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Abstract—Massive Multiuser Virtual Environments
(MMVEs) are rapidly expanding both in the number of users
and complexity of interactions. Their needs of computational
resources offer new challenges for the computer scientists.
In this paper we present some ideas on the implementation
of a Massive Simulation Environments, a particular MMVE,
distributed over a Peer-to-Peer infrastructure. We analyze
some of the problems related to the workload balancing
on such distributed environments. In particular we discuss
an hybrid Peer-to-Peer architecture in order to provide an
efficient load balancing strategy. By some assumptions on
temporal and spatial coherence, we use a predictor component
which exploits previous phase workload as an estimate for
next phase workload for load balancing purposes.

Keywords-Peer–to–Peer; Massive Simulation; Load Balanc-
ing.

I. INTRODUCTION

Distributed Virtual Environment (DVE) is an emerging

research field which combines 3D graphics, networking and

behavioral animation with the purpose of simulating realistic

and immersive virtual environments offering an high degree

of interactivity. The distributed nature of these systems

widened the scenarios of use that now ranges from online

videogames to serious games for training including online

cooperative systems for learning and problem solving.

DVEs have greatly evolved in past times, so that a new

term has been coined: Massively Multiuser Virtual Envi-

ronment (MMVE) which defines these environments where

hundreds of thousands of actors interact simultaneously.

Recently, World of Warcraft and Second Life, have reached

around 10 million subscribers worldwide and roughly 1
million of active users [1].

The design and management of MMVE, due to their

highly interactive nature, poses many unique challenges

compared to traditional network domains [2]. A single

machine is not able to manage thousands of players at

the same time. So, even if the client/server approach is

quite common for small-size DVEs, it is mandatory for

MMVEs to use the computing power of a group of many

servers with dedicated responsibility. Several approaches

split the responsibilities of the servers in different ways.

For instance, every server can have a different assignment

(communication, artificial intelligence, physics, game state)

or, on the other hand, a single server acts as a factotum

server for a portion of the whole environment (aka shard). In

this case the actors which belong to different shards can not

interact with each other (each shard represent a distinct copy

of the whole environment). Another approach to achieve

scalability is by developing MMVE on top of a Peer-to-Peer

(P2P) infrastructure where the responsibility of maintaining

the whole environment is shared among all its users. In

this approach the workload balancing is essential for both

the overall performance and scalability. In the context of

MMVEs we are interested to Distributed Massive Simulation

Environments (DMSEs), which, for the same reasons, they

appear as a suitable problem that can greatly benefit from

the use of a P2P approach.

A. Massive Simulation Environments (MSEs)

The simulation of groups of characters moving in a virtual

world is a topic that has been investigated since the 1980s

with the purpose of simulating a group of entities, dubbed

autonomous actors, whose movements are related to social

interactions among group members.

Flock simulation: A classical example of use of this

approach is the simulation of a flock of birds in the most

natural possible way. Elements of this simulated flock are

usually named boids (from bird-oid) and got instilled a

range of behaviors that induces some kind of personality.

A widespread approach to this kind of simulations has been

introduced in [3]. Every boid has its own personality (e.g.

the trajectory of its flight) that is the result of a weighted

sum of a number of behaviours. The simulation is performed

in successive steps: at each step, for each boid and for each

behavior in the personality, the system calculates a request

to accelerate in a certain direction in the space, and sums up

all of these requests; then the boid is moved along this result.

The behaviors are, in the most of cases, simply geometric
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calculations that are carried out for each boid considering

the k-neighbors it is flying with: for example the behavior

called pursuit just let the boid to pursuit a moving target (e.g.

another boid). Each boid reacts to its k-neighbors, which

constitute its neighborhood. Given a certain boid out of a

flock of n boids, the most simple way of identifying that

boid’s neighborhood is by an O(n2) proximity screening,

and for this reason the efficiency of the implementation is

yet to be considered an issue.

Massive Battle: Massive Battle [4] is a MSE capable

of animating autonomous actors with the purpose of re-

constructing interactive scenes from a battlefield showing

a number of platoons fighting each others. Massive Battle is

implemented by expanding the boid model in order to reach

an higher degree of realism of the behaviors exhibited by the

actors. Massive Battle uses the boid model as the foundation

on which to build more complex behaviors: the initial idea

of simulating a flock of boids is expanded to simulate a

platoon of soldiers obeying to commands imparted by a

leader. Soldiers are able to march along a path and are also

capable of engaging a fight with enemy platoons (see Fig.

1).

Massive Battle is an example of serious game system that

offers an effective way of simulating historical battles for the

purpose of learning (e.g. providing new insights for battles

to engage students) and to carry out historical researches

(e.g. what-if scenarios). The simulation of historical battles

also imposes some constrains on the number of actors the

system is capable of simulate: as an example the Waterloo

Battle involved ≈ 190000 soldiers, while Massive Battles,

running on an off-the-shelves PC, is capable of simulating

only ≈ 5000 units.

Differences between MMVEs and DMSEs: For the sake

of the discussion it is worth to clearly state the differences

running between MMVEs and DMSEs distinguishing be-

tween the typology of users and the kind of interaction

they get. In an MMVE actors present in the environment

may or not be simulated actors: in the first case they are

usually dubbed NPC (Non-Playing Characters), in the latter

case they are human players. Considering the presence of

human players involved in playing a game, cheating is a

serious issue that must be taken into account. In a DMSE

every actor present in the environment is simulated. Users

connect to the system in order to check how the simulation

is evolving. In MMVE situations of uneven balancing cannot

be foreseen because they strongly depends on how human

players move and act in the environment. In a DMSE the

initial conditions of the simulation are pre-determined, this

is an important factor that can be taken into account: for

example it is reasonable that none of the simulated soldiers

will deliberately wander around the map.

B. Designing a P2PMSE

We intend to expand the number of simulated actors by

Massive Battle by distributing the computational load to

various PCs connected to the system. Each user connected

to the system will have two different subsystems running on

his PC: a simulation engine and a visualization engine. The

simulation engine will take the responsibility of simulating

a small part of the soldiers in the system, while the visu-

alization engine will let the user to choose which part of

the battlefield to visualize. The system architecture is based

on a Distributed Hash Table (DHT) that will let the user to

dynamically connect to the system in a totally distributed

manner: once a new peer is available in the system it will

receive part of the simulation and will receive the updates

from the system.

The visualization engine will let the user to freely place

a camera in the environment and this camera will define

an Area of Interest (AOI). AOI is a fundamental concept,

as even though many actors and events may exist in the

simulated environment, the user, as in the real world, is only

interested by nearby actors or events. AOI thus specifies a

scope for information which the system should provide to

the user. Notice that each subsystem, simulation and visual-

ization, will have its own AOI: the AOI for the simulation,

henceforth neighborhood, is defined by the position of actors

the peer is simulating, the AOI of the visualization is defined

by where the user placed the camera.

II. PEER–TO–PEER BACKGROUND

Peer–to–Peer (P2P) is a class of distributed applications

where each node connected to the system (peer) has the

same responsibility. In a P2P network, all the peers take

advantage of resources, storage, cycles, available at the

edges of the Internet, allowing peers to leverage their col-

lective power to the “benefit” of all. Scalability represents

the main characteristic that marks the diversity of P2P

systems from standard Client-Server architectures. Indeed,

in the latter case, adding more clients represents solely

additional workload for the server(s) and, consequently, less

performances for all the clients. On the other hand, P2P

systems distribute the whole workload, across all the peers

in the network, thus enabling applications to scale without

the need for powerful, expensive servers and, consequently,

overshadow the capabilities of centralized systems with low

costs. Latency on the network is also reduced, thanks to the

absence of bottlenecks.

Several scalable P2P systems, based on a DHT approach,

have been proposed [5], [6], [7], [8]. A DHT is a self-

organizing overlay network that allows to add, delete and

look up hash table elements. These systems provide: (i) effi-

cient resources’ lookup; (ii) load balancing of both resources

and query messages; (iii) dynamic maintenance in presence

of continuous peers join, leave or fail.



Figure 1. Two screenshot of the Massive Battle MSE: on the left two platoons in formation, on the right platoons confronting by using firearms.

However the design of a P2P DMSEs is quite different

from classical P2P applications which are mainly devoted on

sharing files. DHT based system in their simple form may

result in actors, which belongs to the same zone, to be placed

far-apart in the DHT space. Therefore neighbor actors, that

probably will interact with one other, will be conncted via

large distance and multiple hops resulting in high routing

latency and low efficiency. Several approaches [9], [10]

are based on the idea of location aware ID assignment,

where the actors ID are assigned in order to ensure that

actor close in the map are also close in the DHT metric

space. Unfortunately such approaches lead to an unbalanced

distribution of nodes into the key space which harms the

efficiency of the DHT routing algorithm.

The P2P systems offer great benefits in terms of scalability

when compared to classical client/server architectures but

questions about how divide the system workload and how

distribute the workload on the peers are still open topics of

discussion. Several research papers proposed dynamic load

balancing algorithms to relieve the load imbalance in P2P

systems. Most of the papers are based on the concept of

virtual servers proposed in [11]. In this work storage and

routing occur at virtual servers rather than peers and each

peer can host one or more virtual servers. In this scenario

each virtual server maintains a sub-region. When a peer

is overloaded it transfers some of its virtual servers to an

undercharged peer. This decision is based on some peers

that act as load balancer.

In [12] the authors propose a load balancing scheme for

moving objects that are continuously updated by using a

cost model that optimizes the location updates and query

processing. The proposed cost model allows the assignment

of virtual servers from one peer to another peer if the desired

transition optimizes the cost function.

Other papers based on virtual servers are [13] and [14].

In all these approaches, the system dynamically monitors

the workload distribution and moves virtual servers from

overloaded peers to undercharged peers. In [15] a similar

approach is described. The whole map is partitioned into a

static set of microcell. Each user is responsible of simulating

a given set of microcells. When a user get overloaded, some

of its microcells are assigned to another user is such a way to

balance the workload while minimizing the communication

between users. However, the usage of virtual servers greatly

increases the amount of routing data information needed, the

management and the communication costs, considering both

the latency (more messages are required; therefore, messages

may be queued up) and bandwidth (communication overhead

for each message), on each peer. Other relevant work can

be found in [16], [17], [18].

We propose a strategy that makes a trade-off between

balancing the workload and minimizing the extra communi-

cation overhead. By using a predictor component our strat-

egy provide a balanced load without resorting to excessively

increase the number of sub-regions.

III. MAIN ISSUES IN DESIGNING DMSES

In order to devise a fully distributed infrastructure for

DMSEs, three main issues need to be addressed: World

partitioning, World state propagation and Load Balancing.

A. World Partitioning

A simple and efficient solution to achieve scalability using

a P2P system is to partition the whole environment map

into regions. Regions are assigned to peers, named region

masters, by mapping both regions and peers to the DHT

key space: regions as well as peers are associated with an

ID computed by using a consistent hash function [19]. The

peer whose ID is the closest to the region ID become the

region master for the region. Region masters are responsible

to:

• Simulate all the actors which belong to the region;

• Deliver the state of the region (that is the state of each

actor which belongs to the region) to the peers whose

AOI overlaps with the region;

• Handle handovers of actors between regions.



The choice of the world partitioning technique is important

for the efficiency of the whole system. Two key factors need

to be considered:

• Static or Dynamic Partitioning;

• The granularity of the world decomposition.

A standard approach is to divide the environment map

into static equal sized regions. This approach is quite easy to

develop, each region has a unique ID and, therefore, region

masters can be easily discovered and kept up to date by

peers. Unfortunately, this approach does not guarantee load

balancing: a region masters can be overcharged by crowding

in its region. To address the issue of overcrowded regions,

several techniques use dynamic partitioning schemes, where

regions might have different sizes but comparable computing

requirements. The problem with this approach is that the

management of dynamic regions requires a huge amount

of communication between region masters that consumes

bandwidth and introduces latency [20], [21]. For instance

actors could continuously be migrated from one region to

another even if they did not change their positions.

The region size and, consequently, the number of regions,

which a given map is partitioned into, determines the gran-

ularity of the world decomposition. It may appear that the

time required to simulate the actors could be easily reduced

by simply increasing the granularity of the decomposition,

in order to perform more and more simulations in parallel,

but this is not always true. Typically, interactions between

actors (the behavior of actors is influenced by their neigh-

borhood), and/or other important factors, such as the number

of messages required to propagate region state, limit the

choice to coarse-grained granularity. Indeed, the finer is the

adopted granularity, the more is the generated communica-

tion between regions. The interaction between regions is a

direct consequence of the fact that exchanging information

between regions (e.g. actors positions, events, or transition

across regions) is usually needed. Other considerations that

would suggest to use coarse-grained granularity are (a) the

locality of interaction and (b) the spatial coherence that are

motivated because (i) the behavior of an actor usually relies

on nearby actors and (ii) two close actors usually need to

access some common data. Then, it is important that the

regions are large enough, so that each user can exploit spatial

coherence of regions, having a good degree of (local) cache

hits.

B. World State Propagation

In order to implement a P2P architecture for MMVEs, a

communication infrastructure is needed to deliver messages

to a wide group of users. Being multicast communication

not available on geographical network, application-layer

multicast provides a workaround [22]. For instance, SimMud

[23] uses Scribe [24], an application-layer multicast built on

top of the DHT Pastry [8]. Scribe is decentralized and highly

efficient because it leverages the existing Pastry overlay.

Figure 2. An example of a PBT decomposition.

A well-known mechanism used to propagate world state

information is based on the Publish/Subscribe design pat-

tern: a multicast channel is assigned to each region; users

then simply subscribe to the channels associated with the

regions which overlap with their AOI to receive relevant

message updates. As users’ cameras moves, they will need

to subscribe to new channels and unsubscribe from old ones.

This approach raises again the problem of determining the

granularity of the world decomposition [25]: using a coarse-

grained granularity, regions are often bigger than users’ AOI,

then region subscribers will receive unnecessary informa-

tion. On the other hand, using finer granularity, provides a

greater number of channels, then a complex subscription

management is needed, as more regions overlaps with a

given AOI.

C. Load balancing using the Prediction Binary Tree

We developed in [26] a decomposition strategy for mesh-

like computations that exploits both spatial and temporal

coherence, among computation phases, to perform load bal-

anced decomposition. The strategy uses temporal coherence

(the amount of time required to elaborate a region r in phase

f is comparable to the amount of time required to elaborate r

in phase f+1) to estimate the computing time of a new com-

putation phase using previous phase computing time. The

strategy performs a semi-static load balancing (decisions are

made before each computing phase). Temporal coherence is

exploited using a Prediction Binary Tree (PBT) where each

leaf represents a region which will be assigned to a peer as

a task.

The proposed approach particularly suites to the World

partitioning problem. Indeed, the actors of a MSE usually

have limited movement and speed and interact mainly with

nearby actors. Thus, MSEs exhibit both temporal and spatial

localities.

The proposed strategy makes a trade-off between balanc-

ing the workload and minimizing the extra communication

overhead due to regions’s interactions, by using a Predictor

component (the PBT), with a negligible overhead, keeps the

load balanced without resorting to excessively increase the

number of regions.

A PBT Tr describes a decomposition of a given area

r through a full binary tree. The root of Tr represents



the whole area r. The two children of an internal node

v represent the two halves of the area represented by v.

Consequently, the set of the leaves of Tr represents a

partition of the area r (cf. Fig. 2). Hence, the PBT stores

the decomposition of r and each leaf of Tr represents a

region to be simulated by a user. At the end of each phase,

the PBT receives the information about the time needed to

simulate each region. By using the previous phase times

as estimates, the PBT is efficiently updated for the next

phase. The variance between regions’ time-computation is

defined as a metric to measure the (estimated) computational

unbalance that is expected given the decomposition provided

by the PBT Tr. Then a simple algorithm update the PBT (via

some split/merge operation) in such a way that the variance

of the estimated times is improved and consequently the PBT

describes a balanced decomposition, without excessively

increasing the number of regions. More details can be found

in [26].

While the PBT was devised for a very different scenario

(it obeys the Master-workers paradigm which is based on

a centralized approach and was designed for a cluster of

workstations where the number of workers is fixed and

known a priori) it is an effective tool to tackle balancing

problems and minimizing overhead, as we show in the next

Section.

IV. OUR PROPOSAL

We propose here an hybrid approach which allows to

exploit all the features of the PBT in a decentralized en-

vironment. We recall that every user of our system is at

the same time a worker (peer) and has the opportunity to

visualize a portion of the environment (camera).

Our architecture is based upon a DHT overlay network

where the simulation engine of each peer works in a dis-

tributed manner and uses the DHT as a data storage while

the visualization engine is managed by each user on its own.

We notice that a global load balancing approach is quite

hard to develop (at each simulation phase the information

about the load of each peer should be distributed in some

way). For this reason we chose a local workload balancing.

Obviously, the use of a local load balancing scheme cannot

guarantee an optimal load balancing. However, a carefully

choice of the granularity of regions and the use of a DHT

approach to assign regions to peers in a “pseudo-random”

way allows to obtain a good workload balance without

introducing a huge amount of communication.

The whole environment map is partitioned into a set of

zones using a 2-levels hierarchical approach (cf. Fig 3): first

of all, the map is partitioned into a predefined set of static

regions. Each region is marked by an ID and consequently

assigned to a peer (region master). Users interested on

visualizing a given region will subscribe to that region,

that is they will inform the region master of their interest.

For instance, as in [23], one can use a Pastry network for

maintaining the state of the environment and the mapping

between regions and peers, and on top of that, Scribe can

be used for the World State propagation. Region masters

of neighboring regions can always be connected in order to

speed up the handover.

As observed in Section III-A such a static approach cannot

provide load balancing. On DMVEs in particular, region

master can be overcharged either because there are too many

actors to simulate or because there are too many subscribers

to inform about the state of the region. In order to provide

load balancing without increasing the amount of inter-region

communication (or generating undesired actors migrations)

we exploit the idea of the PBT on top of each region. We

use a forest of PBTs where each static region corresponds

to the root of a PBT. During each computing step a region

is dynamically partitioned into a set of sub-regions which

corresponds to the leaves of the PBT managed by the region

master. It is worth to recall that the use of PBT ensures

load balancing and minimizes inter-region communication.

A new ID is assigned to each sub-region which is mapped

into the DHT space. Consequently the actors belonging to

each sub-region are simulated by a peer (sub-region worker).

For each sub-region a new multicast channel, managed by

the sub-region worker, is generated. The region master is still

in charge of managing the PBT and act as a proxy between

region subscribers and sub-region worker, while the task of

simulating the region is delegated to the sub-region workers.

A. PBT managing

The activities of a region master is to maintain the

structure of the PBT by monitoring the performances of the

workers which simulate actors in its region. The rationale

behind this idea is to keep the variance in the simulation

time spent by sub-region workers, as low as possible.

This is achieved by splitting overloaded sub-regions and

merging undercharged sub-regions, following the PBT load

balancing schema. A well-known risk is that under uneven

load distribution or when the peers are low on computing

resources, this mechanism could degenerate by producing

a huge number of splits. In order to mitigate this effect,

limitation mechanisms on the size of PBT (either height or

number of leaves) can be deployed.

B. Communication

The subscription of a peer to a sub-region is made in two

phases: region identification and sub-region subscription.

When a user is interested on visualizing a certain region (e.g.

its AOI overlaps with that region), then the peer subscribes

to that region master. Being each region static, the regions’

ID do not change and therefore each user can easily find

the region masters. Each region master by using a multicast

channel, continuously publish the information about the

current state of its PBT. In particular each region master

sends, to each subscriber, the information about the current



Figure 3. The system architecture split in its logic modules

partition of its region and the IDs associated to each sub-

region. In this way each peer is able to choose which sub-

regions to subscribe to. Sub-region workers simply publish

the current status of all the actors which belongs to it.

C. Timing

We use a simple approach to achieve a consistent syn-

chronization of the distributed simulations. A fixed time slot

is established for each simulation. For instance, for a real

time simulation the time slot could be ≈ 40 milliseconds,

for ≈ 25 FPS. In each time slot each worker computes a

new step of the simulation (i.e. a new state) based on the

previous state and on the events received by other workers.

The number of steps since the beginning of the simulation

is used as a clock so that each event can be associated with

a system-wide timestamp. Timestamps can also be useful

for synchronizations: when a node is late on the simulation

then the simulation is sped up by exploiting other peers’

computing resources.

V. CONCLUSION

DMSEs, due to their scalability requirements, appear to be

a natural application for P2P architectures. However DMSEs

are quite different from classical P2P applications which

are mainly devoted on sharing files as well as storages. On

DMSEs the shared resources consist of CPU cycles while

the purpose of the architecture is to maintain a distributed

data storage (that represents the state of the simulated

environment) keeping the latency as small as possible.

We presented some consideration on the use of a P2P in-

frastructure for DMVEs. The proposed architecture exploits

the features of both DHT schemes and a novel data structure

called PBT in order to provide a balanced workload on each

peer without introducing extra inter-region communication.

By some assumptions on temporal and spatial coherence, we

use a predictor component which exploits previous phase

workload as an estimate for next phase workload and,

accordingly, each region is dynamically partitioned into a

set of sub-regions in an efficient way. This stands even if

a coarse-grained granularity of the static region partition is

used, that is without introducing too much communication

overhead.

Future works include the implementation of the proposed

ideas and a validation through a series of tests, based on a

distributed version of Massive battle.
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