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Catalase and ascorbate peroxidase—representative
H2O2-detoxifying heme enzymes in plants
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Abstract Plants have to counteract unavoidable stress-caused
anomalies such as oxidative stress to sustain their lives and
serve heterotrophic organisms including humans. Among ma-
jor enzymatic antioxidants, catalase (CAT; EC 1.11.1.6) and
ascorbate peroxidase (APX; EC 1.11.1.11) are representative
heme enzymes meant for metabolizing stress-provoked reac-
tive oxygen species (ROS; such as H2O2) and controlling their
potential impacts on cellular metabolism and functions. CAT
mainly occurs in peroxisomes and catalyzes the dismutation
reaction without requiring any reductant; whereas, APX has a
higher affinity for H2O2 and utilizes ascorbate (AsA) as spe-
cific electron donor for the reduction of H2O2 into H2O in
organelles including chloroplasts, cytosol, mitochondria, and

peroxisomes. Literature is extensive on the glutathione-
associated H2O2-metabolizing systems in plants. However,
discussion is meager or scattered in the literature available
on the biochemical and genomic characterization as well as
techniques for the assays of CAT and APX and their modula-
tion in plants under abiotic stresses. This paper aims (a) to
introduce oxidative stress-causative factors and highlights
their relationship with abiotic stresses in plants; (b) to over-
view structure, occurrence, and significance of CAT and APX
in plants; (c) to summarize the principles of current technolo-
gies used to assay CAT and APX in plants; (d) to appraise
available literature on the modulation of CAT and APX in
plants under major abiotic stresses; and finally, (e) to consider
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a brief cross-talk on the CATandAPX, and this also highlights
the aspects unexplored so far.

Keywords Abiotic stress . Reactive oxygen species .
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tolerance

Abiotic stresses and their consequences and control
measures in plants

Impacts of abiotic stresses at both whole plant and cellular
levels are inevitable because of plants’ sessile life style.
At cellular level, oxidative stress is caused when varied
abiotic stress-provoked generations of reactive oxygen
species (ROS; such as singlet oxygen, 1O2; superoxide,
O2

.−; hydrogen peroxide, H2O2; hydroxyl radical, OH
−·)

exceeds the pace of their metabolism (Gill and Tuteja
2010). ROS such as H2O2 is a water-soluble, longer
half-life exhibiting, and non-radical w-electron reduction
product of oxygen and acts at subtle levels as a second
messenger molecule in biological processes such as devel-
opment and stress perception (Orozco-Ca′rdenas et al.
2001; Corpas 2015; Del Río 2015). H2O2 priming-
mediated enhanced plant tolerance to major abiotic stress-
es has been reported, where H2O2 priming was advocated
to modulate ROS detoxification and also regulate multiple
stress-responsive pathways and gene expression (reviewed
by Hossain et al. 2015). However, severe damages to bio-
molecules (such as cellular lipids and proteins) and sub-
sequent inactivation of key cellular functions can be pos-
sible due to elevated and non-metabolized cellular H2O2

(Gill and Tuteja 2010; Del Río 2015).
The list of H2O2-scavenging enzymatic antioxidants in-

cludes catalases (CAT; EC 1.11.1.6), ascorbate peroxidases
(APX; EC 1.11.1.11), various types of peroxiredoxins
(PRX), glutathione/thioredoxin peroxidases (GPX), and glu-
tathione S-transferases (GST) (reviewed by Mhamdi et al.
2010) (Fig. 1). Glutathione (GSH)-associated H2O2-metabo-
lizing systems in stressed plants have been discussed exten-
sively (Mhamdi et al. 2010; Noctor et al. 2012; Gill et al.
2013; Anjum et al. 2014a). However, literature discussing or
evaluating the biochemical and genomic characterization as
well as techniques for the assays of CAT and APX and their
modulation in plants under abiotic stresses are scanty or dis-
organized. In particular, CAT and APX are distinguished en-
zymes meant for metabolizing stress-provoked H2O2 and for
controlling their potential impacts in order to maintain cellular
concentration of H2O2 to a level necessary for all aspects of
normal plant growth and development (Gill and Tuteja 2010;
Ray et al. 2012; Anjum et al. 2014b). CAT mainly occurs in
peroxisomes while APX occurs in chloroplasts, cytosol, mi-
tochondria, and peroxisomes. In association with other

cellular antioxidants, CAT and APX help plants combat
H2O2-accrued impairments in cellular organelles and redox
homeostasis (Gill and Tuteja 2010; Mhamdi et al. 2010;
Sofo et al. 2015). Though APX and CAT possess heme, these
enzymes differ in terms of their affinity for H2O2 and in their
requirement for reducing power during H2O2 metabolism
(Gill and Tuteja 2010; Anjum et al. 2014b). Since APX effi-
ciently eliminates even very low levels of H2O2 using ascor-
bate (AsA) as its substrate and CAT degrades H2O2 without
any reducing power and is mainly active at relatively high
H2O2 concentrations (Gechev et al. 2006), differences can
be obvious in the role and modulation of these enzymes in
abiotic-stressed plants. Hence, it is imperative and timely to
discuss and provide readers a comprehensive overview on the
biochemical and genomic characterization of CAT and APX,
techniques and underlying principles for their assays, and the
modulation and significance of these enzymes in plants of
economic importance under abiotic stresses. With the major
aim of contributing with novelties on the distinguished heme
enzymes and plant abiotic stress tolerance, this paper (a) over-
views structure, occurrence, and significance of CAT and
APX in plants; (b) summarizes principles of current technol-
ogies used to assay CAT and APX in plants; (c) appraises
available literature on the modulation of CAT and APX in
plants under major abiotic stresses; and finally, (d) considers
a brief cross-talk on the CAT and APX, and it also highlights
aspects unexplored so far.

Catalase

Localization and biochemical characterization

Catalase (H2O2/H2O2 oxidoreductase, EC 1.11.1.6; CAT)
is a tetrameric, heme-containing enzyme that catalyzes the
dismutation of H2O2 into H2O and O2 and plays important
role not only in plant metabolism and defense but also in
signal perception (Loew 1901; Redinbaugh et al. 1990;
Scandalios et al. 1997; Mhamdi et al. 2010; Hu et al.
2010; Nie et al. 2015; Liu et al. 2015). Historically, the
degradation of H2O2 in plant and animal tissues was first
observed by Thenard in 1881; whereas, Loew (1901)
proved that a new enzyme, which he named Bcatalase,^
was responsible for the degradation of H2O2 in tissues
(Aebi and Sutter 1971). CAT is mainly localized in the
peroxisomes. In higher plants, it is present in all differen-
tiated peroxisomes including the peroxisomes of leaves,
cotyledons, roots, and glyoxysomes and unspecialized per-
oxisomes (Su et al. 2014). There are evidences for the
presence of CAT in mitochondria too (Scandalios 1990;
Heazlewood et al. 2004; Shugaev et al. 2011). In Zea mays,
CAT3 was found to be located in mitochondria (Roupakias
et al. 1980). Higher peroxidase activity was reported for
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putative mitochondrial Zea mays CAT isoform compared
to other Zea mays isoforms and was relatively sensitive to
3-AT (Havir and McHale 1989). Identification of CAT2
and CAT3 peptide sequences was done in Arabidopsis
through proteomic analysis of highly purified mitochon-
dria (Heazlewood et al. 2004). The submitochondrial
localization of CAT analyzed using proteinase K has also
established that CAT is localized in the mitochondrial
matrix (Shugaev et al. 2011).

CAT, first purified and crystallized from beef liver in its
high purity, has been purified and characterized from various
sources including plants (Sumner and Dounce 1937). CAT is
an iron-containing enzyme and can be inhibited by cyanide
(Warburg 1923). CATs from various sources display similari-
ties in number of subunits, molecular weight, and types of
prosthetic groups. The enzyme is a tetramer consisting four
subunits of 54–59 kDa and a total molecular mass of approx-
imately 240 kDa. Bovine and human CATs also contain four
tightly bound molecules of NADPH (Kirkman and Gaetani
1984). Although not essential for the activity of CAT,
NADPH can decrease CATsusceptibility to inactivation when
the enzyme is exposed to low concentrations of H2O2, its toxic
substrate. By playing its role as a regulatory protein, CAT
releases NADP+ in peroxidative stressed cells (Kirkman and
Gaetani 1984). The reaction catalyzed by CAT is very fast and
their reaction rate constant is K ≈ 107 M−1se−1 (Deisseroth and
Dounce 1970). When the concentration of H2O2 is low
(<10−6 M), CAT works in peroxidatic mode, where it can
oxidize most of hydrogen donors (e.g., ethanol, ascorbic acid,
phenols, formaldehyde) in the following manner.

RH2 þ H2O2→Rþ 2H2O

At high concentrations of H2O2 (>10−6), it works
Bcatalytically,^ where H2O2 acts as both acceptor and donor
of hydrogen molecules.

2H2O2→2H2Oþ O2

The peroxidatic as well as catalytic reactions of CAT takes
place in two steps (Deisseroth and Dounce 1970; Dounce
1983). First, the H2O2 molecule oxidizes the heme iron of
CAT to an oxyferryl species leading to the formation of
oxygen-rich iron peroxide. In this step, one oxidation equiva-
lent is removed from the iron and one from the porphyrin ring
to generate a porphyrin cation radical.

CAT−Fe−OHþ H2O2→CAT−Fe−OOHþ H2O

Intermediate iron peroxide (CAT–Fe–OOH), referred to as
compound I, can be detected in vitro and in vivo (Oshino et al.
1975) as it alters the spectrophotometric properties of the CAT
heme. Further, in step two, at low concentrations of H2O2,
compound I is reduced by hydrogen donors such as ethanol,
peroxidatically.

CAT−Fe−OOHþ C2H5OH→CAT−Fe−OHþ H2Oþ CH3CHO

At high H2O2 concentrations, the resting-state enzyme is
then regenerated from compound I using the second H2O2

molecule as redundant, catalytically. Additionally, in the cat-
alytic mode, CAT is not easily saturated with substrate due to

Fig. 1 Enzymatic and non-enzymatic antioxidant system in plant
chloroplasts. AsA ascorbate, DHA dehydroascorbate, DHAR
dehydroascorbate reductase, Fd ferredoxin, FNR ferredoxin-NADP+
reductase, GR glutathione reductase, GSH reduced glutathione, GSSG
oxidized glutathione, MDHA monodehydroascorbate, MDHAR

monodehydroascorbate reductase, s-APX stromatic ascorbate
peroxidase, s-Cu/Zn-SOD stromatic Cu-Zn-superoxide dismutase, t-
APX thylakoidal ascorbate peroxidase, t-Cu/Zn-SOD thylakoidal Cu-
Zn-superoxide dismutase
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very high apparent Michaelis constant, and hence, enzyme
activity increases linearly over a wide range of H2O2 concen-
trations. Unlike other antioxidant enzymes, CATs degrade
H2O2 in an energy-efficient manner as they do not require
cellular reducing equivalent.

CAT−Fe−OOHþ H2O2→CAT−Fe−OHþ H2Oþ O2

The presence of a heme prosthetic group in CATs is con-
firmed by the inhibition of this enzyme with hemeprotein
inhibitors such as cyanide, azide, and hydroxylamine.
Additionally, the inhibition of CAT by aminotriazole and
mercaptoethanol indicates the participation of a thiol group
(present at the active center of CAT) in the CAT-mediated
reactions. Between the two main groups of CAT, a
monofunctional form is present in prokaryotes, fungi, animals,
and plants and can also catalyze some H2O2-dependent per-
oxidation of organic substrates (Mutsada et al. 1996;
Regelsberger et al. 2002). However, structurally distinct bi-
functional forms of CATs are found in some fungi and pro-
karyotes and are more similar to the heme-containing perox-
idases such as APX and fungal cytochrome c peroxidase
(Mutsada et al. 1996; Regelsberger et al. 2001, 2002;
reviewed by Mhamdi et al. 2010). A wide range of biochem-
ical and kinetic properties have been reported among the pu-
rified and characterized CATs. CATs have a very high turn-
over rate. CAT protein has a degradation constant of
0.263 day−1 (Eising and Süselbeck 1991); whereas, the deg-
radation constant for heme can be 0.205 day−1 (Eising and
Gerhardt 1987). Purification and the characterization of
CATs from 16 different organisms (including representatives
from all three phylogenetic clades) reported the maximal turn-
over rates in the range of 54,000 to 833,000/s and the specific
activities ranged between 20,700 to 273,800 units/mg of pro-
tein (Switala and Loewen 2002). Compared to a high affinity
of APX and peroxidase for H2O2 (KM values below 100 μM;
Mittler and Zilinskas 1991a; König et al. 2002), CATs exhibit
much lower affinity for H2O2 where their apparent KM for
H2O2 ranges between 40 and 600 mM (Del Rio et al. 1977;
Arabaci 2011). Notably, the kinetic constants such as Km and
Vmax for CATs were advocated to be labeled as Bapparent^
(Switala and Loewen 2002). CATs can exhibit activity at a
broad pH range (5.0–10.5) (Stansell and Deutsch 1965;
Hochman and Goldberg 1991), where pH for their optimal
activity may be in the range of 6.8–7.5 (Aebi 1984). A broad
range of sensitivities to heat inactivation has also been ob-
served. Optimum temperature for CAT activity can also vary
in different plants. In Oryza sativa, the optimum temperature
for CAT activity was found to be 35 °C, whereas 15 °C was
reported as an optimal temperature for the spinach leaf CAT
(Mitsuda and Yasumatsu 1955). It was argued that these opti-
mum temperatures for CAT activity can closely resemble the
temperature in which plants grow (Mitsuda and Yasumatsu

1955). Maximum CAT activity was found at 30 °C in
Anethum graveolens and chard (Arabaci 2011) and 50 °C in
Van apple (Yoruk et al. 2005).

Catalase genomic characterization, genes and isoforms

Based on the comparison of the exon-intron structure of 12
genomic sequences from 6 plants, it was assumed that the
putative single primordial CAT gene had 7 introns (Iwamoto
et al. 1998). After the evolutionary divergence of monocots
from dicots, the occurrence of consecutive duplications of the
primordial gene followed by the differential loss of introns
resulted in three (or possibly four in dicots) diverse isozyme
genes (Iwamoto et al. 1998).CAT1, CAT2, andCAT3 genes of
Zea mays inbred line W64A have already been isolated and
fully characterized, where their sequencing revealed almost
identical coding region with variable introns (Abler and
Scandalios 1993; Guan and Scandalios 1993; 1995). The
CAT1, CAT2, and CAT3 genes are interrupted by 6, 5, and 2
introns, respectively. The identical positioning of these introns
suggests an evolutionary link between all three Zea maysCAT
genes. TheCAT2 gene lacks the third intron of theCAT1 gene,
whereas the CAT3 gene contains only the first and the last
introns in the same position as of the CAT1 gene (Guan and
Scandalios 1995; reviewed by Scandalios et al. 1997). Three
Zea mays CAT promoters differed in their sequence homolo-
gy. In particular, promoter sequences of approximately 2.6 kb
and CAAT consensus sequences were evidenced in the CAT1
andCAT3 genes, whereas the promoter region of the Zeamays
CAT2 gene, which possesses the TATA-like sequence, exhib-
ited only about 1.6 kb and was lacking CAAT consensus se-
quences (Abler and Scandalios 1993; Guan and Scandalios
1993, 1995; reviewed by Scandalios et al. 1997). Notably,
each CAT promotor gene possesses a unique set of putative
cis-acting elements that play role in eukaryotic gene regula-
tion. Two GC-rich sequences (CCGCCG, GGGCTG) were
identified in the promoter region of the CAT1 gene (Dynan
and Tjian 1985). Several other protein-binding motifs were
also identified within 800 bp upstream from the transcriptional
start site. Similar to ABA response element (ABRE,
CACGTGGC), two 8-bp sequences (CACGTACG,
CACGTGGA) were located at −110 and −220 relative to the
start of transcription of the CAT1 gene (Guiltinan et al. 1990).
In addition, several transcription factor binding sites and a
transposable element were also identified in the 3′–5′ up-
stream region of the CAT3 gene (Polidoros and Scandalios
1997). An entirely new short intron was found in one of the
Oryza sativa CAT A gene which was not found in any other
plant CAT gene examined (Iwamoto et al. 1998). In silico
modeling and H2O2 binding study of Oryza sativa CAT has
also been done (Sekhar et al. 2006). The coexpression of
chaperone GroEL/ES was reported to enhance the expression
of plant CAT in bacterial cytosol (Mondal et al. 2008a).
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Molecular identification and properties were performed in a
light-insensitive Oryza sativa CAT B that was expressed in
Escherichia coli (Mondal et al. 2008b). The purification and
expression of a soluble bioactive Oryza sativa CAT A from
recombinant Escherichia coli have also been done (Ray et al.
2012). Efforts have also been made to perform expression
analysis and biochemical characterization of intracellular
CAT/peroxidase from the phytopathogenic Oryza sativa blast
fungus Magnaporthe grisea (Zamocky et al. 2009).

Regarding CAT genes and isoforms, CATs can exist in
multiple molecular forms or isozymes encoded by multiple
genes (Scandalios 1968). Notably, unlike animals which con-
tain a single CAT gene, all angiosperm/flowering plants in-
cludingOryza sp.,Arabidopsis, Zea mays,Nicitiana tabacum,
and pumpkin are composed of a multigene family (Scandalios
1990; Frugoli et al. 1996; Guan and Scandalios 1996;
Iwamoto et al. 2000; reviewed by Mhamdi et al. 2010; Liu
et al. 2015). Multiple forms of CATs in plants are usually
expressed in different tissues and at their developmental stages
(reviewed by Scandalios et al. 1997). The classification of
CAT genes is based on based on the naming of the
Nicotiana tabacum genes. The division of CATs into three
classes was also supported by the outcomes of the compari-
sons of gene structure done between Zea mays and Oryza
sativa CAT genes (Iwamoto et al. 2000). Class I, II, and III
CATs are strongly expressed in photosynthetic tissues, vascu-
lar tissues, and seeds and reproductive tissues, respectively. In
particular, Class I CATs are most abundant in photosynthetic
tissues and remove excess H2O2 produced during photorespi-
ration; no exact role is known for Class II CATs, the most
prominent in vascular tissues, and is assumed to express dur-
ing lignification. The Class III are expressed in seeds and
young seedlings at high levels and their activity is related to
the removal of H2O2 produced during the degradation of fatty
acids in glyoxylate cycle in glyoxysomes (reviewed by
Mhamdi et al. 2010; Sharma et al. 2012). Arabidopsis genome
has three catalase genes namely At1g20630, At4g35090, and
At1g20620 (Frugoli et al. 1996). Additionally, these genes
possess highly conserved nucleotide and corresponding ami-
no acid sequences, encode three individual subunits (that as-
sociate to form at least six catalase isoforms), and are highly
expressed in inflorescences (Frugoli et al. 1996). However,
only CAT2 and CAT3 are highly expressed in leaves. In
plants, day–night rhythms in transcript abundance of catalase
have been observed. To this end, CAT2 and CAT3 were re-
ported to be expressed in different areas of leaf tissues
(Zimmermann et al. 2006). On the other hand, CAT2 expres-
sionwas observed in photosynthetically active tissues and was
downregulated during leaf senescence, whereas changes in
age modulated the expression of CAT3 (Zimmermann et al.
2006). Because the expression and activity of the CAT1 gene
are activated by abiotic stresses, this genewas advocated to act
as a feedback regulating ROS signaling (Xing et al. 2007; Du

et al. 2008). Regarding the insights into the functions of the
three CAT genes, significant growth retardations and distinct
accumulation of H2O2 were reported in leaves of CAT2
Arabidopsis mutants (Hu et al. 2010).

The expression of CAT genes is regulated both temporally
and spatially and depends on developmental (Kwon and An
2001) and environmental oxidative stimuli (Su et al. 2014).
The expression of Cat genes in some plants is under circadian
control (Kabir and Wang 2011). Studies have demonstrated
that Cat genes/transcripts are differentially expressed in differ-
ent organs (Purev et al. 2010; Kabir and Wang 2011; Su et al.
2014). PgCAT1 gene was expressed relatively high in the
leaves and stems ofPanax ginseng, whereas it was moderately
expressed in the roots (Purev et al. 2010). The expression of
SlCAT1 gene was high in the stems and flowers of tomato,
whereas SlCAT2 was expressed more in the leaves (Kabir and
Wang 2011). Su et al. (2014) found that the expression of
ScCAT1 (sugarcane catalase gene) was the highest in buds,
followed by stem epidermis and stem pith, and was the least in
leaves. Dark and light conditions and their intensity can mod-
ulate CATactivity at molecular level (Redinbaugh et al. 1990).
In tomato, SlCAT1 had high expression during the late light
phase, whereas the expression of SlCAT1 was high during the
early dark phase (Kabir andWang 2011). The induction of Cat
under metal stress is also dependent upon the presence or
absence of light (Azpilicueta et al. 2007). In addition, CAT
activity can also be modulated by calmodulin, a calcium-
binding protein that binds to and activate plant CAT in the
presence of calcium (Yang and Poovaiah 2002).

Assay methods in plants

CAT activity may be determined employing ultraviolet spec-
troscopy, permanganate titration, iodometric assay, nanometric
method, and visual approaches. A few of these methods are
highlighted hereunder. In plant homogenates, the spectropho-
tometric method which measures the decomposition of H2O2

at 240 nm has been widely used. A relatively low H2O2 con-
centration (≈10 mM) is used to avoid inactivation of CAT
during the assay or formation of bubbles in the cuvette due to
the liberation of O2. Measurements are generally made at room
temperature and pH 7.0 (Aebi 1984). There are several disad-
vantages associated with this method which includes low sen-
sitivity and limitations with turbid tissue preparations.
Additionally, interference by peroxidase can use H2O2 to oxi-
dize the phenolic and thereby produce an apparent CAT activ-
ity. The assay of CAT activity by titration although good for
high UVabsorption samples or where samples have high pig-
mentation or precipitate has generally not been used in plant
homogenate. The principle behind titration method that uses
starch as an indicator is that the decomposition of H2O2 is
followed by the measurement of peroxide which remains un-
decomposed in the mixture after a certain time by back-
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titration with KMnO4 (Artenie and Tanase 1981). CATactivity
can also be assayed calorimetrically (Sinha 1972). The princi-
ple behind the calorimetric assay of CATactivity is that herein,
dichromate in acetic acid is reduced to chromic acetate when
heated in the presence of H2O2 with perchromic acid as an
unstable intermediate. The chromic acetate thus produced is
measured calorimetrically at 570–610 nm. Dichromate has
no absorbency in this region. To determine CAT activity, one
can adopt a method to measure the volume of oxygen which is
generated under the chemical action of enzyme upon H2O2.
The measurement of oxygen concentration in the solution by
means of the Clark oxygen electrode had been applied for the
CAT assay (Rorth and Jensen 1967; Schepartz 1974).
However, only oxygen concentration greater than the air-
saturated solution (i.e., oversaturated oxygen) can be measured
by this method which limits the sensitivity and time of linear
oxygen production. Further, oxygen generated from CAT re-
action can form bubbles, and the Clark oxygen electrode fails
to measure the oxygen generated/released in the two phases.
Later, oxygen-free buffer solutions for the determination of
CAT activity were reported. Herein, oxygen is removed by
boiling the buffer or oxygen is displaced by flushing with
nitrogen (Breidenbach et al. 1968; Del Rio et al. 1977). An
assay method combining the ease and simplicity of the quali-
tative approach for measuring CAT activity has also been de-
veloped (Iwase et al. 2013). Herein, the assay reagents com-
prise only H2O2 and Triton X-100, and the height of the Triton
X-100-trapped enzyme-generated oxygen bubbles is estimated
that is visualized as foam.

Modulation in abiotic stressed plants

Metals/metalloids

The effect of metal(oids) on the activities of antioxidant en-
zymes, including CAT, involved in ROS detoxification and
counteracting metal-induced damage is not consistent and
varies with plant species, t issue type, plant age/
developmental stage, and metal type and with its concentra-
tion and duration of exposure. Previously, several studies have
reportedmodulation (decline/increase) in the activities of CAT
under metal/metalloid exposure (Table 1). Under metal stress,
plant-CAT activity showed differential responses. An im-
proved antioxidant system via higher CATactivity was argued
in cadmium (Cd)-exposed Brassica napus (Hasanuzzaman
et al. 2012b), Oryza sativa (Hsu and Kao 2004), Brassica
juncea (Mobin and Khan 2007), Triticum aestivum (Khan
et al. 2007), and arsenic-exposed Triticum aestivum seedlings
(Hasanuzzaman and Fujita 2013a, b). In contrast, Cd exposure
can also cause decline in CATactivity (Balestrasse et al. 2001;
Agami and Mohamed 2013). Elevated levels of plant-
beneficial elements such as Mn (100 μM MnCl2) decreased
CAT activity by 45 % in Helianthus annuus, whereas a 34 %

increase in the activity of CATwas recordedwhen supplemen-
tation of Mn-exposed plants was done with 5.0 μM Se (Saidi
et al. 2014). Unchanged CAT activity was noted in Zea mays
treated with Cd (25 mM), whereas Z. mays pretreatment with
salicylic acid (SA) (500 μM, 6 h) reduced CAT activity by
50 % (Krantev et al. 2008). Elevated CAT activity was also
reported in Cd-exposed plants but exogenously supplemented
with IAA and SA (Agami and Mohamed 2013) and Se (both
50 and 100 μM) (Hasanuzzaman et al. 2012b). Sodium nitro-
prusside (SNP, NO donor)-mediated enhancement in CAT ac-
tivity detoxified H2O2 in As-stressed Triticum aestivum
(Hasanuzzaman and Fujita 2013a, b). Cd (25 and 50 μM)-
accrued significant increase in CAT activity in Pisum sativum
seedlings was not retrieved even with supplementation of
CaCl2 (1.0 and 5.0 mM) (El-Beltagi and Mohamed 2013).
This clearly suggests an adaptive mechanism in plants to com-
pensate the higher level of H2O2 under metal toxicity. In a
similar report, lower concentrations of Cd enhanced CAT ac-
tivity in Coffea arabica (Gomes-Júnior et al. 2006). The ac-
tivity of CAT can be modulated by the development stages of
plants. In Cu- and Zn-exposed Vigna mungo, a significantly
higher activity of CATwas noted at germination stage, where-
as its activity was inhibited later (Solanki and Poonam 2011).
This may be due to the fact that CAT are photosensitive anti-
oxidant enzymes and need constant fresh synthesis
(Feierabend et al. 1992). Additionally, at the germination
stage, metals are usually sequestered properly by these
CATs; however, later, either their synthesis is inhibited or
there occurred some change in their confirmation (Sreedevi
et al. 2008). It is not always obvious that CAT takes part in the
detoxification of H2O2 in metal/metalloid-exposed plants, and
some peroxidases respond well in such cases. To this end, the
activity of CATwas not affected byCd treatment in Zea mays ,
rather its activity dropped to approximately 50 % in SA-
pretreated plants (Krantev et al. 2008). This indicates a differ-
ent role of CAT in the oxidative stress induced by metals/
metalloids. In another report, the incubation of Helianthus
annuus leaf disks with 300 and 500 mM CdCl2 under light
conditions increased CATA3 transcript level; however, this
transcript was not induced by Cd in etiolated plants
(Azpilicueta et al. 2007). Moreover, in the roots of the trans-
genic CAT-deficient tobacco lines (CAT 1AS), the DNA dam-
age induced by Cd was higher than in wild-type tobacco roots
(Gichner et al. 2004). A CAT gene from Brassica juncea
(BjCAT3) was cloned and upregulated in tobacco under Cd.
CATactivity of transgenicBrassica junceawas approximately
2-fold higher when compared to wild plant type under similar
stress (Guan et al. 2009). Exposure of plants to different
metals/metalloids enhances or declines CAT activity and has
been summarized in Table 1.

The literature is full on the molecular insights into the
metal/metalloid-accrued modulation of CAT activity, expres-
sion, isozyme, and genes. Cd2+ exposure (50 μg L−1)
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significantly modulates the mRNA expression of the CAT2
gene and not CAT1 gene in Suaeda salsa, a pioneer halophyte
(Cong et al. 2013). In Suaeda salsa, the CAT2 gene was re-
ported to play a major role in increased CATactivity under Cd
stress and has been considered as a gene marker to indicate Cd
pollution (Cong et al. 2013). Studies have also been done to
elucidate the alteration in the expression of CAT genes under
metal(oid) stress. Cd caused significant DNA damage in the
roots of the transgenic CAT-deficient tobacco lines (CAT 1AS)
compared to wild-type tobacco roots (Gichner et al. 2004).
CAT3 (mitochondrial) transcript level was enhanced in the leaf
disks of Helianthus annuus incubated with 300 and 500 μM
CdCl2 (Azpilicueta et al. 2007). BjCAT3, a CAT gene cloned
from Brassica juncea was upregulated (by 2-fold) and
protected transgenic tobacco plants against Cd stress (Guan
et al. 2009). Cd stress linearly increased CAT activity in a
number of macroalga including Nannochloropsis oculata
(Lee and Shin 2003), Gracilaria tenuistipitata (Collén et al.
2003), and Ulva fasciata (Wu et al. 2009). A study on Ulva
fasciata (UfCAT) confirmed that CAT transcripts may not be
affected by Cd stress; hence, the induction of CAT may not
always be under transcript control (Wu et al. 2009). Under Al
stress, mRNA level declined in Arabidopsis thaliana clones
encoding for enhanced CAT (Richards et al. 1998). The total
CAT activity and induction of the CAT gene expression was
enhanced in in vitro grown plants of Prunus cerasifera under
Cu stress (Lombardi and Sebastiani 2005). Al exposure can
enhance the expression of CAT cDNA from Capsicum
annuum, and the transcript induction can be greater in the stem
and during early stages of fruit development (Kwon and An
2001). Hg (20–40 μMHgCl2)-accrued induction in the CAT3
gene was reported in Arabidoposis thaliana Columbia wild
type (Heidenreich et al. 2001). Mn treatment in plants can also
increase the specific activity of CAT and upregulate the ex-
pression of gene encoding CAT (CAT, TDF no. 103-2) (Zhou
et al. 2013). A high transcript level of SlCAT1 and SlCAT2
was reported in Pb-exposed tomato (Solanum lycopersicum)
(Kabir and Wang 2011). PgCAT1, a novel gene isolated from
leaves of 4-year-old Panax ginseng, showed a high homology
to CAT1 from alpine snowbell, upland cotton, eastern cotton-
wood, and peach (Purev et al. 2010). Heavy metals such as Cu
brought a 2-fold increase in the transcript level of PgCAT1
until 24 h of exposure to 50 μM Cu, whereas a declined
expression was observed at 8 h posttreatment of 500 μM Cu
(Purev et al. 2010). It was in sharp contrast to the increased
expression ofCAT1 observed inPrunus cerasifera for 10 days
when grown in media containing 100 μM Cu (Lombardi and
Sebastiani 2005). Transcript levels of the cat3 (mitochondrial)
protein were increased in sunflower by 2-fold after 8 h of
incubation in 300 μM Cd2+, under light and not in dark
(Azpilicueta et al. 2007) and also in Brassica juncea by 2- to
5-fold after 48 h of exposure to 22.4 ppm of Cd (Minglin et al.
2005). A higher accumulation of CAT protein and enhanced

expression of molecular chaperones were noted in soybean
under Cd (100 μM CdCl2) stress (Hossain et al. 2012).

The induction of new isoenzymes and alterations in isoen-
zyme profile can also play significant roles in cellular defense
against heavy metal-induced oxidative stress. In leaf peroxi-
somes from Cd-stressed Pisum sativum, the total activity of
CAT was increased and isoelectric focusing (IEF) analysis
showed the presence of five different CAT isoforms (CATs
1–5) with small differences in their isoelectric points
(Romero-Puertas et al. 1999). Notably, the most acidic iso-
forms, i.e., CATs 3–5, were enhanced with increase in Cd
concentration and protected Pisum sativum against Cd im-
pacts (Romero-Puertas et al. 1999). In the same plant, native
PAGE analysis of CAT showed one widespread band of activ-
ity that decreased with increase in Cd concentration (Sandalio
et al. 2001). Additionally, most acidic isoforms (CAT2 and
CAT3) were enhanced by low Cd concentration (10–
30 μM), whereas higher concentrations decreased the activity
of these CAT isoforms (Sandalio et al. 2001). CAT isoenzyme
varied in its density in both the roots and leaves of Raphanus
sativus under Cd exposure (El-Beltagi et al. 2010). The exhi-
bition of similar mobility was noted in control as well as Cd-
stressed leaf tissues, whereas the density increased with in-
crease in Cd concentration and was the maximum at highest
concentration (50 ppm) (El-Beltagi et al. 2010). In Solanum
nigrum, Cu was unable to bring changes in the pattern of CAT
isozymes (Fidalgo et al. 2013). In Solanum nigrum plants,
CAT1 isozyme exhibited a higher activity than CAT2 did in
shoots, whereas CAT2 had greater activity in roots (Fidalgo
et al. 2013). However, these authors noted a decline in CAT1
and CAT2 isozymes at 200 mpl/L Cu that was in parallel with
decreases in CAT2 mRNA accumulation in shoots and in-
crease in roots (Fidalgo et al. 2013). ScCAT1, a novel perox-
isomal catalase gene from sugarcane, localized in the plasma
membrane and cytoplasm, is induced in response and provid-
ed tolerance to Cu and Cd exposures (Su et al. 2014). A tran-
sient overexpression of ScCAT1 in leaves of Nicotiana
benthamina induced hypersensitive reaction response and cell
death (Su et al. 2014). Two isoforms of CAT alleles (CAT1
and CAT2) detected in leaves of poplar (Populus deltoides ×
Populus nigra) cuttings increased sharply followed by a grad-
ual decrease and then increased under Cd exposure (Zhang
et al. 2014). Exposure to Pb (400 ppm) caused a significant
increase in CAT expression, while no detectable isoform
bands appeared at 600 ppm Pb, suggesting denaturation of
the protein (Ibrahim and Bafeel 2009). Pb treatment (50–
500 ppm) increased CAT isozyme profile in the roots and
leaves of Raphanus sativus (El-Baltagi and Mohamed 2010).
Pb (20 μg/L) and Zn (100 μg/L) alone or in combination
significantly upregulate the expression of CAT genes in
Suaeda salsa (Wu et al. 2012). In Oryza sativa, CAT activity
declined in the roots but was enhanced in the shoots in re-
sponse to 500 μM Pb; however, a decline was noticed at
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1000 μM (Verma and Dubey 2003). Two CAT isoforms (with
Rf 0.15 and 0.29) were detected in the roots, whereas three
isoforms (with Rf 0.15, 0.29, and 0.42) were found in the
shoots at 500 μM Pb (Verma and Dubey 2003). However, at
1000 μM Pb, these authors evidenced an increase in intensity
of band with Rf 0.29 in shoots, whereas the band with Rf 0.15
disappeared (Verma and Dubey 2003).

Salinity, drought, and other abiotic stresses

Drought stress and soil salinity are the main causes of reduced
plant growth and productivity in semiarid regions and causes a
complex of responses at molecular, cellular, physiological,
and developmental level, including antioxidant enzymatic
and non-enzymatic defenses, mostly due to a photon intensity
that exceeds the capacity of stressed plants of absorbing it
(Fig. 2a, b). Response of CAT to salinity and drought in dif-
ferent plant species follows. Increasing soil salinity can sig-
nificantly impair the H2O2-scaveging system in plants. To this
end, varying NaCl concentration-mediated decrease in the

activity of CAT, a major H2O2-scavenging enzyme was ob-
served in a number of plant species including Anabaena
doliolum (Srivastava et al. 2005), Oryza sativa (Sharma
et al. 2013), Cicer arietinum (Eyidogan and Oz 2005),
and Brassica napus (Hasanuzzaman et al. 2011a). In two
Oryza sativa varieties differing in their salt tolerance,
Hasanuzzaman et al. (2014b) reported decreases in CAT
activity by 31 and 55 % at 150 and 300 mMNaCl, respective-
ly, in salt-sensitive BRRI dhan49. However, the salt-tolerant
BRRI dhan54 exhibited significant increase in CAT activity
under mild stress (150 mM NaCl) and a slightly decreased
CAT activity (11 %) at severe salt stress (300 mM NaCl).
Recently, Nahar et al. (2015a) reported decreases of 28 and
44 % in the CAT activity of Vigna radiata seedlings exposed
to salt stress for 24 and 48 h, respectively. In contrast to
previous reports, Hasanuzzaman et al. (2011a) observed no
change in the CAT activity in Brassica napus exposed to
150 mM NaCl. Drought stress-mediated impairment in
H2O2-metabolizing system has also been reported. Proietti
et al. (2013) reported that water deficit stress reduced CAT

B

A
Fig. 2 Schematic representation
of the main physiological and
biochemical changes affected
during the progression of drought,
evaluated by means of stem water
potentials measured at midday (a)
and major biochemical and
genetic effects of drought and
saline stress in plants (b)

Environ Sci Pollut Res (2016) 23:19002–19029 19011



activity in Olea europaea by 89 %. A decreased CAT activity
was observed in rice plant under drought stress (Sharma and
Dubey 2005). In Strawberry (Fragaria × ananassaDuch.) cv.
Kurdistan, CAT activity slightly increased under reduced
water condition (Ghaderi et al. 2015). In Brassica napus
seedling, a sharp decrease in CATactivity was observed under
drought stress, which was measured as 25 and 36 % lower
with 10 and 20 % polyethylene glycol (PEG), respectively,
compared with control seedlings (Hasanuzzaman and Fujita
2011). Alam et al. (2014a) observed a 35 and 27% decrease in
the CAT activity of Brassica napus and Brassica campestris,
respectively, when exposed to osmotic stress (15 % PEG), but
the activity remained similar in BRASSICA juncea. In Vigna
radiata seedlings, Nahar et al. (2015b) observed a marked
decline in CAT activity under osmotic stress (−0.7 MPa),
compared to the non-stressed control seedlings, with a
reduction of 25 and 28 % in CAT activity after 24 and
48 h of stress, respectively. Transgenic rice plants overex-
pressing OsMT1a showed increase in CAT activity and thus
enhanced tolerance to drought (Yang et al. 2009). Shikanai
et al. (1998) observed that the expression of Escherichia coli
CAT (KatE) in the chloroplast improved drought tolerance in
tobacco and protected thiol-regulated chloroplast enzymes
from oxidative inactivation. Drought-mediated increase in
CAT activity was reported in wheat (Triticum aestivum)
(Simova-Stoilova et al. 2010). In Triticum aestivum, heat treat-
ment for 24 and 48 h resulted in a decrease of 20 and 27 % in
CAT, respectively, over control (Hasanuzzaman et al. 2012a).
In another report, the activities of CAT markedly decreased,
due to heat stress, which were 45 or 43 % lower at 24 or 48 h
of stress, respectively (Hasanuzzaman et al. 2014c). Vigna
radiata seedlings exposed to HTstress of 42 °C (24 h) showed
a 28 % decrease in CAT activity (Nahar et al. 2015c). Earlier,
there was found a close relationship between the relative
growth rate of tobacco seedlings and CATactivity under chill-
ing stress condition (Xu et al. 2010). The authors argued that
regression equations containing CAT could be used in
predicting the seedling growth rate of tobacco under chilling
stress conditions. In another study, elevated activity of CAT
was correlated with tolerance to dark chilling stress (Wang
et al. 2009).

Ascorbate peroxidase

Biochemical characterization

Ascorbate peroxidase (APX; EC 1.11.1.11) belongs to the
class I heme-peroxidases and is found in most eukaryotes
including higher plants (Groden and Beck 1979; Kelly
and Latzko 1979; Nakano and Asada 1981; De
Leonardis et al. 2000; Battistuzzi et al. 2001; Sharma
and Dubey 2004; Yadav et al. 2014). Historically, soluble

ascorbate (AsA)-dependent peroxidase was reported in
pea leaves (Kelly and Latzko 1979), where it was ob-
served later in lamellae isolated from spinach chloroplasts
(Groden and Beck 1979). In plants, cytosolic isoforms
(cAPX), mitochondria isoforms (mit APX), and
microbody, including peroxisomal and glyoxysomal iso-
forms (mAPX), and chloroplastic isoforms (chAPX) of
APX have been identified and all these function as scav-
engers of the H2O2, generated continuously in cells
(Miyake and Asada 1996). Hence, H2O2 produced in the
organelles are efficiently scavenged by the organelle
themselves. Cytosolic APX, first isolated from pea shoots
and later purified, exhibited stability in the absence of
AsA (Mittler and Zilinskas 1991a). Isoforms of APX have
also been purified and characterized from several other
plant species including tea (Chen and Asada 1989), cotton
(Bunkelmann and Trelease 1996), cucumber (Battistuzzi
et al. 2001), tobacco (Madhusudhan et al. 2003), rice
(Sharma and Dubey 2004), olive (Lopez-Huertas and del
Río 2014), and ber (Yadav et al. 2014). Plant APX iso-
forms differ in molecular weight, optimal pH, stability,
and substrate specificity. Two isoforms of APX with
57,000 and 34,000 Da molecular weights and distinct mo-
lecular properties occur in tea leaves (Chen and Asada
1989). cAPX is a dimer consisting of identical subunits
with a molecular mass of 28 kDa, but chAPX isoenzymes
exist in a monomeric form (Mittler and Zilinskas 1991a;
Miyake et al. 1993). Plastidic APX with a molecular
weight of 34,000 has been purified from plastids of to-
bacco (Madhusudhan et al. 2003), whereas non-plastidic
isozymes of APX with molecular masses of 28–31 kDa
were reported in pumpkin (Yamaguchi et al. 1995a) and
cotton (Bunkelmann and Trelease 1996). Chloroplasts ex-
hibit two APX isoenzymes namely thylakoid-bound
(tAPX; molecular mass 37.5 kDa) and stromal (sAPX;
molecular mass 33.2 kDa) (Chen and Asada 1989;
Ishikawa et al. 1996). The molecular masses of mAPX
and mitAPX were found to be approximately 31 kDa
(Yamaguchi et al. 1995a; De Leonardis et al. 2000).
Optimum pH for the optimum activity of APX isoforms
ranges between 7 and 8 (Mittler and Zilinskas 1991a;
Sharma and Dubey 2004; Yadav et al. 2014). Notably,
APX isoenzymes are unstable in the absence of AsA. In
particular, chAPX is more AsA-specific than cAPX is;
hence, the former is more labile. In fact, the presence of
Trp-175 in chAPX instead of Phe-175 in cAPX controls
its greater AsA specificity (Jespersen et al. 1997). The
concentration of AsA lower than 20 μM results into the
quick loss in the activity of chAPX (sAPX and tAPX).
AsA is oxidatively decomposed by very low (nanomolar)
levels of H2O2 when AsA is unable to reduce compound I
of APX to compound II (Miyake and Asada 1996). Both
cAPX and mAPX exhibit around 1 hour or more as half-
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inactivation time; whereas, for mitAPX and chAPX, it is
less than 30 s (Chen and Asada 1989; Ishikawa et al.
1998; Yoshimura et al. 1998; De Leonardis et al. 2000).

Cyanide and azide-mediated inhibition in the activities of
all APX isoforms indicates the heme peroxidase nature of
APX (Mittler and Zilinskas 1991a). Iron plays an important
role in the catalytic site of APX. To this end, the deficiency of
iron resulted into bringing the activity of cytosolic APX to
half, whereas the AsA concentration was found to be doubled
(Zaharieva and Abadía 2003). Inhibition of APX by thiol re-
agent such as Ellman’s reagent (5,5′-dithiobis-(2-nitrobenzoic
acid; DTNB) indicates that the thiol group participates at the
enzyme’s active center. However, the thiol reagents do not
inhibit guaiacol peroxidases. The blocking of the ability of
APX to oxidize AsA but not the other small aromatic phenolic
substrates was found as a result of the chemical modification
of the single Cys32 residue near Arg172 and the heme propi-
onates in APX with DTNB (Mandelman et al. 1998a).
Mutation and crystallographic studies also supported the
above findings. The basic properties of APX differ significant-
ly from those of the guaiacol peroxidases. Unexpectedly, se-
quencing of first available APX cDNA showed 33 % amino
acid identity with yeast cytochrome c peroxidase (CCP)
(Mittler and Zilinskas 1991b).

In APX-catalyzed reactions, APX first reacts with H2O2 to
produce compound I, where the heme (iron V) is oxidized to
the oxyferryl (Fe4+=O) species. It is the fully oxidized form of
APX. Resting ferric APX state is then regenerated from com-
pound I by two successive one-electron reactions with the
substrate.

APX þ H2O2→Compound 1 þ H2O
Compound 1þ HS→Compound IIþ S
Compound II þ HS→APX þ S0þH2O

Although both CCP and APX contain tryptophan in the
proximal heme pocket at the same location, only Trp191 in
compound I of CCP forms stable free-radical cations
(Houseman et al. 1993). The electron paramagnetic resonance
(EPR) spectrum of APX is totally different and indicates for-
mation of porphyrin π-cation radical in compound I (Benecky
et al. 1993; Patterson et al. 1995). Roles of various amino acid
residues participating in the interaction between subunits of
APX and binding of heme and AsA are described in Table 2.
Presence of two kinetically competent binding sites for AsA in
APX has been confirmed (Lad et al. 2002). APX participates
in AsA–GSH cycle or the Foyer–Halliwell–Asada pathway
(Noctor and Foyer 1998; Asada 1999) (Fig. 3). The reaction
ca t a lyzed by APX produces two molecu l e s o f
monodehydroascorbate (MDHA) which is reduced to AsA
by enzyme monodehydroascorbate reductase (MDHAR).
Some dehydroascorbate (DHA) is also always produced when
AsA is oxidized in leaves and other tissues. Eventually, DHA

is reduced back to AsA by the enzyme dehydroascorbate re-
ductase (DHAR) which uses GSH as the reducing substrate
and the oxidized glutathione (GSSG) thus produced is reduced
back to GSH by glutathione reductase (GR).

Major molecular mechanisms underlying APX regulation
in plants are largely known. S-nitrosylation is a well-known
redox-based posttranslational protein modification. It has been
shown that APX is one of the potential targets of posttransla-
tional modification mediated by nitrous oxide (NO)-derived
molecules. Peroxynitrites (ONOO−) which mediate protein
n i t ra t ion can inh ib i t APX act iv i ty, whereas S-
nitrosoglutathione (GSNO) can enhance APX activity. Tyr5
and Tyr235 were exclusively nitrated to 3-nitrotyrosine by
peroxynitrite, whereas Cys32 was S-nitrosylated. Tyr235 is
found at the bottom of the pocket, where the heme group is
enclosed. However, Cys32 is located at the AsA-binding site.
Salinity increases APX activity and S-nitrosylated APX and
the contents of NO and S-nitrosothiol (Begara-Morales et al.
2014). Rapid decreases in the activity of APX have been ob-
served in vivo and in vitro in tobacco Bright Yellow-2 cells
(De Pinto et al. 2013). Auxin was reported to cause APX1
denitrosylation and also partial inhibition of APX1 activity
in Arabidopsis roots (Correa-Aragunde et al. 2013). In
Arabidopsis, the requirement of the zinc finger protein Zat12
for cAPX1 expression under stress (hydrogen peroxide, heat,
paraquat, and wounding)-accrued oxidative stress (Rizhsky
et al. 2004). Several phytohormones can also be involved in
APX activation. To this end, in sweet potato, abscisic acid
treatment caused a strong increase in the transcription of
APX1 (Park et al. 2004; Hu et al. 2005). In another study,
ethylene treatment showed no effect on AsA content and on
the expression of genes involved in AsA metabolism
(Nishikawa et al. 2003). Using phylogenetic, genomic, and
functional analyses, Lazzarotto et al. (2011) identified and
characterized a new class of putative heme peroxidases, called
APX-related (APx-R), which are targeted to the chloroplast
and can physically interact with chloroplastic APx proteins.

Localization

Plant APXs are found in several cellular compartments
including chloroplasts, the cytosol, mitochondria, peroxi-
somes, and microbodies. Arabidopsis thaliana has been
reported to have eight isozymes (soluble cytosolic
APXs: APX1, APX2, APX6; microsome membrane-
bound APXs: APX3, APX4, APX5; and chloroplastic
APXs: sAPX and tAPX) (Jespersen et al. 1997; Panchuk
et al. 2002). APX has also been found in mitochondria in
pea and potato (Jimenez et al. 1997; De Leonardis et al.
2000). In rice genome, in silico analysis revealed eight
APX genes: two cytosolic (OsAPx1 and OsAPx2), two
putative peroxisomal isoforms (OsAPx3 and OsAPx4),
and four putative chloroplastic ones (OsAPx5 to
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OsAPx8) (Teixeira et al. 2004). In particular, OSAPX8
was confirmed as a putative thylakoid-bound isoform
(Teixeira et al. 2004). Although sequence analysis predict-
ed localization of OSAPX6 in chloroplast, OSAPX6-GFP
fusion proteins was found in mitochondria of the BY-2
tobacco cells indicating complementation and coordina-
tion of the antioxidant defenses in different cellular com-
partments (Teixeria et al. 2006).

In fact, APX subcellular location is usually determined by
the presence of targeting peptides and transmembrane do-
mains in the NH2- and COOH-terminal regions of the protein
(Shigeoka et al. 2002; Teixeira et al. 2004). In chloroplast,
superoxide and H2O2 are produced in high amounts as a con-
sequence of the highly energetic reactions taking place during
photosynthetic activity. Since CATs are not present in chloro-
plast, APX has a critical role in this organelle. A chloroplastic

Table 2 Amino acid residues participating in the interaction between subunits of ascorbate peroxidase (APX) and binding of heme and ascorbate
(AsA)

Sl. no. Amino acid residue Role References

1. Lys-18, Arg-21, Lys-22, Arg-24,
Asp-112, Glu-228, Asp-229

Jespersen et al. (1997)

Participate in electrostatic interactions
between subunits

2. Arg-172 AsA utilization to form compound II Bursey and Poulos (2000)

Kovacsa et al. (2013)

3. Cys-32 Binding of ascorbate Mandelman et al. (1998a)

4. Glu-112 Alteration in solvent structure Mandelman et al. (1998b)

5. Arg-38 Control of substrate binding and orientation Celik et al. (2001)

6. Arg-172, Lys-30 Hydrogen bonds of these amino acids to heme
6-propionate play a role in stabilization
of the bound ascorbate

Sharp et al. (2003), MacDonald
et al. (2006)

Fig. 3 Stepwise monovalent reduction of O2 leads to formation of O2·−,
H2O2, and ·OH. O2·

− is easily dismutated to H2O2 either non-
enzymatically or by superoxide dismutase (SOD) catalyzed reaction to
H2O2. H2O2 is converted to H2O by catalase (CAT) and ascorbate
peroxidase (APX). APX participates in the ascorbate–glutathione cycle
or Foyer–Halliwell–Asada pathway. Ascorbate (ASC) is converted to
monodehydroascorbate (MDHA) in a reaction catalyzed by APX.

Monodehydroascorbate is reduced to ascorbate by enzyme
monodehydroascorbate reductase (MDHAR). Some dehydroascorbate
(DHA) is also always produced when ascorbate is oxidized. DHA is
reduced back to ASC by enzyme dehydroascorbate reductase (DHAR)
which uses glutathione (GSH) as the reducing substrate and the oxidized
glutathione (GSSG) thus produced is reduced back to GSH by glutathione
reductase (GR
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transit peptide consisting of 19 residues are identified in the
chAPX. All chloroplastic isoforms possess a hydroxylated
peptide at the N-terminus that is processed in the mature pro-
teins (Madhusudhan et al. 2003). Two signatures clearly iden-
tified the chloroplastic isoforms in higher plants. The first
signature consisted of 7 residues (KNIEEWP) and the second
had 16 (ETKYTKDGPGAPGGQS). Chloroplastic APXs
(sAPX and tAPX) scavenge the H2O2 within chloroplasts.
Two genes encoding APx isoforms, a thylakoid-bound iso-
form (At1g77490) and a stromal/mitochondrial isoform,
(At4g08390) were reported in Arabidopsis (Chew et al.
2003; Teixeira et al. 2004; Davletova et al. 2005). In contrast
to Arabidopsis, plant species including spinach, tobacco,
pumpkin, and iceplant were reported to exhibit stromal and
thylakoid-bound isoforms generated by alternative splicing of
a single gene (Mano et al. 1997). cDNAs isolated from spin-
ach were reported to encode sAPX and tAPX containing com-
mon chloroplast transit peptides of 70 amino acid residues
(Ishikawa et al. 1996). Notably, the amino acid sequences of
tAPX and sAPXwere found identical except for C-terminal of
tAPX, which is the putative transmembrane segment and was
50 amino acids longer than that of sAPX (Dong et al. 2011).
Additionally, no thylakoid membrane domainwas observed in
the COOH terminus and confirmed the localization of APX in
the stroma of the chloroplast (Dong et al. 2011).

ROS (and its reaction products) are regularly produced
in the mitochondrial respiratory chain reactions. The pres-
ence of APX in mitochondria has been reported by several
groups (Jimenez et al. 1997; De Leonardis et al. 2000;
Mittova et al. 2004a). The presence of the AsA–GSH path-
way in the mitochondria of soybean root nodules was re-
ported; however, immunocytochemical techniques failed
to confirm the presence of APX inside the mitochondria
(Dalton et al. 1993). The presence of APX in mitochondria
purified from pea was evidenced, where APX seemed to be
associated with the external side of the outer membrane
(Jiménez et al. 1997). However, no latent APX activity
was observed for intact mitochondria but remained in the
membrane fraction after solubilization assays with 0. 2 M
KCl. Later, APX isolated from potato tuber mitochondria
was purified, where the treatment with 0.2 M KCl did not
solubilize APX (De Leonardis et al. 2000). However, the
sonication-mediated disruption of the mitochondria re-
vealed a higher APX activity in the supernatant than in
the pellet and also confirmed the localization of APX in-
side mitochondria. In Arabidopsis, dual targets of stromal
APX to plastids and mitochondria were reported as a result
of the ambiguity of the targeting peptide at the N-terminal
of the APX (Chew et al. 2003). However, distinct genes for
mitochondrial and stromal isoform generation were also
confirmed in tomato plants (Mittova et al. 2004b). No cor-
responding gene, cDNA, or protein sequences for the spe-
cific mitochondrial isoform have been described so far.

In peroxisomes/glyoxysomes, ROS are produced as
byproducts of several processes such as photorespiration, fatty
acid β-oxidation, and ureide metabolism. Although CAT is
capable of scavenging large concentrations of H2O2, its local-
ization in the peroxisomal/glyoxysomal matrix along with its
low affinity for H2O2 limits its ability to keep H2O2 concen-
trations low enough to prevent it from diffusing into other
CAT-lacking subcellular compartments (Karyotou and
Donaldson 2005). APX prevents H2O2 from leaking out of
peroxisomes. Peroxisomal APX preferentially accumulates
in spongy parenchyma rather than palisade parenchyma and
can also be found in large amounts near the central vascular
bundles (Pereira et al. 2005). Peroxisomal APX has been re-
ported in several plants including pumpkin (Yamaguchi et al.
1995a, b; Nito et al. 2001), cotton (Bunkelmann and Trelease
1996; Mullen et al. 2001), spinach (Ishikawa et al. 1998), pea
(Jimenez et al. 1997; Lopez-Huertas et al. 1999), cucumber
cotyledons (Corpas et al. 1994; Corpas and Trelease 1998),
Arabidopsis (Zhang et al. 1997; Wang et al. 1999), and olive
(Lopez-Huertas and del Río 2014). No latent APX activity in
the intact microbodies indicates that the APX active sites ex-
posed to the cytosol and the peroxidase can scavenge H2O2

leaked from microbodies (Yamaguchi et al. 1995a; Ishikawa
et al. 1997). Additionally, the N-terminal active domain of the
peroxisomal APX enzyme faces the cytosol, and its C-
terminal domain is anchored and eventually facilitates the
protein’s functioning (Lisenbee et al. 2003). The peroxisomal
targeting signal comprises a COOH-terminal transmembrane
domain rich in valine and alanine followed by a positively
charged domain containing five amino acid residues (Mullen
and Trelease 2000). In wild-type Arabidopsis cells, peroxi-
somal APX was reported within a subdomain of rough endo-
plasmic reticulum (Lisenbee et al. 2003). It was suggested
that. portions of rough ER (pER) in wild-type cells can serve
as a constitutive sorting compartment likely to be involved in
the posttranslational routing of constitutively synthesized per-
oxisomal APX (Lisenbee et al. 2003).

Genomic characterization

Information regarding the genetic organization of APXs came
into light through studies on a number of plants including pea,
Arabidopsis, spinach, and tobacco. Pea gene encoding cytosol-
ic APX1 has been characterized and is known to encode by a
single gene (Mittler and Zilinskas 1992). Moreover, the pro-
moter of APX1 gene possesses a TATA box at −28 bp, a
CCAAT box at −176 bp, and several regulatory elements
(Mittler and Zilinskas 1992). Pea APX1 contains nine introns
with high contents of A and T nucleotides. The first intron was
found in the 5′ UTR region in mRNA (Mittler and Zilinskas
1992). Notably, regulatory elements present in APX1 include
the antiperoxidative element (ARE) that is responsible for
H2O2-dependent responses. However, CACGCA sequence is
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responsible for the xenobiotic response and that of CACGTG
sequence constitutes a part of the G box (Mittler and Zilinskas
1992). Additionally, the TGATTCAG sequence was reported
to be a part of the GPE I enhancer (a regulatory element for
glutathione transferase P) that regulates gene transcription by
interacting with transcription factors and RNA II polymerase
(Okuda et al. 1989). The heat shock element, characteristic of
heat shock genes that bind the heat shock factor, is also present
in the promoters of APX1 (Storozhenko et al. 1998) and APX2
(Panchuk et al. 2002). Promoters of APX3 and APX5 are
known to contain sequences similar to the heat shock element;
however, it does not bind heat shock factors (Storozhenko et al.
1998; Panchuk et al. 2002).

Chloroplastic isoforms namely sAPX and tAPX are
encoded by separate genes in Arabidopsis (Yoshimura et al.
1999). In species such as spinach and tobacco, sAPX and
tAPX are formed by alternative splicing of one gene, where
chAPX was evidenced to contain 12 introns (Yoshimura et al.
1999). A putative splicing regulatory cis element (SRE) pres-
ent in the upstream of the acceptor site in intron 12 of chAPX
genes is highly conserved in higher plants and controls alter-
native splicing (Teixeira et al. 2004). Notably, this element is
not present in plants that possess separate genes for chloro-
plast forms (Teixeira et al. 2004). Both spinach and tobacco
are reported to possess four types of mRNAvariants, one form
(tAPX-I) encodes thylakoid-bound APX and the other three
forms (sAPX-I, sAPX-II, and sAPX-III) encode the stromal
APX that is formed as a result of the alternative splicing events
in the 3′-terminal region of chAPX pre-mRNA (Yoshimura
et al. 2002). Moreover, the ratio of the level of sAPX
mRNAs to tAPX-I mRNAwas close to 1 in leaves, whereas
the ratio in root was greatly elevated possibly due to an in-
crease in sAPX-III and a decrease in tAPX-I as a result of the
alternative excision of intron 11 and intron 12, respectively.
Interestingly, the strong interaction of SRE with a nuclear
protein from the leaves, but not those from the roots, of spin-
ach and tobacco indicates the splicing enhancer SRE-
mediated regulation of the tissue-specific alternative splicing
of chAPX pre-mRNA (Yoshimura et al. 2002).

Assay methods in plants

The extraction buffer used to first report soluble AsA-
dependent peroxidase in pea leaves contained 10 mM Na
phosphate, pH 7.0, 0.5 mM MgCl2, and 1.0 mM EDTA and
around 5 % insoluble polyvinylpyrrolidone (Kelly and Latzko
1979). APX activity was determined spectrophotometrically
by following the decrease in absorbance at 265 nm (absorp-
tion maximum of ascorbate) due to the oxidation of ascorbate
to dehydroascorbate. Reaction mixtures contained, in a final
volume of 1.0 ml, 50 μmol Na phosphate buffer (pH 7.0),
2.0 μmol EDTA, partially purified APX preparation, and
30 nmol AsA. The reaction was started by adding H2O2.

Enzyme activity was calculated considering the change in
absorbance at 265 nm and an extinction coefficient for AsA
at pH 7.0 of 14.0 mM−1 cm−1 Enzyme activity was directly
proportional to the amount of pea-leaf preparation added to
the reaction mixture. Either enzyme or H2O2 can be used as
final component to initiate APX reactions. Ascorbate oxidase
(measured at pH 7.0) and CAT (determined with 0.25 mM
H2O2) were present with activities less than 3 % of that of
APX. Later, chAPX was assayed in spinach leaves (Nakano
and Asada 1981). Instead of a 265-nm wavelength, these re-
searchers used 290 nm because the absorbance of the assay
mixture used was too high at the absorption maximum of
AsA. The reaction mixture contained 50 mM K-phosphate,
pH 7.0, 0.5 mM AsA, 0.1 mM H2O2, and 0.1 mM EDTA in
a total volume of 1.0 ml. The absorbance decrease was record-
ed after 10 to 30 min of addition of either enzyme or H2O2.
Due to the lack or very low activity of ascorbate oxidase (EC
1.10.3.3) in spinach leaves, no correction for the oxidation of
AsA in the absence of H2O2 was necessary. However, non-
enzymatic oxidation of AsA by H2O2 needs to be done. The
bioassay method involving the disappearance of AsA at
290 nm has been widely used for CAT assay in plant
homogenates.

Modulation in abiotic-stressed plants

Metals/metalloids

As a key enzyme of the AsA–GSH pathway, APX protects
plants against abiotic stress-accrued oxidative stress by reduc-
ing H2O2 into water utilizing AsA as an electron donor
(Anjum et al. 2010). In general, APX activity increases in
response to metals/metalloids in plants, where upregulation
in its activity up to a certain limit has widely been advocated
to control scavenging of H2O2 and subsequent control of ox-
idative stress (Mittler et al. 2004; Anjum et al. 2014b).
However, inhibition or activation of an enzyme in defense
system depends upon metal/metalloid types, concentrations
and exposure magnitude, and plant species (Table 3).

In Brassica oleracea, low concentrations of Cd (0.5 mM)
exposed for longer duration were not sufficient to inhibit or
induce APX activity, whereas 2.5 mM Cu resulted in a linear
increase in its activity with time (Posmyk et al. 2009). In Pb-
treated Typha latifolia, a complete inhibition in APX activity
was observed; however, the extent of inhibition was lesser
when exposed to higher concentrations of As and Cd
(Lyubenova and Schröder 2011). Lomonte et al. (2010) re-
ported higher APX activity in the roots of Atriplex
codonocarpa in response to 0.05 and 0.1 mg Hg l−1. This
was directly correlated with more need of a higher APX ac-
tivity for scavenging H2O2 accumulated under Hg-induced
oxidative stress up to 0.1 mg Hg l−1 (Lomonte et al. 2010).
Plant organs can vary in terms of APX activity under metal/
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metalloid exposure. In Arabidopsis thaliana under Cu (2 and
5 μM) exposure, APX activity was found to decline in roots,
whereas its activity increased in leaves (Cuypers et al. 2011).
There was change in APX activity in shoots of Medicago
sativa under Hg stress (3.0, 10, 30 μM), whereas enhance-
ments of 1.7- to 2.8-fold in APX activity was recorded in
the roots (Sobrino-Plata et al. 2009). Irrigation with a combi-
nation of Pb2+ (5–15 mg l−1), Hg2+ (0.5–1.5 mg l−1), and Cd2+

(05–1.5 mg l−1) enhanced the activity of APX in the leaves,
stem, and roots of Kandelia candel and leaves of Bruguiera
gymnorrhiza (Huang et al. 2010). A genotype-dependent
modulation of APX activity has also been reported. In this
context, exposure to 5.0 μM Cd for 10 and 15 days resulted
in a greater increase or lesser decrease in Cd-tolerant genotype
Weisuobuzhi than sensitive genotype Dong 17 (Chen et al.
2010). A reduced activity of APX was reported in roots of
less Cd-sensitive pea genotypes namely 3429 and 1658,
whereas more Cd-sensitive genotype 188 exhibited an in-
creased APX (Metwally et al. 2005). However, an increased
APX activity was observed in Mn-tolerant cultivar Kingston
of perennial ryegrass (Lolium perenne) when compared to
sensitive cultivar Nui (Mora et al. 2009). In Brassica napus
seedlings, APX activity increased by 39 and 43 % in response
to 0.5 and 1.0 mM CdCl2 stress, respectively (Hasanuzzaman
et al. 2012b). Brassica juncea exposed to Cd exhibited an
increased APX activity (Ahmad et al. 2011). A higher APX
activity was correlated to nickel tolerance in Triticum aestivum
(Gajewska and Sklodowska 2008). Helianthus annuus plants
exposed toMnCl2 (100 μM, 4 days) showed 47% decrease in
APX activity compared to control (Saidi et al. 2014).
Contrarily, two levels of As (0.25 and 0.5 mM) increased in
APX activity by 24 and 34 %, respectively, compared to con-
trol seedlings of Triticum aestivum (Hasanuzzaman and Fujita
2013a, b). In flurochloridone (72 mM, 15 days)-exposed
Helianthus annuus, the APX activity decreased by 92 %
(Kaya and Yigi 2014). In addition to elevated levels of known
toxic elements, deficiency of plant-beneficial element includ-
ing nitrogen, potassium, and phosphorus can modulate APX
activity in plants (Tewari et al. 2009; Anjum et al. 2015). In
Zea mays , APX activity was suppressed by 2-fold less than
25 mM Cd exposure (Krantev et al. 2008). Enhanced Cd tol-
erance of the MuSI transgenic tobacco was argued as a result
of a higher activity of APX, where Cd exposure caused a 2-
fold increase in APX activity compared to wild-type tobacco
(Kim et al. 2011). Exposure of plants to single metal or two or
more metals simultaneously may also differentially modulate
APX activity. Under Cd + Zn exposure, Ceratophyllum
demersum and Cucumis sativus exhibited highly increased
APX activity compared to Cd- or Zn-alone treated plants
and indicated a differential response of APX activity to Cd
or Zn (Aravind and Prasad 2005; Khan et al. 2007). In the
seedlings of Sesbania drummondii, Pb, Cu, Ni, and Zn alone
exposure exhibited lower APX activity compared to treatment

with combination of Pb + Cu + Ni + Zn (Israr et al. 2011). In
another study, a combination of Cu and Cd (5 μM Cu +
50 μM Cd and 50 μM Cu + 100 μM Cd) caused inhibition
in the activity of APX activity in Arabidopsis thaliana leaves
(Drążkiewicz et al. 2010).

Many molecular and genetic evidences have indicated that
transgenic plants are more tolerant to heavymetal stress owing
to enhanced APX activity. In a genomic survey with
Arabidopsis cDNA microarray, APX genes and class III per-
oxidases were expressed at higher levels in Cd/Zn
hyperaccumulator Arabidopsis halleri compared to non-
accumulator Arabidopsis thaliana and was argued to contrib-
ute to the heavy metal tolerance in the former (Chiang et al.
2006). Transgenic Arabidopsis thaliana plants constitutively
overexpressing a peroxisomal APX gene (HvAPX1; from bar-
ley) were found more tolerant to Cd stress (Xu et al. 2008).
Likewise, transgenic Oryza sativa plants double silenced for
APX1 and APX2 (APX1/APX2 plants) exhibited elevated tol-
erance to toxic concentrations of Al in addition to exhibiting
normal development (Rosa et al. 2010). In another instance,
an elevated activity of APX was reported in transgenic tall
fescue (Festuca arundinacea) plants with chloroplast CuZn-
SOD and APX-expressing genes under Cu and Cd exposure;
however, As exposure resulted into declined APX activity
(Lee et al. 2007).

Expression of APX genes is regulated during normal
growth and development of plants. The activity and gene ex-
pression of APX (and also its isoenzymes) can be modulated
in plants by several biotic and abiotic stress factors including
toxic metals (Singh et al. 2008; Hasanuzzaman et al. 2011a, b,
2012a, b; Hossain and Fujita 2012). Nevertheless, several
APX isoenzymes can be expressed constitutively mainly to
efficiently and immediately detoxify H2O2 (Hossain and
Fujita 2012). An increased APX activity in Cu (10–
200 μM)-exposed Withania somnifera correlated it with six
APX isoenzymes bands (particularly 3, 4, 5 and 6) detected in
native PAGE analysis (Khatun et al. 2008). Inhibition in the
activity of APX isoforms 3–6, observed at 25 μM Cu, was
attributed either to proteolytic degradation or inactivation of
APX isoforms due to oxidative protein modification (Khatun
et al. 2008). The expression patterns and modulation of APX
isoenzymes can also differ in different organs of a plant. To
this end, in Oryza sativa shoots, two major bands of APX
activity (APX1 and APX2) were observed, whereas enzyme
preparation from chlAPX exhibited only one band in both
control and Al-stressed plants (Sharma and Dubey 2007).
Transcripts of APX2 (cytosolic ascorbate peroxidase 2) and
APX1 (cytosolic ascorbate peroxidase 1) can exhibit their dif-
ferent responses to similar exposure concentrations of metals
such as Cu and Cd. To this end, in 3-week-old Arabidopsis
thaliana, μ APX2 transcripts were elevated by Cu (2 and
5 μM) and Cd (5 and 10 μM) in roots, whereas an enhance-
ment in APX1 expression was enhanced in leaves but was
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declined in roots under Cu stress (Cuypers et al. 2011). Genes
encoding isoenzymes of chlAPX are categorized into two
groups. In the first group, through posttranscriptional regula-
tion, an alternative splicing regulation single gene encodes
two enzymes and includes genes from Nicotiana tabacum,
Mesembryanthemum crystaliium, Cucurbita sp., and
Spinacia oleracea. On the other hand, a separate regulation
of individual genes coding different isoenzymes takes place in
the second group. Genes from Arabidopsis, Oryza sativa and
Lycopersicon esculentum fall under the category of the second
group (reviewed by Caverzan et al. 2012). Notably fundamen-
tal mechanism for controlling stromal (sAPX) and thylakoid
(tAPX) isoenzyme expressions came into light from studies
on alternative splicing in Spinacia oleracea (Ishikawa and
Shigeoka 2008). Nine APX genes reported in Arabidopsis
thaliana APX gene family encode isoforms found in mito-
chondria (APX6, APX7), peroxisomes (APX3, APX5), cyto-
sol (APX1, APX2, and APX6), and chloroplast (APX3,
APX4, APX6) (Chew et al. 2003). Out of six APX-encoding
loci identified in Eucalyptus grandis, three were predicted to
be cytosolic, one as peroxisomal and two chloroplast proteins
(Teixeira et al. 2005). Four cDNAs of cytosolic, peroxisomal,
and chloroplast (thylakoid and stroma) APX isoforms have
also been isolated and characterized in Vigna unguiculata
(D’Arcy-Lameta et al. 2006). A new class of heme peroxi-
dases identified has been reported to synthesize a new protein,
APX-R (ascorbate peroxidase-related) that is functionally as-
sociated with rice APX (Lazzarotto et al. 2011). Earlier, Fe-
regulated expression of a cytosolic APX was reported to be
encoded by the APX1 gene in Arabidopsis seedlings
(Fourcroy et al. 2004). It was demonstrated that Fe-caused
oxidative stress-mediated induction of AtAPX1 gene encoding
cytosolic APX can be possible in Arabidopsis leaves, whereas
in roots, its constitutive expression can remain unaffected. In
tomato also, the leader intron of the APX20 gene was reported
to contain an enhancer element for high constitutive expres-
sion in leaves and not in roots (Gadea et al. 1999).

Enhanced APX activity in tobacco plants overexpressing
Arabidopsis thaliana cytosolic DHAR after 24 h of exposure
to 400 μM AlCl3 was linked to their greater tolerance against
Al toxicity (Yin et al. 2010). An exposure to excess Fe (III)
(500 μM) can result into an accumulation of APX transcripts
(APX mRNA) also in cotyledons of plants such as 5-day-old
Brassica napus (Vansuyt et al. 1997). Notably, the Fe-
mediated expression of APX gene was reported to involve a
signal transduction pathway different from those of oxidative
stress (Vansuyt et al. 1997). Pekker et al. (2002) demonstrated
that the Fe stress-induced expression of cytosolic APX can be
possible both at mRNA and protein levels in plant organ such
as leaves (Pekker et al. 2002). These authors also reported an
exhibition of a higher Fe-stress sensitivity in transgenic tobac-
co plants with suppressed cAPX levels compared to wild type.
Fe(II) (7.0 mM) treatment was reported to enhance the

expression of two cytosolic APX genes in 18-day old rice
seedlings (Finatto et al. 2015). The genes encoding L-APX
were downregulated by 4.7-fold in the shoot of rice after
3 days of exposure to 125 mg/l of FeSO4 (Quinet et al.
2012). Additionally, Zn (1.0 mM), Cu (0.5 mM), and Cd
(0.5 mM) treatments also elevated the expression of NtAPX
genes in transgenic Nicotiana tabaccum lines compared to
WT plants (Chaturvedi et al. 2014). In addition to an enhanced
APX activity, accumulation of mRNA and transcripts
encoding for various APXs was also evidenced in Pb-
exposed plants (Verma and Dubey 2003). In another study,
Pb (0.5 and 3.2 mM) upregulated the expression of APX
genes after 4 h of exposure (Li et al. 2012). Al concentrations
(such as 20 ppm) can also lead to increased transcript levels of
OsAPX genes (except OsAPX6) in plants such as Oryza
sativa (Rosa et al. 2010). In pea shoots, an Al-mediated-
enhanced expression of cAPX was not correlated with APX
activity (Panda and Matsumoto 2010). An enhanced expres-
sion of APX was reported to protect perennial ryegrass
(Lolium perenne) against Cd (0.2 and 0.5 mM) exposure
(Luo et al. 2011). In a similar study, protection of cuttings of
poplar (Populus deltoides × Populus nigra) against Cd stress
was reported with elevated genes encoding APX (Zhang et al.
2014). In contrast to a greater expression of cytosolic APX
protein in shoots and roots of Cd (6 and 30 μM)-exposed
maize Hg (30 μM) was reported to have diminuted APX cy-
tosolic protein (and also APX ativity) (Rellán-Álvarez et al.
2006). It was argued that this might happen as a result of a
high degree of protein oxidation that in turn was translated
into extreme toxic damage. It is also conceivable that at higher
concentrations of Cd, peroxidase activity decreases due to
oxidation of proteins in pea leaf (Cd up to 50 μM; Romero-
Puertas et al. 2002) and poplar (Schützendübel et al. 2002). In
addition, the failure of the metabolism resulting into the atten-
uation of APX activity could also be another reason for its
declined activity under extreme metal/metalloid exposure
(Schützendübel et al. 2001, 2002).

Salinity, drought, and other abiotic stresses

Soil salinity can decrease plant growth and productivity via
impacting plant processes at physiological, biochemical, and
molecular levels (Shahbaz and Ashraf 2013). It can disturb the
homeostasis of Na+ and Cl− ions, uptake of major nutrients,
and cause oxidative stress via alleviating cellular ROS (Tuteja
2007). Significant role and modulation of APX have been
reported in plants exposed to varying levels of soil salinity.
Catalase plays a key role in salt stress acclimation induced by
hydrogen peroxide pretreatment in maize. Salt-tolerant tomato
cultivar exhibited higher activities of both mitochondrial and
peroxisomal APXs (Mittova et al. 2003a). No change in APX
activity can be possible in plants under 5 days of exposure to
salt stress (50 mM NaCl) (Zhu et al. 2004). However, 4 days
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of exposure of plants to 150 mM NaCl was reported to bring
significant decreases in APX activity in Triticum aestivum
(Qiu et al. 2014). In general, an elevated activity of APX
was argued to contribute to plant salt tolerance (Hernandez
et al. 2000; Hasanuzzaman et al. 2011a). In salt-exposed rape-
seed seedlings, Hasanuzzaman et al. (2014a) observed in-
creases of 22 and 19 % in APX activity upon exposure to
100 and 200 mM of NaCl, respectively. In another recent
study, salt stress (200 mM NaCl) for 24 h increased the activ-
ity of APX by 31 %, compared with control, whereas 48 h of
stress did not significantly increase its activity (Nahar et al.
2015a). Rice seedlings were reported to exhibit salt treatment
levels and salt sensitivity-dependent activity of APX
(Hasanuzzaman et al. 2014b). To this end, 150 mM signifi-
cantly increased APX activity (by 40 %) in salt-sensitive
BRRI dhan49, whereas in salt tolerant BRRI dhan54, the sim-
ilar treatment level caused an increase of 45 % (vs. control).
Notably, under severe salt stress (300 mM NaCl), APX activ-
ity was decreased by 27 % in salt-sensitive cultivar; however,
its activity increased by 27 % in salt-tolerant cultivar
(Hasanuzzaman et al. 2014b). Organs of the same salinity-
exposed plant can exhibit a differential APX activity. In
120 mM NaCl-exposed Solanum lycopersicum, 8 days of ex-
posure was reported to bring no change in leaf APX activity,
whereas in roots, similar stress brought increases by 28 % in
APX activity (Manai et al. 2014). In halophyte Avicennia
marina, salt stress elevated the expression of peroxisomal
APX (Kavitha et al. 2008). Tissue-specific and tissue-
dependent expressions of cAPX, mAPX, and chlAPX in re-
sponse to salinity (450 mM NaCl) can also be possible in
plants such as sweet potato (Lin and Pu 2010). These authors
reported a higher APX activity in salt-tolerant genotypes when
compared to the salt-sensitive ones (Lin and Pu 2010).
Cytosolic APX2 (OsAPX2) can significantly contribute in
conferring salt tolerance in rice (Zhang et al. 2013). One of
salt treatments (50 mM and 100 mM NaCl) caused 4.5-fold
increase in the accumulation of OsAPX2 transcripts.
Additionally, the gene expression was also increased by 7-
fold after 150 mM NaCl treatment but was reduced to control
level when treated with 250 mM NaCl (Zhang et al. 2013). In
a recent study, peanut (Arachis hypogaea) plants with
SbpAPX gene from Salicornia brachiata were reported to
overexpress peroxisomal APX (SbpAPX) gene and were
found tolerant to 150 mM NaCl (Singh et al. 2014a).

In context with APX responses to drought, an increased
APX activity and subsequent reduction in H2O2 levels and
plant drought tolerance was reported in several studies. Zea
mays exhibiting correlation of higher APX with GR activity
was drought tolerant (Pastori and Trippi 1992). In a similar
recent study, a higher APX activity in tolerant pigeon pea
cultivars had higher decreasing levels of H2O2 and lipid per-
oxidation under water logging stress, compared to sensitive
cultivar (Kumutha et al. 2009). Improved drought tolerance in

BBerangan^ cultivar of poplar was argued as a result of an
increased APX activity, whereas BMas^ cultivar showed no
change in APX activity under the same stress condition
(Yang et al. 2009). Water deficit stress-mediated decrease
(43 %) in APX activity was also evidenced in Olea europaea
(Proietti et al. 2013). In Fragaria × ananassa Duch. cv.
Kurdistan, water deficit brought insignificant increases in
APX activity (Ghaderi et al. 2015). No change in the activity
of APX was observed in rapeseed seedlings under drought
stress (10 and 20 % PEG) was argued to cause elevation in
H2O2 content (Hasanuzzaman and Fujita 2011). Exposure of
Brassica seedlings to 15% PEG caused enhancements in APX
activity (vs. control) (Alam et al. 2014a). Drought stress
(−0.7 MPa) increased the APX activity by 21 % after 24 and
48 h of exposure in Vigna radiata (Nahar et al. 2015b).
Drought-tolerant Vigna unguiculata cultivar exhibiting about
60 % higher APX activity (vs. and drought-sensitive) also
showed a lower increase in the transcript levels of cytosolic
and peroxisomal APX genes (D’Arcy-Lameta et al. 2006).
However, chloroplastic APX genes expression was stimulated
earlier in the tolerant cultivar when exposed to drought stress.
It was argued that an enhanced drought tolerance can be as-
sociated with the capacity of APX (activity and genes) to
efficiently detoxify ROS at their production sites. In a recent
study, transgenic plants overexpressing SbpAPX gene showed
enhanced salt and drought stress tolerance compared to wild-
type plants (Singh et al. 2014b). Transgenic plants also report-
ed to exhibit enhanced vegetative growth and germination rate
both under normal and stressed conditions which indicate the
role of APX both in conferring drought stress tolerance and
growth enhancement as well. Overexpression of a Populus
peroxisomal APX (PpAPX) gene in transgenic tobacco en-
hanced cellular protection against drought (Li et al. 2009). A
correlation of the enhanced tolerance ofOsMT1a overexpress-
ing transgenic rice plants to drought stress with the increase in
APX activity has also been reported (Yang et al. 2009).

The significance of APX has also been extensively re-
ported in plants exposed to other major abiotic stresses
including heat (Hasanuzzaman et al. 2012a, b), chilling
(Sato et al. 2001), and flooding (Lin et al. 2007). In wheat
seedlings, exposure to 24 and 48 h of heat treatment re-
sulted in 59 and 44 % increase of APX activity (vs. con-
trol) (Hasanuzzaman et al. 2012a). Additionally, further
enhancement (29 and 23 % higher) in APX activity was
observed in seedlings supplemented with SNP, which re-
sulted in the lower accumulation of H2O2 (Hasanuzzaman
et al. 2012b). In contrast, in another instance, instead of
APX, CAT was the main enzyme to detoxify H2O2 in
heat-stressed Brassica napus (Hasanuzzaman et al.
2014c). The effect of prior HT exposure on the suscepti-
bility of rice seedlings to chilling injury and the role
therein of APX has also been studied (Sato et al. 2001).
The authors found a higher level of APX activity in
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heated seedlings that sustained after 7 days of chilling. It
was argued that the heat shock-mediated APX gene ex-
pression provided the protection against chilling injury in
rice seedlings. Tobacco plants overexpressing chloroplas-
tic APX were reported to detoxify H2O2 and tolerate pho-
tooxidative damage during temperature stress (Sun et al.
2010). The authors noted a higher photochemical efficien-
cy of photosystem II in transgenic plants (vs. wild-type
plants) under cold and heat stresses. Involvement of
cAPX gene expression in H2O2 detoxification and protec-
tion of egg plants were revealed under flooding stress (Lin
et al. 2007).

Conclusions and future perspectives

Though varied ROS have been evidenced to be involved in
plant signal transduction and thereby control the activation of
plant stress defense (Neill et al. 2002; Corpas 2015; Del Río
2015), excess and/or non-metabolized ROS can bring severe
consequences in plants (Gill and Tuteja 2010). Being major
components of plant antioxidant defense system, both CAT
and APX efficiently scavenge varied ROS including H2O2

and avert their impacts in plants. Through appraising recent
literature, this paper presented an orchestrated view of the
structure, occurrence, and significance of CAT and APX in
plants; principles of current technologies used to assay CAT
and APX in plants; and the modulation of CAT and APX in
plants under major abiotic stresses. Much has been achieved
in context with the roles of CAT and APX in isolated studies
on stressed plants. However, molecular insights into points of
interaction between CAT and APX and their potential syner-
gistic role in the control and improvement of plant stress tol-
erance are yet to be enlightened. Reports are available on the
recombinant expression of CAT in transgenic plants (Sørensen
and Mortensen 2005; Switala and Loewen 2002; Engel et al.
2006) and on the expression of the soluble rice CAT B par-
tially in Escherichia coli with coexpression of chaperone
groEL-ES (Mondal et al. 2008a), but little report is available
on the expression and purification of soluble bioactive rice
plant CAT A from recombinant Escherichia coli (Ray et al.
2012). In particular, the literature is full on isolation, produc-
tion, and purification of CATs with different techniques from
various microbial sources (Sooch et al. 2014); improved, effi-
cient, and reproducible techniques for the assays of CAT and
also that of APX required exploration. If done, these informa-
tion can have double benefits: in improving plant oxidative
stress tolerance as well as their application in various analyt-
ical and diagnostic methods (as biosensors and biomarkers).
Also, it would be very interesting to unveil potential outcome
and underlying molecular genetic mechanisms of interaction
of CAT and APX with varied ROS known to be involved in
plant signal transduction under stress conditions.
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