
A client-server framework for the design of geo-location based augmented reality
applications

Nicola Capece, Roberto Agatiello, Ugo Erra
Dipartimento di Matematica, Informatica ed Economia

Università della Basilicata
Potenza, Italy

Email: nicola.capece@unibas.it, roberto.agatiello@unibas.it, ugo.erra@unibas.it

Abstract—We present a client-server framework for the
development of mobile applications that use Augmented Reality
(AR) to visualize geolocated data. Geo-information displays
allow users to understand and respond effectively to the context
in which the application is deployed. We provide a scalable
and flexible architecture for the development and management
of the client, the server and the data that are used by the
applications. This architecture is based on the display of
connected layers that represent structured information. The
approach has been implemented in two case studies: the
management of failures in electrical power lines, and to support
hydrogeological monitoring.

Keywords-augmented reality; location Based AR; client-
server framework;

I. INTRODUCTION

Augmented Reality (AR) refers to an altered reality
in which perceived normal reality is overlaid with artifi-
cial/virtual sensory information. In more formal terms, we
define AR as: the overlaying of virtual elements generated
by computer onto the visual perception of physical reality,
through a camera. AR technology allows the user to see
the real world augmented by virtual objects [1]. In other
words, AR provides an environment in which virtual and
real objects coexist.

Commercially, AR is mainly found in mobile applica-
tions and, in recent years, has attracted wider interest from
business. It is a natural way to explore 3D objects and
data, because it brings virtual objects into the real world
[2]. The fields of application are potentially endless, and
include: the display of information; navigation in real world
environments; advertising; art; and games [2].

Technological support for daily activities is a common
feature of mobile devices. Apps are used to send reminders
about activities or events, and software enables users to
orient themselves in unknown places. However, classic nav-
igation systems are not user-friendly. In particular, when it
comes to how people are usually presented with directions,
it is easier to visualize information in relation to the real
environment, rather than trying to interpret a 2D map. For
this reason, many applications are based on geo-localized
data, and focus more on usability and intuitive interactivity
[3].

There are several frameworks that support the develop-
ment of AR applications, the best-known include Metaio [4]
and Wikitude [5]. Metaio is a modular framework that
includes: (i) an acquisition component; (ii) a sensor interface
component; (iii) a rendering component; (iv) a tracking
component; (v) and the Metaio SDK interface. Wikitude is
a very important framework, which has had considerable
success in the development of AR applications. It offers two
kinds of interfaces: the first is native to mobile platforms;
the second is platform independent, based on HTML5 and
JavaScript. It supports the display of geo-referenced data and
allows the visualization of 3D models, images. etc. using the
tracking image.

In this paper, we focus on applications that display geo-
localized data as virtual objects. These applications can run
on devices equipped with a webcam, and sensors such as a
gyroscope, a compass and a GPS. We develop a software
architecture that can manage different layers. These layers
contain information related to the real environment that is
displayed by the device. Information that enhances reality
is identified by a geo-marker. This is a real object that is
recognized by the system, and information (defined using
geographic coordinates) is overlaid onto it. Our goal is
to visualise these layers through virtual objects overlaid
onto the real environment. Each layer corresponds to an
information set called a Point Of Interest (POI), which must
include information about 2D/3D objects to be displayed as
text, 3D models, texture, images, billboards, etc.

The remainder of this paper is structured as follows.
Section II, provides an overview of related works. Section III
provides some background information about the software
tools used to develop the framework. Section IV presents de-
tailed information about the framework. Section V presents
the application of the framework in two case studies. We
end with some final remarks and future directions for our
research in Section VI.

II. RELATED WORK

There are many frameworks that support the development
of different AR applications. Here, we focus on Location-
based AR (LBAR) applications, which are now widely used.



The popularity of LBAR has increased with improvements in
smartphone functionality and sensor technology. Our system
is mainly based on the use of GPS and a digital compass
that, with the support of a Geographical Information System
(GIS), provides information about the POI. The user points
the device’s webcam at the surrounding environment then,
using the inbuilt sensors, the system displays information
about the POI via an overlaid geospatial tag environment.
The user clicks on the tags to view pictures, video and other
media associated with the POI.

One of the main problems of developing LBAR applica-
tions is the organisation of, and interaction with geospatial
tags. This is especially true where there are many POIs close
to the user’s location. Choi [6] provides a way to organize
geospatial tags within a scene.

Geiger [7] describes a method for developing an engine
for LBAR applications giving profound insights into the
design and implementation of such an advanced mobile
application. Deli [8] provides a method based on LBAR
that enhances the user’s view of their surroundings with
information about the land parcels that lie within the visual
field of the device. Their aim is to use AR technology for
educational purposes, through the development of instruc-
tional applications. Their approach highlights another way
to use the LBAR through the real-time construction of virtual
objects on the scene, using the Web Map Service (WMS)
specification defined by the Open Geospatial Consortium
[9].

Other software, such as Junaio [10] shows virtual objects
such as images and labels, and a radar supports the search for
POIs in the users environment. This system is typically used
for route planning. Images and videos can also be saved in a
database for other applications (e.g. uploading and sharing
on social media). Layar [11] allows developers to create
various features. Users can associate text messages with AR
images, make calls that interact with virtual tags, send email
and plan routes.

III. BACKGROUND

We propose an approach based on a client-server archi-
tecture where:

• The client interacts with a server application (Web
Service) through requests made via Representational
State Transfer (REST) messages.

• Once the request is accepted, the Web Service queries
the database and sends the retrieved information to the
client as a JavaScript Object Notation (JSON) message.

• The client interprets the response and renders the in-
formation on the screen as virtual objects, overlaying
them onto the real environment being viewed.

We use several specialized frameworks for different tasks.
The REST architecture is used for client-server exchanges.
Our software architecture [12] uses the HTTP protocol to
transmit data by defining architectural constraints, but not

the implementation of components. Network resources are
used to communicate network components that exchange
resource representations. A representation is composed of:
(i) a sequence of bytes (the content); (ii) metadata that
describe the content; and (iii) metadata describing the same
metadata (e.g. hash sums) [13].

A connector (a client or server) mediates communication
between components. It enables the application to interact
with a resource, given its identifier and the action to be taken.
The application interprets the answer and determines the
representation of the information (e.g. an XML document,
JSON).

Components are identified by their roles within the appli-
cation, and can be classified into: (i) user agents: these use
a client connector to instantiate a request, then receive the
response (e.g. a Web Browser); (ii) origin servers: these use
a connector server that receives the request and provides the
representation of its resources (e.g. Apache Tomcat); (iii)
intermediate components: these can operate as a client and
as a server and support the translation of both requests and
responses (e.g. Gateway).

One of the advantages of the REST architecture is that it
provides a uniform interface that enables client-server sepa-
ration. The client handles the user’s state and the application
interface, rather than the server. Consequently, both the client
and the server are completely independent of the technology.
Client requests have all of the information necessary to
respond to the request; the session state is maintained by
the client and can be transferred to the server through other
services.

We use the REST architecture to handle the exchange of
messages, specifically the Restlet [14] framework, version
2.3. This framework is composed of two main parts: (i)
Restlet API: a neutral API that supports the principles of
the REST architecture, facilitating call management within
the client; (ii) the Restlet Engine: the implementation of the
Restlet API. For client-side development, Restlet can easily
interact with remote resources through its HTTP connector.
The system analyzes the representation of resources (in
JSON format) and extracts information that has to be saved
in the model’s objects. For server side development, we built
additional http connector, listening on port 7080.

To represent the resource obtained through REST we
used the Metaio framework. In the context of our approach,
the implementation is encapsulated and the developer does
not need to know about the details of acquisition, render-
ing, sensing and tracking. Metaio uses standard graphics’
libraries for three-dimensional scenes and rendering, in
particular OpenGL ES API. This is a subset of the OpenGL
graphics library [15] that was designed for embedded
devices such as smartphones.



Database

DBMS

Restlet

DAO

Server Web

Model

Server

Web Service

Client

http request

http response (JSON)

App Mobile

Json

AR Framework

(Metaio)

Model

DAO

Restlet Client

Platform (Android)

Figure 1. The architecture of the client-server framework.

IV. THE ARCHITECTURE

Our architecture can be used in different application
contexts. Figure 1 shows the client-server framework:

• The client side allows the development of applications
for mobile devices that display POIs using AR.

• The server side allows the development of Web appli-
cations (Web Services) that handle the requests from
the client (Browser AR) and returns responses after
querying a POI database.

The POI concept is central to our architecture. We need to
be able to access information about POIs in situations where
there is both good and poor network coverage. We use the
concepts of online and offline modes to address these two
cases. These three concepts are described below.

Point Of Interest (POI): A POI represents a specific
point, geolocalized in the world, corresponding to locations
such as a shop, a restaurant, a hotel, a road or a specific
address. A POI can also be a location that is of particular
interest to a specialised user, such as companies carrying out
relief work, maintenance, etc. In this case the POI may be
a critical area, or it may identify an at-risk area (e.g. from
flooding). In our system, POIs are displayed on a mobile
device using billboards that are overlaid onto a scene that is
captured by the device’s camera. The billboard is an icon that
takes different shapes and colours based on the POI. Each
billboard is associated with a label that displays information
such as the distance between the device and the POI, etc.

Online Mode: In online mode the system queries a
remote database (e.g. MySQL) directly, using the available
network. The app sends a request to the web service and
provides the user’s location and the maximum range (in
metres) that the user wants to see the POIs for. This distance

serves as a filter to prevent the user from being overloaded
by too many POIs. The filter is implemented by applying
the Haversine formula [16].

It is also possible to apply additional filters (for example
to focus on those POIs that are most relevant) by speci-
fying the device’s latitude and longitude, and a radius that
represents the maximum distance to be used when locating
POIs or, in the case the POI represents a status to monitor
the precise condition of an object, a filter that shows only
the most critical POIs (e.g. high temperature, water level
dangerous).

The response is in JSON format. Whenever a user’s
location changes, the system sends a new request to the
web service with the geographic coordinates of the current
location of the device. Based on these parameters, the service
returns all POIs that fall within the specified radius. When
new POIs are found, the view is updated with the new
information in real time. Additionally, as the user approaches
a POI, the label displays the distance between it and the user,
which is updated in real time. The web service receives the
request and queries the database with the parameters given
in the URL. The query is executed using a connector or
drivers. Note that the database must initially contain at least
one table recording POIs, and will eventually contain other
tables relating to other types of information to be displayed.

The POI is characterized by three parameters: latitude, lon-
gitude and altitude. The database can be populated through
the applications such as phpMyAdmin [17] for MySQL [18]
databases as shown in Figure 2.

Offline Mode: In offline mode (e.g. when network cover-
age is poor) the system uses information that has previously
been stored in a JSON file. The information to be displayed



Figure 2. The database structure used to manage POIs.

is provided in advance. The JSON file is automatically
generated and lists all POIs. The user can also choose what
information to display according to their needs. This requires
them to have previously downloaded POI information (when
they had access to a mobile network). Once POIs have been
selected and downloaded, they will also need to download
additional media information (images, videos, etc.) associ-
ated with POIs. This data is saved locally in JSON format.
The user can then view the available information without
using the network and, when necessary, update the database
by refreshing the information when a network becomes
available.

V. CASE STUDIES

In this section, we describe two applications that were
developed using our client-server framework.

The first application was designed to support the manage-
ment of failures in electrical power lines. The idea was to
provide information that is useful in locating high-voltage
pylons needing maintenance. Such pylons are displayed in
AR as billboards that are oriented towards them. The POI
is the pylon, and information about the problem (e.g. an
identification number or the date it was reported) and, most
importantly, its location are is presented. Each POI can

be associated with further information such images, videos
and icons. The application was developed for the Android
platform [19] using the Metaio SDK framework. Server
side, we created a MySQL database that was managed using
the phpMyAdmin application.

Figure 3. Electrical power lines AR application.



In Figure 3, each billboard has a label that summarises
important information: the ID of the issue; and the distance
from the users current location to the pylon. Metaio allowed
us to deploy a radar display (top left) that shows the direction
of the pylon and helps the use to rotate the device in its
direction. The yellow circle represents the pylon’s position
and the blue circle represents the device. The application
allows the user to interact with POIs by pressing on the
billboards. A popup (Figure 4) shows the different operations
that can performed: (i) View an image associated with the
pylon, (ii) View a video associated with the pylon; (iii) View
the pylon’s history; (iv) Add notes.

Figure 4. Options associated with the POI

The second AR application was designed to support the
collection and analysis of water level data that is measured
by stations in southern Italy. The application can show
the location of stations and their hydrometric levels. More
importantly, it can graphically display daily hydrometric
values in order to provide a quick preview of changes
in water levels. The POIs in this context are hydrometric
stations, and associated information relates to the water
level, the date of the last reading, and a graph showing
changes in water level.

As Figure 5 shows, the application also allows the user
to also view static POI data, such as buildings, bridges and
crossings as billboards. Whenever the water level changes,
the color of the of billboard changes from red to green
according to the status of the danger. Red is for severe risk
of inundation and green is for low risk of inundation.

VI. CONCLUSIONS

The development of a client-server framework to manage
and visualize geo information through AR evolved from
the need for a flexible approach that could be adapted to
different contexts. The proposed framework is generalised,
and the infrastructure can provide solutions to problems from

Figure 5. The hydrometric AR application.

different domains [20]. Our case studies illustrate two issues:
maanaging failures in electrical power lines and monitoring
hydrogeological risks.

The main problem we faced was to develop a scalable
software architecture with a clear division between client
and server side technology. The server does not provide
details of graphics, which can be customized independently
according to the needs of the client. It only provides the
POI information requested by the client, such as the distance
between the client device and the POI, and the orientation
of POIs.

The POI is an abstract concept in our architecture: for
example, it can be a pylon, a tourist resort, or a measuring
station. We intend to continue our work on the proposed
infrastructure, notably by contextualizing the POI to the
type of information the user would like to display. In this
context, we are going to integrate the geographic information
system inside our architecture. We are confident that this in-
formation system that integrates several types of geographic
information can be easily brought in our architecture using
the idea of the layers.



REFERENCES

[1] M. Hincapie, A. Caponio, H. Rios, and E. Mendivil, “An
introduction to augmented reality with applications in aero-
nautical maintenance,” in Transparent Optical Networks (IC-
TON), 2011 13th International Conference on, June 2011, pp.
1–4.

[2] V. Geroimenko, “Augmented reality technology and art: The
analysis and visualization of evolving conceptual models,”
in Information Visualisation (IV), 2012 16th International
Conference on, July 2012, pp. 445–453.

[3] J. Ma Luna, R. Hervás, J. Fontecha, and J. Bravo, Ubiqui-
tous Computing and Ambient Intelligence: 6th International
Conference, UCAmI 2012, Vitoria-Gasteiz, Spain, Decem-
ber 3-5, 2012. Proceedings. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, ch. A Friendly Navigation-System
Based on Points of Interest, Augmented Reality and Context-
Awareness, pp. 137–144.

[4] “Metaio DOC doc description,” http://dev.metaio.com/sdk/
documentation/.

[5] “Wikitude DEV,” http://www.wikitude.com/documentation/.

[6] J. Choi, B. Jang, and G. J. Kim, “Organizing and presenting
geospatial tags in location-based augmented reality,” Personal
and Ubiquitous Computing, vol. 15, no. 6, pp. 641–647, 2010.

[7] P. Geiger, M. Schickler, R. Pryss, J. Schobel, and M. Reichert,
“Location-based mobile augmented reality applications: Chal-
lenges, examples, lessons learned,” in 10th Int’l Conference
on Web Information Systems and Technologies (WEBIST
2014), Special Session on Business Apps, April 2014, pp.
383–394.

[8] A. Deli, M. Domani, P. Vujevi, N. Drljevi, and I. Botiki,
“Augeo: A geolocation-based augmented reality application
for vocational geodesy education,” in ELMAR (ELMAR), 2014
56th International Symposium, Sept 2014, pp. 1–4.

[9] “Open Geospatial Consortium,” http://www.opengeospatial.
org/.

[10] “Junaio, junaio description,” https://my.metaio.com/dev/
junaio/.

[11] “Layar, layar description,” https://www.layar.com/.

[12] H. Li, “Restful web service frameworks in java,” in Signal
Processing, Communications and Computing (ICSPCC), 2011
IEEE International Conference on, Sept 2011, pp. 1–4.

[13] M. Jakl, “Rest representational state transfer,” 2008.

[14] “Restlet,” https://restlet.com/.

[15] “OpenGL,” https://www.opengl.org/.

[16] J. E. Bell, S. E. Griffis, W. A. C. III, and J. A. Eberlan,
“Location optimization of strategic alert sites for homeland
defense,” Omega, vol. 39, no. 2, pp. 151 – 158, 2011.

[17] “PhpMyAdmin,” https://www.phpmyadmin.net/.

[18] “MySQL,” http://www.mysql.com/.

[19] “Android DOC,” http://developer.android.com/index.html.

[20] R. D. Chiara, V. D. Santo, U. Erra, and V. Scarano, “Real
positioning in virtual environments using game engines,” in
Eurographics Italian Chapter Conference 2007, Trento, Italy,
2007, 2007, pp. 203–208.


