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Abstract: Resveratrol (3.5.4°-tri-hydroxystilbene) (RSV), a naturally occurring
phytoalexin, readily available in the diet, has gained interest as a non-toxic agent
capable of displaying cancer-preventing and anti-cancer properties. Several studies,
using both in vitro and in vive models, have illustrated RSV capacity to modulate a
multitude of signaling pathways associated with cellular growth and division,
Spoplosis, angiogenesis, invasion and mctastasis. However, its clinical application is limited because of a low oral
Sioavailability with high adsorption but rapid metabolism and low tissue concentrations, Several chemical modifications
% the backbone structure have been made for the purpose of improving pharmacokinetic parameters. One promising
srategy involves the introduction of methoxylic or hydroxylic groups on the phenylic rings of RSV. Moreover, by
sepiacing the alkenc linker between the two aromatic rings with a heterocyelic system rigid analogs such as 2.3-
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idin-4-ones and 3-chloro-azetidin-2-ones that displayed higher cytotoxic activity and hence higher ability to inhibit

# wiro breast cancer cell growth have been synthesized. /n vitro studies have demonstrated, for some of these
Sommounds, a greater bioaccessibility than RSV and more selective inhibitory effects on breast cancer cell growth. Further

='¢ clhimical anticancer application.

“ons. particularly in vive, are required as next step to implicate these analogs as pharmacologic agents for a
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LINTRODUCTION

~ e = & disease responsible for the death of millions

W pesmie swery year. This disease may occur when the
Sssisees balance between mitosis and apoptosis is
sies=l. ssher by an increase in cell proliferation or a
Sessme m ool death. Surgery, radiotherapy and chemotherapy
Smssemt e standard treatment protocols for cancer. The
S o cemcer chemotherapy 1S to promote cancer cell death
S sectne normal cells, by inducing apoptosis or by
S8t wamcsy Often, inherent or acquired fumor drug
SEssmce ts drug therapy efficacy aimed to block cancer
Seessen (11 It s known that cancer progression is the
Wl o Se interplay between several factors including
peeme. eswwonmental and dietary factors. In  particular,
SSmemental and or dietary factors have a significant role in
e mosesce and development of breast cancer, the most
Semor and the major cause of cancer death among

W 21 Results from several studies support the
Spushesss that intake of vegetables and fruits decreases
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breast cancer risk [3]. For example, the low incidence of
breast cancer in Asian women has been linked to the
consumption of a dict rich in soy products known to contain
high amounts of phytoestrogens [4, 5]. These natural
compounds have been demonstrated capable of mimicking
or antagonizing estrogen effects on breast cancer growth [6-
8]. During the last few years a growing interest for natural-
product-based drug discovery for cancer therapy [9] has
integrated new technologies, such as combinatorial synthesis
[10] and high-throughput screening (HTS) [11, 12]. In
particular, in vitro bioassays have been developed using both
cellular (i.e. asscssment of growth or cell death by different
methods) [13-15] and molecular-based approaches (i.e. HTS
against specific kinases or other enzymes) [16, 17].

Resveratrol  (3,5,4’-tri-hydroxystilbene) (RSV) is a
natural phytoalexin present in medicinal plants, grape skin,
peanuts, red wine and other foods that are commonly
consumed as part of the human diet [18. 19]. Data from basic
rescarch and preclinical studies disclosed the broad range of
advantageous biological actions possessed by RSV [20].
RSV is produced by some spermatophytes, such as grapevines,
and protects the plant from injury. ultraviolet irradiation and
fungal attack [21]. It exists in cis- and #rans- isomeric forms
(Fig. 1) but the cis-isomer has never been identified in grape
extract [21, 22].

© 2016 Bentham Science Publishers
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Fig. (1). Structure of cis (I) and mrans (11) Resveratrol.

This natural compound exerts multiple beneficial
properties including antioxidant activity, modulation of lipid
and lipoprotein metabolism, platelet aggregation inhibition,
vasodilator, anticancer, chemopreventive. anti-proliferative,
proapoptotic, cardioprotective and estrogenic activity [21] by
modulation of multiple pathways such as mTOR, ERK and
PI3K/Akt [23-25]. RSV antioxidant properties [26] have
been attributed to its capability to reduce copper-catalyzed
oxidation [27] and to inhibit LDL [28] and membrane lipids
peroxidation [29]. Some observations haye highlighted the
protective effects of RSV against atherosclerosis by
decreasing intracellular concentration in apo B, cholesterol
esters, and triglycerides secretion rate [30]. Furthermore, the
chemopreventive effect of RSV is thought to relay on the
inhibition of quinone reductase-2 activity, allowing up-
regulation in the expression of enzymes involved in
antioxidative and detoxificative reactions, improving cell
resistance to oxidative stress [31]. Im vitro studies have
demonstrated that RSV is able to inhibit formation of
thromboxane B2 and lipoxygenase products, substances
involved in inflammatory processes, such as chemotactic
factors formation and platelet aggregation [32, 33]. In
particular, it has been reported that RSV exerts anti-
inflammatory effects by inhibiting cyclooxygenase-1 and -2
expression [34] and catalytic activity [35]. The
cardiovascular effects of grape products. particularly those of
trans-RSV, can relay on nitric oxide-dependent and
-independent vasodilatation [36, 37]. RSV also increases the
activity of SIRT1 (a member of the sirtuin family of
nicotinamide adenine dinucleotide-dependent deacetylases),
resulting in improved cellular stress resistance and longevity
[23, 38]. In particular, RSV displays important neuroprotective
effects on animal models of Parkinson’s disease and prevents
free-radical-mediated damage of neuronal cells through the
activation of a SIRTI pathway [39]. Chemopreventive
effects of RSV might also depend on the suppression of
human CYPIA1 and CYPIBI gene expression [40]: these
genes encode for enzymes involved in the metabolic
activation of several pro-carcinogens and in the catabolism
of several xenobiotic compounds [41, 42].

Several reports confirm that RSV inhibits in vifro all
three phases of tumor development: initiation, promotion,
and progression [43] of various cancer types such as B-cell
lymphoma [44], T-cell lymphoma [45], melanoma [46]
prostate [47], colon [48], pancreatic [49]. gastric [50],
ovarian [51]. endometrial [52], liver [53] and breast cancer
[54]. However, contradictory effects on the inhibition of
breast cancer cell proliferation have been reported. High
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doses of RSV suppressed the growth of estrogen receptor-o
(ERo)-positive MCF-7 [55, 56], T47D [57], KPL-1 [58] and
ERa-negative MDA-MB-231. MKL-F [56, 58, 59] breast
cancer cells, while a low dose of RSV potentiated MCF-7
and T47D proliferation [60. 61]. These results suggest that
depending on the cell type and on the used dose, RSV could
contribute to the activation of different signaling pathways
involved in breast cancer cell proliferation and gene
expression regulation [62-64]. The anti-proliferative effects
of RSV on breast cancer are dependent on its concentrations
but appear to be independent from the estrogen receptor
status [59]. RSV anti-proliferative properties are consequent
to cell cycle arrest and/or apoptosis [49, 65]. Lanzilli e al.
have demonstrated that in MCF7 cells RSV treatment caused
an S-phasc arrest with a concomitant reduction in telomerase
activity followed by apoptosis [66]. It should be noted that
RSV’s ability to induce apoptosis depends on the tumor cell
type [56]. Moreover, different doses can induce different
effects on several tumor cells; for example it has been shown
that 10-30 uM of RSV can induce cell cycle arrest or cancer
cell growth inhibition [67] while higher doses (=100 uM)
can induce death by apoplosis [68, 69].

RSV’s beneficial effects observed in vitro are limited by
its short biological half-life and rapid metabolism and
climination [70. 71]. Therefore, fewer studies have investigated
RSV’s anticancer effects in vive [72]. In humans and
rodents, RSV is metabolized through three major pathways
[71], then, despite administration of high doses of RSV, it
might be insufficient to achieve the systemic concentrations
required for cancer prevention [73]. Following intestinal
absorption, frans-RSV and its glucoside are converted into
glucuronide and sulphate metabolites (Fig. 2) by enterocytes
and hepatocyte through the action of uridine 5'-diphospho-
glucuronosyltransferases and sulphotransferases, respectively
[71]. Extremely rapid sulfate conjugation by intestine and
liver appears to be the rate-limiting step in RSV’s
bioavailability [71]. In addition, intestinal microflora likely
catalyzes hydrogenation of the RSV aliphatic double bond.,
Even though systemic RSV bioavailability is very low,
active RSV  metabolites can accumulate in the
gastrointestinal tract. As a conscquence, only for those
tumors that can come into direct contact with RSV
(gastrointestinal tumors), there are consistent evidences for
its anticancer action, while for other cancers the evidences
are uncertain [24].

Currently. there is a major interest in developing new
formulations with improved RSV bioavailability together
with potent anticancer activity. This review summarizes the
current literature on syntheses of new and more powerful
RSV analogs that display remarkable promises as potent
chemopreventive agents against breast cancer.

2. ESTROGEN-LIKE ACTIONS OF RSV ON BREAST
CANCER: IN VITRO AND IN VIVO STUDIES

Initial studies tried to link RSV effects to its
phytoestrogenic character. derived from a structural
similarity to diethylstilbesterol and from its capability of
binding and activating both ERa and ERP [60]. The most
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“udics evaluated RSV interactions with ERs alone or in the
peesence of 17B-cstradiol (E2). the main physiological ligand
© E8s Conclusion from these studies are conflicting and
“epend on the breast cancer cell line used for the study.
sesticularly to the ER  and  associated co-activators
sgeession pattern [74, 75]. However, RSV exerts an action
o= Soth ER+ and ER- breast cancer cells [55, 59, 76]. In
t¥e- and ERP+ MCF-7 mammary cancer cells, RSV
si5is  estrogenic and  even  superestrogenic  (when
wmiemed with E2) properties [60], but also antiestrogenic
scSwaes o the presence of E2 [59, 75]. It was concluded
S BSW acts as an agonist on mammary cells containing
S8s while exhibits antagonistic activity on ERB [77].
Swmewer it s now generally established that RSV acts as a
iwsd scomistantagonist at low concentrations, while it acts
& & pure anti-estrogen at higher concentrations and
- ol with the E2 [75, 78]. Nakagawa et al. showed that
% comcemtrations of RSV increase cell proliferation of ER+
SFL-1 = 22 uM: MCF-7, <4 uM) human breast cancer cell
“mes whereas high concentrations (= 44 uM) suppress cell
&70wis of ER- MKL-F breast cancer cells by activation of an
Soopiotic mechanism [38]. These results were confirmed by
sher studies using MCF7 and MDA-MB-231 cells, where
S5V mhibited proliferation, activated proapoptotic effects in
& fose and time-dependent manner [56]. Specifically, in
MDA-MB-231, RSV regulated expression of G1/S and
G2 M markers, without affecting expression of tumor
sumpressors p2 1Cipl/WAFI, p27Kipl and p53, leading these
“o's %0 death by a non-apoptotic process. In MCF-7, RSV
Sriaced 2 significant increase in expression and in kinase
simmes of GUS and G2/M  regulators, such as
#2 Ol WAFIL p27Kipl and p53. These events resulted in
Selowsie et at the S phase followed by apoptosis [56].
Sooiter sady comparing ER+ and ER- cells showed a
S5 erens mechanism involved in the anti-proliferative effects
o ®SV. Im ER+ MCF-7 cells, RSV antagonized E2-
Simendent stimulation of an estrogen responsive element
sepwricr gene construct and inhibited mRNA expression of
Srisssicrone receptor [79]. Whereas on ER- MDA-MB-468
.:'_r snti-proliferative cffects occurred by decreasing the
“epression of transforming growth factor-alpha (TGFa),
i cell derived growth factor (PCDGF) and insulin-like
factor | receptor (IGFIR) [79].
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‘= wvivo studies of the estrogenic effects of RSV are
wmmied [80]. and the majority of those conducted thus far
wore unable to confirm the ERa agonistic effects observed in
® wiro studies. Rather, RSV appears to have pure anti
ssrozenic effects at high doses [74, 80, 81]. In fact. RSV has
“een shown to inhibit the formation of carcinogen-induced

seemeoplastic mammary lesions and tumors in rodent models
'-’-f Frevious studies performed in rats aimed to investigate
wiather RSV was an estrogen agonist on reproductive and
:-:z-reproductivc estrogen larget tissues. RSV admimistration
2ts (1-100 pg/day) had no effect on uterine growth and
~erenuiation, body weight, serum cholesterol and radial
Some growth. These doses were not tested in combination
wih B2 while only 1000 pg/day of RSV was combined, and
peevented estrogen-dependent serum cholesterol lowering
=fect The study concluded that RSV exerted no estrogen
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Fig. (2). rans-Resveratrol and its main metabolites.

agonistic action but could act as an estrogen antagonist [80].
Other studies examined RSV effects on breast tumor models.
It has been reported that RSV (10-100 mg/kg/day) inhibited
the early stages of N-methyl-N-nitrosourea (MNU) [74] or
7.12-dimethylbenz[a]anthracene (DMBA)-induced mammary
carcinogenesis in female Sprague-Dawley rats [82]. In the
same animal tumor model, diet enrichment with high doses
of RSV decreased tumor number in rats and delayed tumor
development after initiation at postnatal day 50 [83].
Similarly, in DMBA-induced mammary carcinogenesis of
rat, Chatterjee ef al. [84] showed that RSV supplementation
in the diet decrcased mammary tumor incidence after DMBA
exposure, In addition, analyzing mammary tissue after
animal sacrifice, the authors demonstrated that RSV reduced
cell proliferation and induced apoptosis through the
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reduction of oxidative stress, disruption of 5-lypoxygenase
(LOX) pathway and inhibition of DNA damage [84]. In
addition, RSV in vivo effects were evaluated on the
development of mammary tumors appearing spontaneously
in HER-2/neu transgenic mice at an early age. In this model,
RSV administration delayed the development of spontancous
breast cancer, decreased tumor number and size and reduced
lung metastases [85]. Garvin et al. [81] confirmed in vivo
RSV antitumoral effects on ER @ ERp+ MDA-MB-231
breast xenograft tumor model through a synergism between
apoptosis induction and inhibition of angiogenesis VEGF-
dependent. Recently, the inhibitory effects of RSV were
evaluated on breast cancer stem cells (CSCs) in vivo, using a
xenograft model of SUM159 cells in NOD/SCID mice [86].
After treatment, tumor volume in RSV-treated mice was
significantly smaller than control indicating that RSV could
effectively inhibit growth of breast cancer cells in vivo by
targeting CSCs [86]. In contrast, other in vivo studies have
not shown promising results for RSV on breast cancer
treatment. Sato ef al. [87] indicated that short RSV treatment
(100 mg/kg/day) of prebubertal Sprague-Dawley female rats
affected endocrine function and accelerated development of
MNU-induced mammary carcinoma with an increase of
tumor incidence and multiplicity [87]. Another report
indicated how oral RSV administration did not affect
mammary tumor number or tumor metastasis of ER- 4T1
cells to the lungs in a BALB/c murine model of
experimentally induced breast cancer [88]. Using
immunocompromised mice, effects of different RSV
concentrations (0.5, 5. 50 mg/kg body weight) were
investigated on mammary tumor development. Specifically,
RSV caused progression of mammary tumor growth and
metastasis at all concentrations examined in tumors derived
ER- MDA-MB-231 and MDA-MB-435 cancer cell lines
[89]. It should be stated that all the in vivo anticancer effects
mentioned above did not cause systemic toxicity. Juan er al.
[90] reported how RSV administration (20 mg/kg/day) to
Sprague-Dawley rats did not affect mortality, hematologic
tests, weight of the vital organs during the experimental
period. Only very high doses of RSV (1000-3000 mg/kg/
day) induced renal toxicity in rats by increasing kidney
weight and renal lesions, such as an increased incidence and
severity of nephropathy [91]. Thus, a moderate RSV uptake
displays no systemic toxicity and appcars to show a
chemopreventive effect in vivo by inhibiting the early stages
of breast tumorogenesis.

3. BIOLOGICAL EFFECTS OF RSV DERIVATIVES
ON BREAST CANCER CELLS

Several clinical trials have focused on characterizing the
pharmacokinctics and metabolism of RSV, reporting how the
chemical structurc of RSV, which contains threc free
hydroxyl groups, makes it susceptible to extensive phase-11
conjugation reactions in vivo [70]. Human studies
demonstrated the potential drawbacks of the poor
bioavailability of RSV [70]. To improve the pharmacokinetic
properties and extend its cancer-protecting activity, several
synthetic analogues have been preparcd and tested in in vitro
models [92].
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3.1. Methoxylated RSV Derivatives

Numerous reports have supported the conclusion that the
substitution of the hydroxyl groups present on phenylic
moiety with methoxylic groups (Table 1) substantially
enables the anti-proliferative and apoptosis-inducing
activities of RSV [92, 93]. In particular, the number and
position of methoxy groups based on the RSV structure
significantly influence these activities [94]. Pterostilbene 1,
the natural dimethylated analog of RSV, has higher oral
bioavailability and enhanced potency than RSV [95].

Table 1. Resveratrol derivatives and analogs.
Chemical structures References
OH
HiCO S O
Q [95-101]

OCH,

3.5-dimethoxy-4'-hydroxy-E-stilbene (pterostilbene)
(Eh]

. | o S
I e g
& sy NH,
o &
[101]

OCH,

pterostilbene-isothiocyanate conjugate

@)
OCH;,
H.CO S O
O | [103,104]
QCH;
trans-3,5.4'-trimethoxystilbene
(3)
H,CO e O
Q [93, 105,
H;CO 106]
OCH,
frans-3.4.54 -tetramethoxystilbene (DMU-212)
4)

i OCH;
OCH;
H:CO S O
OCH;
[94]

OCH;

trans-3,5.3".4°,5-pentamethoxystilbene

(5)
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OCOCH;

OO |
|

OCOCH;

H,COCO

trans-3,5.4'-triacetyl-stilbene

[104]

OH
W3

rans— 4 -dihydroxy-stilbene (DHS)
(N

(6)

HO

[109-112]

OH
OH

NSNS OH

OH

frans-3.3" 4,455 -hexahydroxystilbene

(8)

0
b
e

l
) F

OCH;

OCH,;

2= 3 4-dimethoxyphenyl)-3-(4-hydroxyphenyl)-
thiazolidin-4-one

9)

[116]

O

by

: N
HO
Cl

<< 4<hiorophenyl)-3-(4-hydroxyphenyl)thiazolidin-4- I
one (10) ‘

[116]

O ‘

o

=

2.3-diphenylthiazolidin-4-one
(11)

[116]

Q

[116]
I15C C

2-(naphthalen-1-y1)-3-p-tolylthiazolidin-4-one
(12)

[116]
OCH;
OCH;

2-(3.4,5-trimethoxyphenyl)-3-p-tolylthiazolidin-4-one
(13)

= [119]

Br

1,4-bis-(4-bromophenyl)-3-chloroazetidin-2-one
(14)

O,

Cl

N
I/O/ [119]

Cl
3-chloro-4-(4-chlorophenyl)-1-(4-iodophenyl)azetidin-2-
one (15)

OH
HO

4-(6-hydroxy-2-naphthyl)-1.3-benzenediol (HS-1793)
(16)

[120. 121]

Pterostilbene 1 was more effective than RSV in inducing
cycle arrest and the mithocondrial apoptotic pathway in
breast cancer cells, probably because substitution of an
hydroxyl with a methoxyl group increases lipophilicity and
consequently bioavailability [96]. It has been demonstrated
that pterostilbene 1 has an additive inhibitory effect on breast
cancer cells when combined with tamoxifen, most likely by
increasing cell apoptosis [97]. Interestingly, pterostilbene 1
simultaneously induced apoptosis, cell cycle arrest and cyto-
protective autophagy in both Beap-37 and MCF-7 breast
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cancer ccll lines [98]. In addition, Mak ef al. [99] have
demonstrated that pterostilbene 1 suppresses tumor
enrichment in CSCs and affects metastatic potential
activated by M2-tumor-associated macrophages (TAMs)
modulating NF-KB/miR488 pathway involved in epithelial-
to-mesenchymal transition (EMT) [99]. To an extent higher
than RSV, pterostilbene 1 has also been reported to increase
cxpression and activity of Argonaute2 (Ago2), a central
RNA interference (RNAi) component. Ago2 allows an
increase in the expression of a number of tumor-suppressive
miRNAs, including miR-143 and -200c, inhibiting breast
cancer stem cell-like characteristics [100]. A novel class of
hybrid compounds synthesized by appending an
isothiocyanate moiety to the pterostilbene 1 backbone, has
recently been developed [101]. Specifically, pterostilbene-
isothiocyanate conjugate 2, induces greater cytotoxicity in
breast cancer cells than peterostilbene 1 alone [101] (Table 1).
Interestingly, this effect was partially reversed, in the
presence of peroxisome proliferator-activated receptor
gamma (PPARY) antagonists, suggesting that pterostilbene-
isothiocyanate anticancer effects are mediated by activation
of PPARy pathway [101]. These data are in agreement with
{indings from several in vive and in vitro studies showing the
ability of PPARy agonists such as rosiglitazone or
troglitazone to decrease breast cancer cell lines proliferation
[102]. It has also been reported that trimetoxystilbene
derivatives show a better anti-cancer activity. Another
derivative, 3,5.4"-trimethoxystilbene 3, exhibits better anti-
invasive activities than RSV. In MCF-7 cells, this compound
reverses EMT by decreasing mesenchymal markers, such as
snail, slug, and vimentin through PI3K/Akt and Wnt/B-
catenin pathways and restores epithelial-like characteristics,
such as E-cadherin expression [103]. In another work, it has
been compared frans-RSV bioefficacy with its derivatives,
trimethoxy-RSV  (frans-3,5.4'-trimethoxystilbene) 3 and
triacetyl-RSV (trans-3,5.4'-triacetylstilbene) 6 (Table 1) in
both ERa+ MCF-7 and ERa- MDA-MB-231 breast cancer
cells [104]. Using combined in silico and biochemical
approaches was demonstrated that RSV and triacetyl-RSV 6,
binding to integrin avf3, activate ERK and/or p38 kinase
pathways, leading to p53 activation, cell cycle arrest, and
finally DNA repair. Differently, trimethoxy-RSV 3 after
binding to integrin avf3, stimulates another MAPK
signaling leading to p353 activation and apoptosis [104].

oclL,
H,C0 ‘
‘ N OH
HLC0
DMU 214
I OClL,

OCH,

500 X
HO l
OCH, DMU291

Fig. (3). DMU-212 metabolite structures.
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These results support the idea that in breast cancer cells RSV
and triacetyl-RSV regulate proliferation and gene expression
by utilizing largely similar signaling pathways which appear
relatively distinct from those targeted by trimethoxy-RSV.
In MDA-MB-435 and MCF7 cells (trans)-3.4,54°-
tetramethoxystilbene 4 (DMU-212) (Table 1) activates
different molecular mechanisms with increased anti-tumor
effects over RSV [93]. This compound induced
predominantly G2/M arrest whereas RSV caused GO/G1
arrest in both cell lines. In addition, it reduced more than
RSV expression of anti-apoptotic proteins and significantly
increased tubulin polymerization, an event unaffected by
RSV treatment [93]. In addition, DMU-212 showed
improved bioavailability in mouse liver and plasma
compared with RSV [103]. It has been demonstrated that
DMU-212 escapes glucuronidation reactions because of its
methoxy groups and is metabolized in vive to four major
metabolites (E)-3'-hydroxy-3.4,5.4 -tetramethoxystilbene or
DMU-214,  (E)-4’-hydroxy-3.4,5-trimethoxystilbene  or
DMU-281,  (E)-4-hydroxy-3,5.4 -trimethoxystilbene  or
DMU-291, and (£)-3-hydroxy-4,5.4 -trimethoxystilbene or
DMU-807 (Fig. 3) [105].

In order to define the anti-cancer mechanism of DMU-
212 and its metabolites on MCF-7 and HepG2 hepatoma
cells, Androutsopoulos er al [106] showed that the
trimethoxy substitutions along with the presence of a
methoxy group at position 4° are necessary for retaining the
activity of DMU-212. With the goal of obtaining more
potent anticancer agents, further modifications to
pentametoxystilbene were made and methoxy groups were
placed on the 3-, 5-, 3°-, 4’- and 5°-positions of the phenyl
rings of RSV (Table 1). As expected, this compound showed
superior anti-proliferative effects than RSV, pterostilbene
and trimetoxystilbenc, in the order pentametoxystilbene>
trimetoxystilbene >pterostilbene> RSV on MCF-7 breast
cancer cells in both a dose- and a time-dependent manner
[94]. These results support the assumption that the presence
and position of methoxy groups on the stilbene scaffold of
RSV are relevant to the cytotoxic ability of these
corresponding compounds. The cytotoxic effects of
3.,5.3"4',5'-pentamethoxystilbene 5 (Table 1) on MCEF-7
cells depend on G1 phase cell cycle arrest, down-regulation
of cyelin D1/D3/E and cyclin-dependent kinase (CDK)2/4/6

on
15C0 N ‘
HiCO l
DMU 281

l OCH;

OH DML 807

OCH;

H,CO I X

HiCO
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snd wp-regulation of cyclin-dependent kinase inhibitors
_T s) iquding pl5 pl5SINK4B, plé INK4A, p21Cipl/
- .and p27 Kipl [94].

5.2 Hydroxylated RSV Derivatives

1 Bas also been reported that introduction of additional
“rony! groups increases RSV biological activity [107].
Svdroxystyryl moiety is absolutely required for RSV
ferative activity and DNA polymerase inhibition
ole 1). The introduction of two hydroxyl groups at
e = and 4 positions, resulting in the RSV analog 4,4'-
“Srosy-rrans-stilbene 7 (DHS), increases the antioxidant
W8S ami-sstrogenic activities [109]. This compound acts as a
¢ ER ligand [110] and inhibited normal human
“Bwablasts cell proliferation with higher efficiency and
Srowes 2 mechanism different from RSV [111]. A further
showed that 4.4'- dihydroxy-n ans-stilbene 7 (DHS) is

mers cffective than RSV in suppressing fibroblasts cell
Swstoemation. as well as  anchorage-dependent and
wependent MCF-7 cell growth through an up-regulation of
== == E-cadherin expression together with reduction in
metsloproteinase-2 and -9 activities [112]. The activity of
snoiher ASW derivative, 3,374,455 -hexahydroxystilbene
8 was mvestigated in ZR-75-1, MDA-MB-231 and T47D
mmmman breast cancer cells; it causcd cell growth inhibition
sigh apoplosis, activating caspase-8 only in MDA-MB-
=51 cells, and caspase-3 and caspase-9 in all three tested cell

ah

-

superoxide dismutase down

33 Ouher RSV Analogs
S0 2 -thiazolidin-4-one RSV Derivatives

 5as been reported that grans-stilbene RSV derivatives
S chemopreventive properties and display non-specific
r‘:—.;_e on many biological targets [114]. Mayhoub er al.

5 described  innovative derivatives characterized by
sspiacement of RSV stilbene ethylenic bridge with a 1,2.4-
“casole heterocycle and modification of the substituents
& 5 two aromatic rings, producing RSV derivatives with
sstamced potencies and selectivity on aromatase and NF-kB
wowton and  quinone reductase-1  induction [115].
wzmplating this approach that keeps the geometry of
wmetic rings relatively unchanged and similar to RSV cis
Sene template. a library of 2,3-diaryl-4-thiazolidinone
seratives was prepared (Table 1), with a thiazolidin-4-one
Tucicus connecting two aromatic rings which increased
sructaral rigidity [116]. Some of these compounds showed
s=zer mnhibitory effects than RSV on ER+ MCF-7 and
ER- SKBR3 human breast cancer cell growth. Particularly,
-~ - =-dimethoxyphenyl)-3-(4-hydroxyphenyl)- thiazolidin-
“~ue 9. 2-(4-chlorophenyl)-3-(4-hydroxyphenyl) thiazolidin-4-
e 10 compounds and 2.3-diphenylthiazolidin-4-one 11,
~< saphthalen-1-yl)-3-p-tolylthiazolidin-4-onc 12, 2-(3.4.5-
Tmethoxyphenyl)-3-p-tolylthiazolidin-4-one 13, dlspiavcd
Sosent cytotoxic activity against MCF-7 and SKBR3 cells,
suceesting that these molecules could influence the biological
scton of different estrogen receptors [116]. In particular, in
S8 MCF-7 cells compounds 2-(3,4-dimethoxyphenyl)-3-
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(4-hydroxyphenyl)- thiazolidin-4-one 9, 2-(4-chlorophenyl)-
3-(4-hydroxyphenyl) thiazolidin-4-one 10 could interfere
with ERa-dependent pathway, while in ER- and GPER+
SKBR3 cells compounds 2.3-diphenylthiazolidin-4-one 11,
2-(naphthalen-1-yl)-3-p-tolylthiazolidin-4-one 12 and 2-
(3.4.5-trimethoxyphenyl)-3-p-tolylthiazolidin-4-one 13 could
antagonize GPER-dependent pathways [116] known to be
involved in E2-dependent SKBR3 cell growth [117, 118].

3.3.2. 3-Chloro-azetidin-2-one RSV Derivatives

Using the same synthetic strategy described by Mayhoub
ef al. [115] 2.3-thiazolidin-4-one RSV analogs were synthesized
by connecting an azetidin-2-one nucleus to two aromatic
rings (Table 1). These derivatives have increased structural
rigidity, major bioaccessibility and more potent antitumoral
activity than RSV [119]. Among all tested compounds 1,4-
bis(4-bromophenyl)-3-chloroazetidin-2-one 14 and 3-chloro-
4-(4-chlorophenyl)-1-(4-iodophenyl)azetidin-2-one 15
inhibited proliferation in a dose dependent manner in both
estrogen dependent MCF-7 and SKBR3 cell lines suggesting
that these RSV derivatives could be potentially active on
different breast cancer subtypes [119].

3.3.3. 4-(6-hydroxy-2-naphthyl)-1,3-benzenediol RSV
Analog

The anticancer activity of 4-(6-hydroxy-2-naphthyl)-1,3-
benzenediol 16 (HS-1793) RSV analog has been evaluated in
FM3 murine breast cancer cells. In this cellular model, HS-
1793 induced apoptosis or inhibited cell proliferation at a
dose (3-25 uM) lower than that required for using RSV (300
uM). Apoptosis was activated through a mitochondrial
pathway characterized by cytochrome ¢, apoptosis inducing
factor (AIF) and Endo G release [120]. Recently, anti-
proliferative and apoptotic effects of HS-1793 were
investigated in MCF-7 (wild-type p33) and MDA-MB-231
(mutant p53) cells. In the study authors emphasized the
different apoptotic mechanisms observed in the two cell
lines: induction of p53/p21WAF1/CIP1-dependent apoptosis
in MCF-7 cells, exhibition of p53-independent apoptosis in
MDA-MB-231 cells [121].

CONCLUSION

Despite the clear RSV anticancer effects in virro, its
beneficial effects confirmed in vive are limited by its short
biological half-life and rapid metabolism and elimination. To
improve the pharmacokinetic properties of RSV scveral
synthetic derivatives have been synthesized and tested in in
vitro breast cancer models, Several reports indicated that
introduction of methoxylic groups on the phenylic rings of
RSV  substantially ecnables the anti-proliferative and
apoplosis-inducing activitics of RSV on breast cancer cells.
Likewise, additional hydroxylic groups on the aromatic
portions of RSV or replacing the alkene linker between the
two aromatic rings with a heterocyclic system, have
gencrated libraries of new analogs that displayed higher
cytotoxic activity and hence higher ability to inhibit in vitro
breast cancer ccll growth. Then, the ability of some analogs
to exhibit greater bioaccessibility in vifre than RSV and to
exert selective inhibitory effects on breast cancer cell growth
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open

new perspectives for these derivatives as new

therapeutic agents for breast cancer treatment. However,
further in vivo studies are required in order to evaluate
bioavailability and to suggest some derivatives for a possible
clinical anticancer application.

LIST OF ABBREVIATIONS

CSCs = (Cancer stem cells

CYPI1AI = Cytochrome '[’450, family 1, subfamily A,
polypeptide |

CYP1BI = Cytochrome P450, family 1, subfamily B,
polypeptide |

DMBA = 7,12- dimethylbenz[a]anthracene

E2 = 17B-estradiol

EMT = Epithelial-to-mesenchymal transition

ER- = Estrogen receptor negative

ER+ = Estrogen receptor positive

ERK = Extracellular-signal-regulated kinascs

ERs = Estrogen receptors

ERa = Estrogen receptor alfa

ERpB = Estrogen receptor beta

GPER = G protein-coupled estrogen receptor 1

LDL = Low density lipoprotein

MAPK = Mitogen-activated protein kinases

MNU = N-methyl-N-nitrosourca

mTOR = Mammalian target of rapamycin

NOD/SCID = Nonobese diabetic/severe combined
immunodeficiency

PI3K = Phosphoinositide 3-kinase

RNA = Ribonucleic acid

RSV = Resveratrol

VEGF = Vascular endothelial growth factor
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