is the non-uniform normal 

interfacial stress, ( )xzu  is the local normal displacement of the surface, and 

( )xu  is the average displacement at the interface (the symbol ⋅  is the 

average operator). Considering that because of force balance the uniform 

stress σ  at infinity is ( )xzzσσ =  one can rephrase Eq. (12) as 

( )[ ] ( )xx zzz uxd σσ −= ∫
2

2

1
E  (13) 

Now let us define (see Fig. 10) the gap distribution ( )xv  as 

( ) ( )xx zuuv −= 0 . Of course ( ) 0≠xv  on the circular region of radius a , 

whereas it vanishes elsewhere. Using ( )xv  and considering that ( ) pzz −=xσ  

for a<x , Equation 13 becomes 
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( )Vp σ+=
2

1
E  (14) 

where ( )xxvdV 2
∫=  is the volume of the air bubble. The total Helmholtz 

free interfacial energy F  is then the sum of the elastic interfacial energy, the 

free internal energy ( )000 /ln VVVpU A −=  of the entrapped air, and the 

surface energy, i.e. 

( ) ( ) ( ) γπ ∆++= 2,, aVUaVaV AEF  (15) 

From thermodynamics one concludes that under constant bubble volume 

V  the equilibrium of the system corresponds to the stationary values of the 

energy F . However, in our analysis we, instead, keep constant the 

asymptotic load ( ) σσ =x . In this case the equilibrium of the system 

corresponds to the stationary values of the interfacial Gibbs energy ( )a,σG . 

Following the standard approach of thermodynamics [49], we obtain ( )a,σG  

by enforcing a Legendre transformation, i.e. 

( ) ( ) V
V

aVa
a∂

∂
−=

F
FG ,,σ  (16) 

Observing that σ+=∂∂ pV
a

/E  and pVU
aA −==∂∂ / , one yields the 

required expression for the interfacial Gibbs energy G , i.e. 

( ) ( ) γπσσ ∆++−=∆= 2

2

1
, aUVpUa AtotG  (17) 

Beside Equation (17) the two additional equations are needed 

00VppV =  (18) 

And 

( )p
E

a
V +=

∗
σ

3

8 3

 (19) 

Equations (18), (19) allow to calculate the quantity V  and p  as a 

function of the radius a  of the non contact circular area. Therefore, the total 

energy change totU∆  given by Equation (17) finally depends only on the 

applied constant stress σ  and the size of the voids a . By following a similar 

approach as in JKR theory [50], requiring that 0/ =∂∆∂
σ

aUtot  allows to 
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calculate the values of a  at equilibrium, given the applied uniform stress σ . 

The critical pull-off stress crσ , which destabilize the defect and causes the 

detachment of the pillar from the rigid flat substrate, is determined by 

requiring that at equilibrium the relation 0/ 22 =∂∆∂
σ

aUtot  is also satisfied. 

The above equations can be rephrased in a dimensionless form. To this 

end let us define the adhesion length ∗∆= E/γδ  and the dimensionless 

quantities ∗= E/~ σσ , ∗= Epp /~ , δ/~ aa = , 3/
~

δVV = . The dimensionless total 

energy change of the system is therefore ( )∗∆=∆ EUU tottot
3/

~
δ , where 

( )( ) 3~~~3/8
~

apV += σ  and 00

~~~~ VpVp = . 

We assume that the environment pressure is bar1 , so that the initial 

pressure of the entrapped air bubble is also MPa1.00 =p . We also notice that 

the asymptotic applied stress σ  is 00 p−= σσ , where AP /0 =σ  is the 

external applied average stress, P  the applied load and A  the cross section 

area of the pillar. Figure 11 shows the total dimensionless energy change 

totU
~

∆  as a function of the dimensionless radius a~ , for different values of the 

initial dimensionless size 0
~a  of the void. In our calculations we have used 

MPa2.0=σ  (i.e. MPa3.00 =σ ), 2/16 mmJ≈∆γ , MPa3=E  and 5.0=ν . The 

figure shows that for any value of 0
~a , two equilibrium conditions exist, i.e. 

the stable state (energy minimum) and the unstable state (energy maximum). 

However, as expected, when the asymptotic applied stress is zero or even 

negative only a stable equilibrium state must be present (see the black line in 

Figure 11 with 100~
0 =a  and 0

~~ p−=σ , i.e. 0~
0 =σ ). When an external stress 

0>σ  is applied, an energy barrier must be exceeded in order to destabilize 

the system. 

 

Figure 7-11. The dimensionless total energy totU
~

∆  as a function of the radius of the 

detached area a~ , for three different values of the initial radius 0
~a , given the same value of 

dimensionless stress 035.0~ =σ  (blue, red and green curves). Increasing 0
~a  determines a 

decrease of the energy barrier totU
~

∆  between the stable and unstable equilibrium states. The 

solid black curve represents the total energy as a function of a when the pillar is subjected to 

the environment pressure only, i.e. 0
~~ p−=σ , and for 100~

0 =a . Notice that in this case 

there is only one equilibrium condition at aa =0
~

 which is necessarily stable. 
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The energy barrier BU

~
∆  in this case is defined as the difference between 

the energy value of the unstable equilibrium state and the energy value of the 

stable equilibrium state. From Figure 11, given the same applied stress, one 

observes that the energy barrier BU
~

∆  decreases as the initial radius 0
~a  of the 

bubble (i.e. its initial volume) is increased. When 0
~

=∆ BU , i.e. when 

0/ =∂∆∂
σ

aUtot  and 0/ 22 =∂∆∂
σ

aUtot , the critical defect size ( )
cr

a0
~  is found 

which prevents the pillar from adhering to the substrate. 

Given the initial defect size 0
~a , one may also analyze what happens when 

the applied stress σ  is increased. In particular, Figure 12 shows that, for a 

fixed value of the radius 0
~a  (we have considered mµ6.00 =a , i.e. 150~

0 =a ), 

when the applied stress σ  increases an unstable equilibrium state appears, 

which is again separated from the corresponding stable equilibrium by an 

energy barrier BU
~

∆ . As the stress σ~  is further increased, the energy barrier 

BU
~

∆  decreases and vanishes at a certain stress level crσ~  (the so called 

critical pull-off stress) at which the air bubble of initial size 0
~a  is 

destabilized and the pillar detaches from the substrate. 

 

Figure 7-12. The dimensionless total energy totU
~

∆  as a function of the radius of the 

detached area a~ , for four different values of the applied stress σ~ , and for 150~
0 =a . 

Increasing σ~  determines a decrease of the energy barrier totU
~

∆  between the stable and 

unstable equilibrium states until it vanishes and the air bubble is destabilized. 

It is interesting now to compare the critical stress in case of solid defects 

of size Sa  (dust particles, impurities, etc.) ( )[ ] 2/1
2/ SII aE∗∆= γπσ  with the 

critical pull-off stress crσ  obtained in the case a bubble of air entrapped at 

the interface. The comparison must be carried out assuming that, at 0
~~ p−=σ  

(i.e. 0~
0 =σ ), the (dimensionless) size a  of the air bubble at equilibrium is 

identical to the (dimensionless) solid defect size, i.e. Saa ~= . Figure 13 

compares the critical stress 00
~~~ pcrcr += σσ  in the two cases as a function of 

the radius a . 
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Figure 7-13. The dimensionless external critical stress 00
~~~ pcrcr += σσ  as a function of the 

air bubble or solid particle size a (see text for more details). The blue curve refer to the air 

bubble case, the black curve to the interfacial solid particle case. 

We observe that, in the case of air bubble, the debonding stress cr0
~σ  is 

always significantly smaller than the one obtained in the case of solid defect 

nucleation process s with a reduction of about 35-40% over the entire range of 

defect size considered in the calculation, i.e. mµ44.0~ −== Saa . Indeed, 

micro-air bubbles weaken the adhesive link between the pillar and the rigid 

substrate more than the presence of external particles, since their gas 

pressure exerts an additional debonding force and reduce the suction effect 

which contributes to keep the pillar in contact with the substrate. This 

represents a practical problem during fast attaching-detaching of this kind of 

microstructure, since in this case the entrapment of air can hardly be 

avoided. 

1.6 The influence of non-uniform pillar height 

distribution 

Cylindrical or mushroom-shaped micropillars have been employed to 

fabricate microstructured highly-adhesive glue-free surfaces. However, 

during the fabrication process it is very complicated to exactly control the 

height of each single pillar, i.e. some pillars will be taller and other smaller 

than the nominal height (see Figure 14). 
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Figure 7-14. A microstructured surface covered with mushroom-shaped pillars. Some pillars 

are taller and others smaller than the nominal height. The nominal pillar height is l , the 

actual height h  of the pillar can be written as zlh += . 

Here we analyse the effect of non uniform pillar height distribution. 

Referring to Figure 14 we assume that the nominal pillar height is l , then 

the height h  of the pillar can be written as zlh += , where we assume that 

the distances z  are distributed according to a Gaussian probability density 

distribution  

( )















−=

2

2

2 2
exp

2

1

z

z

z

zp

π
 (20) 

where  is the statistical average operator, and 2z  is the mean 

square distance. Now assume that, after preloading, all pillars come into 

contact with the substrate. Therefore, assuming that the substrate is located 

at a distance s  from the mean plane 0=z , we can calculate the force needed 

to elongate the fibre as 

zl

zs
ERF

+

−
= 2π  (21) 

where R  is the circular radius of the pillar cross section. Observe that the 

force F  increases with zs −  up to the limiting pull-off value IIout RF σπ σ
2=  

at which the pillar will detach from the substrate. Also observe that if the 

quantity zs −  is less than zero then a compressive (negative) force will act 

on the pillar, and this compressive force will increase as zs −  is decreased 

down to a limiting (negative) load BF , which causes the elastic buckling of 

the pillar 
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( )[ ]22 2/ zlEJFB +−= π  (22) 

where 4/4RJ π= . We assume that below this value the pillar is not able 

to support the load. Thus, we can calculate, as a function of s , the range of 

distances z , that will contribute to the total force acting on the 

microstructured surface. By requiring that outB FFF << , one obtains 

( ) ( )szzsz maxmin <<  where  

( )
1

2

2

2

2

min 1

−
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max π  (24) 

and the average stress ( )sσ  in units of E  at equilibrium is 

( )
( )

( )
( ) dz

zl

zs
zp

E

s sz

sz +

−
= ∫

max

min

σ
 (25) 

Let us consider, as before, the case of a microstructured surface made of 

PVS ( 2/16 mmJ≈∆γ , MPa4=∗E ) covered with mushroom-shaped pillars 

with internal radius mµ5.12=R  and nominal pillar height mµ100=l  [33]. 

Assuming a limiting pull-off stress MPa26.0≈IIσ  (see Sec. 3), we obtain the 

average stress ( )sσ  in units of E  as a function of the dimensionless 

separation ls /  for different values of the reduced root mean square (rms) 

distance lz /
2/1

2  as shown in Figure 15. 
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Figure 7-15. The mean stress ( )sσ  in units of the elastic modulus E  of the material, as a 

function of the dimensionless separation ls /  for different values of the quantity reduced root 

mean square (rms) distance lz /
2/1

2
. 
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Figure 7-16. The maximum average stress 
max

σ  (in units of the elastic modulus E ) as a 

function of lz /
2/1

2
. 

Figure 15 shows the strong reduction of the average stress ( )sσ , which 

occurs as the quantity lz /
2/1

2  is increased. In particular the maximum 

dimensionless pull-off stress E/
max

σ  can be plot as a function of 

lz /
2/1

2 . Figure 16 shows, indeed, that a value of the rms distance 
2/1

2z  

equal to %1≈  of the nominal height l  is already enough to produce a 

decrement of the pull-off stress of about %20≈ . 

1.7 Stress aided thermally activated defect nucleation 

The above calculations have been carried out for cases where defects are 

already present at the interface between the micro-pillars and the substrate. 

However, in some conditions the surfaces may be very clean and very 

smooth. When this happens one may be tempted to conclude that, not 

depending on the type of pillar we are considering, mode II debonding 

mechanism can never occur. In particular one would expect that flat-punch 

pillars would detach by following mode I or mode III mechanisms, whereas 
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mushroom-shaped pillars would detach by following mode III only. 

However, in this section we show that this is not true and that mode II 

remains a possible debonding mechanism since defects at the interface may 

be formed as a consequence of a stress aided thermally activated nucleation 

process. Indeed, thermal fluctuations are always able to overcome the stress 

dependent energy barrier ( )4233 12/ σγπ ∗∆=∆ EU B  (see [30]) and nucleate the 

defect. Statistical mechanics shows that the rate w  at which these 

fluctuations occur depends on the energy barrier BU∆  through the Maxwell-

Boltzmann equation ( )TkUw BB /exp ∆−=ν , where T  is the temperature of 

the system, 11410 −≈ sν  is a very large prefactor related to the high entropy 

associated with placing the nucleus in many different places on the contact 

area [10] and Bk  is the Boltzmann constant. We observe that, increasing the 

applied stress determines a strong reduction of the energy barrier BU∆  and 

therefore an increase of the nucleation rate. Of course, if the applied stress is 

small one must wait a long time before the first nucleus is formed and pillar 

detachment can be observed. 

 

Figure 7-17. Map of debonding mechanisms for a flat-punch shaped micropillar in contact 

with perfectly clean and smooth substrates. 

However, as the applied stress is increased, defect nucleation and pillar 

detachment will occur on shorter time intervals and will become observable 

when these time intervals will reach values of order s1  or less, i.e when the 

nucleation rate w  is equal to or smaller than Hz10 ≈w . When this happens 

the stress-dependent energy barrier takes the value ( )0/ln wTkU BB ν=∆ . At 

room temperature, i.e. K300=T , one obtains eV1≈∆ BU . 
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This means that mode II debonding mechanism can be observed, even in 

case of perfectly smooth and clean surfaces, when the applied stress is large 

enough to reduce the energy barrier against nucleation at values equal to or 

smaller that eV1≈∆ BU . From BU∆  one can calculate the critical external 

stress IIσ  which activates the stress aided thermally activated debonding 

mechanism of type II: 

4/1
233

12 











∆

∆
=

∗

B

II
U

Eγπ
σ  (26) 

For the case of PVS micropillars under consideration one obtains 

=IIσ MPa5 . This value is relatively large and may be even larger than the 

rupture stress of the fibre. This of course means that soft micropillars might 

be, in principle, ripped off before mode II debonding can take place. Now, 

neglecting other forms of failure, and concentrating only on interfacial 

detachment, one can produce a new map of debonding mechanisms for the 

case of flat-punch shaped micropillars in contact with clean and smooth 

surfaces. 

This new map is shown in Figure 17, where 

2/1
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Recalling that eV1≈∆ BU , and that for PVS micropillars 2/016.0 mJ≈∆γ  

and nm1≈ρ  one obtains that the stress-aided thermally activated nucleation 

at the interface is energetically more favorable than uniform decohesion 

(mode III) when MPa31=< ∗∗
CEE . Hence, in case of PVS ( =∗

E MPa4 ) flat-

punch shaped micro-pillars we expect that only mode I and mode II 

debonding mechanisms can be activated. To find which one is the real 

mechanism it is enough to observe that mode I mechanism occurs when 

III σσ < , which gives 

γπ ∆

∆
=> B

C

U
RR

5

768
 (28) 

Being 2/016.0 mJ≈∆γ , we obtain nm5≈CR  which simply means that, 

even in case of contact with perfectly smooth and clean surfaces, man-made 

flat-punch shaped PVS micropillars (size of order mµ10  [33]) always detach 

from the substrate by following the mode I debonding mechanism. 
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Figure 7-18. Map of debonding mechanisms for an optimally designed mushroom shaped 

micropillar in contact with a perfectly clean and smooth substrate. 

However the presence of an optimally designed annular plate inhibits 

mode I failure mechanism, thus, in the case of mushroom-shaped pillar in 

contact with perfectly smooth and clean surface, the map of debonding 

mechanisms changes as shown in Figure 18, from which one concludes that 

relatively soft mushroom-shaped pillars detach at much higher stress because 

of stress aided thermally activated defect nucleation (mode II mechanism) 

even in case of clean and smooth surfaces. 

1.8 Adhesion Tilt-Tolerancy 

Mushroom-shaped contact elements have been independently developed 

at the macro-, micro-, and nano-scale in the evolution of many organisms 

from different lineages (animals, plants, fungi, and bacteria) living in both 

terrestrial and aquatic environments [28]. This specific geometry is able to 

stay passively adhered without external effort and is mainly related to long-

term and permanent adhesion of organisms [28]. Thus, one may assume that 

mushroom-shaped contact elements adhering to a substrate should be 

tolerant to changing and varying load conditions as, e.g., life in wave-swept 

seashores (e.g. sea anemones) and the lond-term pairing process in some 

organisms. 

However, in biological systems, the load conditions can strongly vary in 

different environmental and behavioural situations. That is why one may 
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hypothesize that this particular contact geometry is not only optimized to 

normal adhesion, but is also tolerant to the angle of applied pull off force. 

In order to test the hypothesis that this contact geometry is tolerant to 

varying load conditions, in Ref. [51] adhesion experiments of individual 

mushroom-shaped adhesive microstructures (MSAMSs) have been 

considered, see Figure 19(a), pulled under different tilt angles. 
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Figure 7-19. (a) Geometry of an individual MSAMS used in the experiments and calculations 

with a circular area of radius dR  detached from the substrate at the center of the pillar. P , 

applied force at various tilt angles; iR , internal neck radius; eR , external thin contact plate 

radius; PR , stalk radius. (b) Schematic of the experimental setup. FMS, force measuring 

system; S, sample; GS, glass slide; OI, oil immersion; L, lens; LS, light source; MI, mirror; 

BS, beam splitter; HC, high-speed camera. 

In the experiments four individual MSAMSs, denoted by sample 1-4, were 

detached from a smooth glass slide under different tilt angles 

{ }ooooo 45,10,0,10,45 −−=α  simultaneously recording the failure dynamics. 

Individual MSAMSs were cut off from the Gecko-Tape (Gottlieb Binder 

GmbH & Co. KG, Holzgerlingen, Germany) with a thickness of the 

supporting poylmer film of about 900 µ m. Pull-off forces zP  [z direction 

only, see Figure 19(b)] were measured using a force measuring system 

(FMS) consisting of a tensometric force transducers FORT-10 (World 

Precision Instruments Inc., Sarasota, Florida) fixed on a three-axis 

micromanipulator F-131.3SS (Physik Instrumente GmbH & Co. KG, 

Karlsruhe, Germany). The FMS was installed on an inverse microscope 

Observer.A1 (Carl Zeiss MicroImaging GmbH, Göttingen, Germany) 

observing the detachment behavior with an attached high-speed camera 

Photron Fastcam SA1.1 (VKT Video Kommunikation GmbH, Pfullingen, 

Germany). Figure 19 (b) shows the schematic of the experimental setup. To 

be able to repeatedly attach and detach samples, individual MSAMSs were 

glued to the force transducer. To ensure parallel alignment between samples 
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and the glass slide, individual MSAMSs were first attached to the glass slide 

manually using tweezers observing the proper contact via the microscope. 

Then, attached to the glass slide samples were withdrawn at a retraction 

velociy of m/s 10 µ=zv  normal to the glass slide (z direction). In order to 

pull under different tilt angles a velocity αtanzx vv ±=  in the x direction [see 

Figure 19(b)] was superimposed on zv . 

Figure 20 (a) shows the experimentally obtained pull-off forces zP  for 

the different tilt angles α  normalized by ( )o00 =≡ αzPP . Except for an 

outlier (sample 2, o45−=α ), normalized pull-off forces scatter surprisingly 

only by about ±  10% around 0P  for all angles measured without certain 

trend. 

 

Figure 7-20. (a) Normalized pull-off forces 0/ PPz  for different tilt angles α obtained from 

experiments. (b) Normalized pull-off forces obtained by FEM calculations (solid line) and 

theoretical prediction (dashed line). 

We have carried out a Finite Element analysis of an individual MSAMS 

shown in Figure 19 (a) with the aim of calculating the critical stress at which 

the MSAMS is pulled off from the substrate, due to the presence of a circular 

detached area at the interface of radius dR , located close to the pillar axis 

[Figure 19(a)]. We have employed a mesh made of SOLID45 elements 

(penta6 and hex8 types have been used) with very high density close to those 

regions of the interface where singular stress behavior is expected, i.e. 

mainly at the perimeter of the circular defect [45]. A numerical value of the 

radius mµ3=dR  has been estimated from experimental observations of 

typical defects size [52]. The pull-off load and stress intensity factors I
K  

and II
K  are calculated following the procedure described in Section 1.4. 

Observe that, this time, because of load tilting [see Figure 19(a)] I
K  and 

II
K , are not uniform on the perimeter of the detached area [Figure 19 (a)]. 

The most critical condition is therefore reached at point A in Figure 19(a). In 

Figure 20(b) we show the results of our FE simulations, in terms of 
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normalized pull-off force 0/ PPz  (solid line), for different tilt angles of the 

external applied load, i.e. { }ooooo 45,10,0,10,45 −−=α . 

The FEM calculation have been carried out under the assumptions of no 

slip at the interface. However, experiments in Ref. [52] and high-speed video 

observations of the contact behavior in Ref. [51] show that slip actually 

occurs at the interface (5 µ m) with a certain amount of friction. Therefore 

we also considered a different approach to calculate the pull-off force. To 

this end, first observe that, in absence of any defect, an optimized MSAMS 

[44] (i.e. the interfacial stress at the interface does not show any singular 

behaviour or any strong peak), presents an almost uniform normal stress 

distribution zzσ  in the central part of the contact. However, because of 

tilting, additional stress components will appear at the interface. In fact, 

tilting produces three types of stresses as shown in Figure 21: i) the almost 

uniform normal stress zzσ , ii) the tangential stress zxσ , and iii) a triangular 

stress distribution T
zzσ . Notice that if the defect is located relatively close to 

the center of the pillar the triangular stress distribution T
zzσ , caused by 

bending, is very negligible compared to zxσ  and zzσ . Therefore, we expect 

that, in presence of central defect, the dominant contribution to eqK  will 

come from the stresses zzσ  and zxσ . We notice that the stress zxσ  is not 

uniformly distributed at the interface however a rough estimation I
K  and 

II
K  can be done assuming that zxσ  is constant at the interface. 
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Figure 7-21. The three types of stress distributions under the plate due to the external tilted 

force F applied to the pillar: the uniform normal stress Mzσ , the tangential stress Mxσ , and 

the triangular stress distribution 
T
Mzσ . 
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In this case the pull-off force zP  can be estimated observing that under 

tilted-load conditions the central defect resembles the case of a penny-

shaped crack subjected to the combination of two remote loads: (i) a pure 

traction [53], and (ii) a pure shear load [54]. One then can use the 

superposition principle to combine the two stress states. The stress intensity 

factors relevant for pull-off calculations are: (i) IKK max=⊥  for remote 

traction load, and (ii) ( ) ( )22 IIIII
II KKK +=  for shear mode. ⊥K  and IIK  

can be estimated as 

ασ
π

2cos2 T
dR

K =⊥  (29) 

( )
( )ασ

πν
2sin

2

2
T

d
II

R
K

−
=  (30) 

where ν  is the Poisson's ratio, ∞= σσ fT  is the equivalent remote total 

stress at the interface, ( ) 1/
2

>≈ iP RRf  is a factor which takes into accout 

that Tσ  and ∞σ  cover different areas [see Figure 22 where PR  is the pillar 

radius and iR  is the neck radius], and α  is the tilting angle. 
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Figure 7-22. The normal stress distribution 0σ  under the mushroom shaped pillar with the 

neck and the normal stress distribution Mσ  under the modified pillar. 

The accurate value of f  has been calculated from the FE analysis for 
°= 0α . Incidentally observe that IIK  is uniform on the perimeter of the 
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defect [54]. The equivalent stress intensity factor is in this case 

22
IIeq KKK += ⊥  and enforcing the Griffith 

condition γ∆== ∗
EKG eq 2/

2 allows the calculation of the z  -component zP  

of the pull-off force for different tilting angles α  through eq. 

α
ν

α
α cos

2

2sin
cos

1
2

4

0

−





















−
+=

P

Pz  (31) 

Figure 20 (b) (dashed curve) shows the results of Equation 31 compared 

to FE predictions. We observe that for tilting angles α  ranging within o20±  

FE calculations and Equation 31 are in very good agreement. However, the 

difference is no longer negligible at high tilting angles meaning that the 

effect of the two different assumptions (no slip for FE calculations and 

uniform frictional stress for analytical calculations) becomes relevant. 

Comparison with experiments shows that the analytical approach (Equation 

4) is more effective that FE model to capture the slight dependence of zP  on 

α . 

We observe that, the marginal influence of tilting on pull-off force, 

proved by experiments and numerical/theoretical calculations, is strictly a 

consequence of the optimal geometry of the pillar which prevent the 

formation of singular stress distribution at the edge of the contact area, i.e. at 

the perimeter of the plate, see Figure 22 (a). Indeed, non-optimal geometries 

as the one shown in Figure 22(b) will lead to the occurrence of stress 

singularity at the edge of the plate, that will detach following the mode I 

behavior (i.e. crack propagation from the edge) described in Ref.30. This of 

course will very significantly increase the sensitivity of pull-off force on 

tilting because of the appearance of triangular normal stress distribution at 

the interface, which will take its maximum values at the edge of plate and 

will strongly enhance the maximum value of the stress intensity factor at the 

perimeter of the plate. 

Another important question concerns the effect of the neck on tolerance 

to tilting of mushroom shaped pillars. Indeed, the crucial role of the neck is 

that it strongly reduces the bending stiffness of the pillar itself. This makes 

the pillar much less sensitive to the force tilting. In fact, when an external 

tilted force is applied, a certain amount of tilting will also occur [Figure 23], 

leading to a reduction from α  to α ′  of the angle between the applied force 

and pillar axis, i.e to a reduction of the lever arm. For high bending stiffness 

(i.e. pillar without neck) the change αααα ≈′−=∆  and a strongly 

detrimental triangular stress distribution will appear at the interface and may 

cause (even for optimized geometry) the occurrence of mode I debonding. 

On the other hand, the presence of the neck, may strongly reduce the 
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stiffness and, in the limiting case of very high bending compliance, 

αααα ≈′−=∆ , i.e 0=′α . This causes an almost complete vanishing of the 

triangular stress distribution at the interface thus keeping the high values of 

pull-off force of mode II debonding mechanism. 
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Figure 7-23. Due to the presence of the neck, the bending stiffness of the pillar decreases. 

Therefore, when a tilted force F is applied to the pillar, a small tilting of the pillar can be 

expected. 

So far we have assumed a crack to appear in the center of the contact 

interface between MSAMS and the substrate. This assumption may not 

always hold in real experiments [52]. However, in light of above mentioned, 

a reduction of or a vanishing triangular stress distribution would also allow 

MSAMS with eccentric cracks to detach by the high values of pull-off force 

of mode II. Thus, the presence of a neck (or joint-like feature) provides tilt-

tolerant adhesion also under experimental conditions.  

Moreover, a neck may also offer further advantages. Structures with a 

neck not only provide tilt-tolerant detachment, but could also assist 

attachment. The reduced bending stiffness would allow for a better 

adaptability to uneven and non-parallel substrates compared to MSAMS 

without neck or a flat punch. In addition, recent experiments suggest that a 

neck makes MSAMSs also tolerant to high compressive loads. In situ 

scanning electron microscopy (SEM) obersavtions of the contact behavior of 

MSAMSs indicated that the thin contact plate remained in contact, although 

MSAMS were buckled [21]. By contrast, flat punch pillars were shown to 

lose adhesive contact to the substrate at a critical load [56]. 
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1.9 Conclusions and outlook 

We have reviewed the main detachment mechanisms of microstructured 

adhesives made of regular arrays of micropillars and shown how mushroom 

shaped micropillar can be optimally designed to strongly enhance the 

performance of this type of biomimetic adhesives. Although these optimized 

systems present pull-off forces which may be even larger than those obtained 

in the case of biological systems (e.g. geckos and beetles), they present 

direction-independent adhesion, i.e. the strength of adhesion is the same not 

depending on the direction of the applied load. This is an important 

drawback when the goal is related to applications in the field of locomotion 

and object manipulation. We may say that, notwithstanding the great 

advances in the field of microstructured adhesives, our attempt to copy 

Nature is incomplete. Indeed, a lot of research is still going on and will be 

needed in the future to propose and fabricate bio-mimetic surfaces with 

controlled direction dependent adhesion. 
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