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Abstract—Synthetic aperture radar (SAR) acquisitions are
particularly useful to produce flood maps thanks to their all-
weather and day-night capabilities. However, repetition intervals
of radar instruments are in the order of several days for routine
operations, reaching daily or higher frequencies only in tasked
conditions. Therefore, to follow flood dynamics, images acquired
by different sensors at different times may be beneficial. In the
present work, multi-temporal SAR intensity, InSAR coherence
and optical data are considered to describe a flood event occurred
in the Basilicata region (southern Italy) on December 2013. In
this case study, optical data have a twofold role: they allow to
follow the flood dynamics (because SAR and optical data have
been acquired in different dates during the inundation event), and
they add information concerning the land cover of the analyzed
area. The data fusion approach is based on Bayesian Networks
(BNs). It is shown that the synergetic use of different information
layers can help detect more precisely the areas affected by the
flood, reducing false alarms and missed identifications which
may affect algorithms based on data from a single source. The
produced flood maps are compared to reference maps, inde-
pendently obtained; the comparison indicates that the proposed
methodology is able to reliably follow the temporal evolution of
the phenomenon, assigning high probability to areas most likely
to be flooded, reaching accuracies of up to 89%.

I. INTRODUCTION

Flooding is one of the most dramatic and frequent natural
disaster that affects several areas in the world. Producing
accurate flood maps and following event dynamics are crucial
issues in hydrogeological studies. A valuable information
source for these tasks can be remotely sensed imagery, pro-
viding a synoptic overview of flood extension at each image
acquisition time. Synthetic aperture radar (SAR) acquisitions
are particularly useful to produce flood maps thanks to their
all-weather and day-night capability [1], [2]; moreover, new
satellite missions supply a large amount of daily acquired
radar images, characterized by high spatial resolution, useful
in flood detection problems. Nevertheless, repetition intervals
of radar instruments are in the order of several days for routine
operations, reaching daily or higher frequencies only in tasked
conditions, typically under requests from civil protection or
other public entities in case of severe events, and for limited
times. Therefore, to follow flood dynamics, images acquired
by different sensors at different times could be beneficial.
In the present work, multi-temporal SAR intensity images,
multi-temporal InSAR coherence data and optical data are

considered to describe a flood event occurred in the Basilicata
region (southern Italy) on December 2013.

Flood scenarios are typical examples of complex situations
in which different factors have to be considered to provide
accurate and robust interpretation of the situation on the
ground [3]. Recently, the fusion of multi-temporal, multi-
sensor and/or multi-platform Earth observation image data,
together with other ancillary information, seems to have a key
role in the pursuit of a consistent interpretation of flooded
scenes [4]–[6]. In this case study, optical data have a twofold
role: they allow to follow the flood dynamics (because SAR
and optical data have been acquired in different dates during
the inundation event), and, moreover, they add information
concerning the land cover of the analyzed area.

The data fusion approach, used in the present work to
produce flood maps and follow flood dynamics, is based on
Bayesian Networks (BNs), a tool recently proven to be a viable
means to integrate multi-temporal SAR intensity images and
InSAR coherence data, with ancillary information [6]. It is
shown that the synergetic use of different information layers
can help to detect more precisely the areas affected by the
flood, reducing false alarms and missed identifications which
may affect algorithms based on data from a single source.
In Section II some information on the study area and the
considered flood event is reported, and the available data are
described. In Section III the data fusion approach is discussed
in detail. The experimental results are presented in Section IV.
Finally, in Section V, some conclusions are drawn.

II. STUDY AREA AND DATA SET

We analyze a flood event occurred in December, 2013, in the
Basilicata region, Southern Italy, involving the Bradano river
basin. It was due to rainfall starting from November 30 and
continuing until December 5. In particular, we consider an area
around the Bradano river, for which the peak flow (measured
at the gauging station SS106 close to the outlet) was recorded
in the evening of December 1, with the discharge reaching
about 800 m3/s, and caused an inundation that propagated in
the surrounding areas, producing floods during the following
four days. Another, less relevant peak of about 300 m3/s was
registered on December 2. Thereafter, the rainfall event was
exhausted and the dams released some of the stored flood



volume. In particular, as officially reported in the data of Basil-
icata Civil Protection, on Dec. 2 the Bradano river provoked
inundations that affected large areas concentrated along the
river banks. In the following days, the phenomenon was in
a decreasing phase and the flood effects were propagating
toward the coast, interesting smaller areas progressively farther
away from the river [6].

A series of 3 COSMO-SkyMed stripmap SAR images was
available over the analyzed area, with a ground pixel size
of approximately 3 × 3 m2, acquired in the same geometry,
polarization, and incidence angle, so that InSAR processing
could be performed. The acquisition dates are November 16
and December 2 and 3, 2013. As can be noted, the two
SAR acquisitions of Dec. 2 and 3 (depicted in fig. 1-(a)
and -(b)) offer a useful observation data set to follow the
temporal evolution of the flood wave phenomenon, that was
in a crucial phase on December 2 and in a decreasing one on
the following day. The InSAR coherence computed between
these two images was also considered (fig. 1-(c)). Other 7
COSMO-SkyMed stripmap SAR images were considered over
the same area, acquired in absence of flood events, respectively
on October 2, 3 and 10, 2010, January 17, 18 and 25, and
February 18, 2011. InSAR coherence between the Oct. 2 and
3, 2010, and Jan. 17 and 18, 2011, was considered as well.
These additional SAR data act here as a reference data set, that
allows to capture multi-temporal backscattering and coherence
trends, aiding in the detection of flood.

We also consider a Pleiades-1B optical image, at a ground
resolution of 2 m, acquired on Dec. 5, 2013, which presents
sufficient cloud-free information around the study area. The
image is acquired in 4 spectral bands, of which the ones
corresponding to the red and near infrared intervals were used
to obtain the normalized difference vegetation index (NDVI)
according to the formula:

NDVI =
LIR − LR

LIR + LR
, (1)

where LIR and LR are the IR and red radiance values,
respectively. Use of the radiances instead of the reflectances
in 1 is justified by assuming constant atmospheric and other
effects on the two close spectral bands. Positive NDVI values
indicate the presence of vegetation, while negative values are
associated with the presence of water. In fig. 1(d), a RGB
composition of Pleiades bands 4, 3 and 2 is depicted.

III. METHODS

We consider a BN as represented in Fig. 2: it is designed as a
Direct Acyclic Graph (DAG) [7], where the circles correspond
to random variables and the arrows describe causal relations
between them, modelled with conditional probabilities. The
proposed BN combines information extracted by the set of
SAR intensity images, the set of InSAR coherence images,
the optical image and some ancillary information about flood
distribution in the analyzed area. In detail, the random variable
F is discrete and consist of only two states: flood (f ) and
no flood (nf ), so that P (F = f) = 1 − P (F = nf).

(a)

(b)

(c)

(d)

Fig. 1. Input data: backscattering coefficient σ0 image acquired on (a) Dec.
2 and on (b) Dec. 3, (c) coherence image computed between the Dec. 2 and
3 acquisitions, (d) a RGB composition of bands 4,3,2 of the Pleiades image
acquired on Dec. 5.



p(F = f |σ0 = σ0∗, γ = γ∗, o = o∗, t = t∗) =
p(F = f, σ0 = σ0∗, γ = γ∗, o = o∗, t = t∗)

p(σ0 = σ0∗, γ = γ∗, o = o∗, t = t∗)
=

=
[
∑
Cσ0

p(σ0 = σ0∗|Cσ0)p(Cσ0 |F = f)][
∑
Cγ
p(γ = γ∗|Cγ)p(Cγ |F = f)][

∑
Co
p(o = o∗|Co)p(Co|F = f)]p(F = f |t = t∗)∑

F [
∑
Cσ0

p(σ0 = σ0∗|Cσ0)p(Cσ0 |F )][
∑
Cγ
p(γ = γ∗|Cγ)p(Cγ |F )][

∑
Co
p(o = o∗|Co)p(Co|F )]p(F |t = t∗)

This is the variable that we want to estimate by statistical
inference. The variables σ0,γ and o correspond respectively
to the n-dimensional vector obtained from the multi-temporal
SAR intensity imagery, the m-dimensional vector obtained
from the multi-temporal InSAR coherence imagery, and the
1-dimensional vector obtained from the optical NDVI image.
Finally, the variable t represents ancillary information which
can be added to the data, in this case a geomorphic flooding
index (GFI) derived from a Light Detection And Ranging
(LiDAR)-derived DEM at 3 m posting. The t variable is
computed from the definition in [8]:

t = ln(hr/H),

where hr is a function of the contributing area Ar in the near-
est section of the drainage network hydrologically connected
to the point under exam, and H is the elevation difference
between the cell under exam and the final point of the above-
identified path. In this index, the parameter hr is representative
of the probable water level in a cross section of the river
hydraulically connected to the point, and it is computed as a
power law of Ar with exponent set equal to 0.3. The variable
t is introduced to assign correct a priori flood probability to
zones, even relatively far from the river course, that may be
flooded due to the presence of dense channel networks, that
become a preferential vector for the flow during a flood. The
t layer is only available on an area which is contained within
the green polygon shown in Figs. 1 and Fig. 4, overlayed on
the various maps.

Since the flood state often does not exhibit a simple ”causal”
relation with the imagery, the intermediate variable classes
Cσ0 , Cγ and Co are introduced [9]. They consist each of
several possible states, that can be determined either by using
some a priori knowledge on the scene, or by extracting
them automatically from the imagery. The relations between
variables are modelled as conditional probabilities and the con-
ditional independence assumptions hold, i.e. if two variables
are not directly connected in the graph they are independent.
We want to infer the value in eq. 1, where {σ0∗, γ∗, o∗, t∗}
are observed values for the random variables σ0, γ, o and t, re-
spectively. In particular, each conditional probability p(g|Cg),
with g ∈ {σ0, γ, o} is given as a multi-dimensional probability
function generated by a mixture of Kg Gaussian distributions,
whose parameters {µg,Σg} are automatically computed by
applying a K-means algorithm [10]. The number Kg of
clusters Cg are determined by a trial-and-error procedure, in
order to find the value that provides a good representation of
the different classes believed to be present in the analyzed
scene. The probabilities p(Cg|F ) are computed by applying

the Bayes rule: p(Cg|F ) = p(F |Cg)p(Cg)/p(F ), where the
p(Cg) terms are derived from the K-means algorithm, and the
p(F |Cg) are assigned by the user. The conditional probability
p(F |t) can be modelled in different ways. In the following,
we consider p(F |t) modelled as a sigmoid function.

IV. EXPERIMENTAL RESULTS

Flood maps have been produced by applying eq. (1). In par-
ticular, the conditional probabilities p(g|Cg) have been com-
puted as multi-dimensional probability functions generated,
respectively, by a mixture of Kσ0 = 32,Kγ = 8,Ko = 16
Gaussian distributions. Their parameters have been automat-
ically computed by applying the K-means algorithm [10].
The probabilities P (F |Cg) have been assigned by the user
by considering the centroid value µCg of each intermediate
class. The probability p(F |t) has been computed as a sigmoid
function of the variable t, with parameters which have been
assigned by the user by considering information on the flood
evolution.

The flood maps depicted in fig. 3 have been obtained by
considering a threshold of 0.8 to each final P (F = f|g) map.
The BN maps have been compared with reference flood maps
independently obtained from the Flora2D hydraulic model [11]
and depicted in Fig. 4. The flood and no-flood instances are
unbalanced on the maps, so the true positive rate (TPR) and
false positive rate (FPR) values are also considered to give
more objective evaluations. They are defined as:

TPR =
TP

TP + FN
;

FPR =
FP

FP + TN
;

where TP is the number of True Positives, i.e. the actual
flood data that are correctly classified, FP is the number of
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Fig. 2. BN scheme



(a)

(b)

(c)

Fig. 3. Flood maps produced by BN for (a) Dec. 2, (b) Dec. 3, and (c) Dec.
5 dates. Colors are proportional to the final p(F ) probability.

False Positives, i.e. negative data classified as positive, TN is
the number of True Negatives, i.e. the actual no flood data
that are correctly classified, and FN is the number of False
Negatives, i.e. positive data classified as negative. In Fig. 5, the
corresponding receiver operator characteristic (ROC) curves
are reported: a relative agreement with the reference maps has
been obtained, with areas under the curve (AUC) values for
the Dec. 2, Dec. 3 and for the Dec. 5 map equal to 0.61, 0.60
and 0.60, respectively. The best overall accuracies, obtained
by varying the probability threshold values, are respectively
equal to 80%, 87% and 89%, for Dec. 2, 3 and 4. It is worth
noting that the test area lies between the Bradano and Basento
rivers and could thus be potentially interested by flood due to
the cumulative action of both rivers, while the reference data
consider only the Bradano contribution. Moreover, some areas
could be inundated for rain accumulation. For this reason,
the Dec. 2 map shows several flooded areas which are not
visible in the reference map: these decrease the AUC of the
ROC curves. In the future, the flooded areas not affected
by the river flow should be recognized and removed from
the comparison. Nevertheless, the BN framework allows to
reduce false alarms and missed identifications by performing
data fusion. In fact, by considering the pixels exhibiting
high values of backscattering intensity on Dec. 2, we found
that these are almost 59% of the total analyzed pixels and

(a)

(b)

(c)

Fig. 4. Reference maps obtained from Flora 2D hydraulic model for (a) Dec.
2, (b) Dec. 3, and (c) Dec. 5 dates. Here, colors are proportional to simulated
water depth.

are scattered across the whole scene. By considering also
the InSAR coherence information, we found that only about
half of these points (corresponding to about 32% of the
total analyzed pixels) exhibit also a significant change in the
coherence value. Moreover, we observed that, by adding both
NDVI information and ancillary information, they are reduced
to only 21%. In this way, a useful reduction of false alarms
can be obtained. On the other hand, some areas, that we know
were flooded, but that exhibited high values of backscattering
intensity, show high values of posterior probability, indicating
that the data fusion performed through the BN framework
allows to overcome the missed identification which would be
obtained by using only one data source. Similar consideration
are true for the other two maps.



Fig. 5. ROC curves obtained by comparing the Probability Maps with the
reference maps for Dec. 2, Dec. 3 and Dec. 5.

V. CONCLUSION

We have shown a data fusion approach, based on Bayesian
Networks (BNs), to detect flooded areas and following flood
dynamics. It opportunely combines SAR intensity, InSAR
coherence and optical imagery with ancillary data. Results
show the advantage of integrating heterogeneous sources of
information in order to reduce uncertainties in the mapping
of the presence of water on different land cover types. In
particular, it allows to both mitigate the false alarms and
to correctly identify flooded areas in events characterized by
complex land cover ground conditions and time evolution.
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