
Exploiting GPUs for Multi-Agent Path Planning on
Grid Maps

Giuseppe Caggianese
Dipartimento di Ingegneria e Fisica dell’Ambiente

Università degli Studi della Basilicata
Potenza, Italy

giuseppe.caggianese@unibas.it

Ugo Erra
Dipartimento di Matematica e Informatica

Università degli Studi della Basilicata
Potenza, Italy

ugo.erra@unibas.it

Abstract—Multi-agent path planning on grid maps is a chal-
lenging problem and has numerous real-life applications rang-
ing from robotics to real-time strategy games and non-player
characters in video games. A* is a cost-optimal forward search
algorithm for path planning which scales up poorly in practice
since both the search space and the branching factor grow
exponentially in the number of agents. In this work, we propose
an A* implementation for the Graphics Processor Units (GPUs)
which uses as search space a grid map. The approach uses a
search space decomposition to break down the forward search
A* algorithm into parallel independently forward sub-searches.
The solution offer no guarantees with respect to completeness
and solution quality but exploits the computational capability of
GPUs to accelerate path planning for many thousands of agents.
The paper describes this implementation using the Compute
Unified Device Architecture (CUDA) programming environment,
and demonstrates its advantages in GPU performance compared
to GPU implementation of Real-Time Adaptive A*.

Keywords—path-finding; GPU acceleration; A* algorithm; grid
maps; search space decomposition;

I. INTRODUCTION

Navigation-planning techniques for multi-agents have been
traditionally studied in the domain of robotics and in recent
years have been increasingly applied to real-time strategy
games and non-player characters in video games. In these
applications, the principal challenge is the safe navigation of
an agent to its target location while avoiding collision with
static or dynamic obstacles and other moving agents. Agents
are therefore not directly controlled by humans but rely instead
on path-planning algorithms.

Single-agent path planning, where the size of the search
space is bounded by the map size, can be tackled with a search
algorithm such as A* [4]. Multi-agent path planning is much
more challenging than the single agent case, being a PSPACE-
hard problem [5]. The number of states and the branching fac-
tor grow exponentially with the number of agents on a map. As
the number of agents and the size of the search space increase,
planning tends to become computationally burdensome or even
intractable. Trading the method completeness and the solution
optimality for improved performance is a typical feature of
decentralized approaches, including the method described in
this paper.

In the last few years, Graphics Processor Units (GPUs) have
increased rapidly in popularity because they offer an opportu-
nity to accelerate many algorithms. In particular, applications
that have large numbers of parallel threads that do similar
work across many data points with limited synchronization
are good candidates with which to exploit GPU acceleration.
All of this means that in a multi-agent scenario, we can take
into account the idea that exploration of different paths can
be performed in parallel with large numbers of threads that
explore simultaneous subpaths. In this way, scalability to larger
maps can be achieved with decentralized approaches, which
decompose the initial problem into a series of A* searches.
However, a path planning GPU-based must takes into account
that it has limited access to the GPU and memory resources,
which are allocated with higher priority to other game modules
such as the graphics engine and more recently to the physics
engine.

In this paper, we describe an approach for a path-planning
system on grid maps for many thousands of agents that uses
A*. The approach is based on the search space decomposition
of the input grid map into blocks. For all blocks, we perform
simultaneous A* searches to obtain all potential subpaths of
the input agents toward the goal state that traverse these blocks.
In this way, given the start positions of agents and a goal
position as input, we are able to break down the forward
search A* algorithm into parallel independently forward sub-
searches. This approach fits well with the parallel architecture
of GPUs, where many hundreds of threads are necessary to
exploit the GPU fully. In addition, our method is simple and
easy to implement using a GPU programming model such as
the platform chosen in this work, NVIDIA’s Compute Unified
Device Architecture (CUDA). We compare our approach with
Real-Time Adaptive A* (RTAA*), an algorithm for multi-
agent path-planning on grid maps. The empirical results
demonstrate the GPU performance-speed up advantages for
large numbers of agents compared to GPU implementations
of RTAA*.

The rest of the paper is organized as follow. Section
II relates similar work on parallel path-planning problems.
Section III describes the fundamentals of our parallel path-
planning method. In Section IV, we present some details about

the implementation on the GPU. In Section V, we assess
performance trade-off and results on quality. Finally, in Section
VI, we present our conclusions and future research directions.

II. RELATED WORK

Multi-agent path planning using decentralized approach can
significantly reduce computation by decomposing the prob-
lem into several subproblems. These approaches are faster
but yields suboptimal solutions and loses the completeness.
One such example is prioritized planning [2], which uses
prioritization to assign an order in which the objects move.
Another approach coming from game industry is Local Repair
A* [11] which performs an expensive full A* for every replan.
In [10], Ryan introduces an approach which is complete but
restricted to specific search graphs, which can be decomposed
into structures such as chains or rings.

Researchers have recently developed parallel-based imple-
mentations of path-finding that use the computational power
of the GPU. These approaches provide strong evidence that
GPUs can substantially accelerate path-finding algorithms,
particularly for real-time applications such as video games and
real-time applications in robotics, which require efficient path-
finding to support large numbers of agents moving through
expansive and increasingly large dynamic environments. In
2008, Bleiweiss [1] implemented the Dijkstra and the A*
algorithms using CUDA. After several benchmarks, he ob-
served that the Dijkstra implementation reached a speed up
of a factor 27 compared to a C++ implementation without
SSE instructions, while A* implementation reached speed
up of a factor 24 compared to a C++ implementation with
SSE instructions. In [6], Katz et al. present a cache-efficient
GPU implementation of the all-pairs shortest-path problem
and demonstrate that it results in a significant improvement
in performance. In [12], Stefan et al. obtained speedups for
breadth-first search using a bit-vector representation of the
search frontier on a GPU. In [7], Kider et al. present a novel
implementation of a randomized heuristic search, namely R*
search, that scales to higher-dimensional planning problems.
They demonstrate how R* can be implemented on a GPU
and show that it consistently produces lower-cost solutions,
scales better in terms of memory, and runs faster than R* on
a Central Processing Unit (CPU). In [3], Erra et al. propose
an efficient multi-agent planning approach for GPUs based on
an algorithm called RTAA*. The implementation of RTAA*
enables the planning of many thousands of agents by using a
limited memory footprint per agent. In addition, benchmarks
support the GPU CUDA performance scale compared to multi-
threading CPU implementation in running one, two, and four
threads.

III. THE PROPOSED APPROACH

In this section, we describe an approach to compute in
parallel simultaneous path planning in a multi-agent scenario.
As inputs we have a set of start states, a goal state, and a

search space that represents the environment in which the
agents move. We first describe the reference scenario for our
path planning and how we decompose the search space. We
then describe the necessary steps to perform the parallel search
from the start states to the goal state.

A. Search space decomposition

The approach we propose is suitable for scenarios that are
based on a grid map. In these scenarios, the environment
is subdivided into small regular zones called tiles. Each tile
represents a state s of the search space and is connected to
all nearby tiles. The cost of moving from a tile to each of
its neighbors is specified by an integer. This can be used to
model terrain elements that are difficult or impossible to pass,
for example hills and lakes. A common metric used to measure
distance on grid maps, which we adopt for this work, is the
Manhattan distance.

The grid map used as search space S is further divided
into k regular regions Bi called planning blocks. Planning
blocks are all of the same size and decompose the search
space into non-overlapping search sub-spaces such that S =
B1 ∪B2 ∪ · · · ∪Bk. We refer to the edge states of a planning
block as border tiles, which enable a state transition from a
planning block to a neighboring block, as illustrated in Fig. 1.

Given two distinct planning blocks Bi and Bj , let pi =
〈s1, s2, . . . , sm〉 a subpath with si ∈ Bi for i = 1, . . . ,m− 1.
We name pi a traversing subpath of Bi if s1, sm ∈ Bj are
border tiles (Fig. 2a). We call pi an incoming subpath of Bi

if sm ∈ Bi and s1 is a border tile (Fig. 2b). If sm ∈ Bi is
a border tile we call pi an outgoing subpath of Bi (Fig. 2c).
Finally, if sm ∈ Bi and none of the states si is a border tile
then pi is an internal subpath of Bi (Fig. 2d). A path p from
a start state to a goal state has subsequent subpaths pi with
i = 1, 2, . . . , n. If n = 1, we have only an internal subpath.
With n ≥ 3, p1 is an outgoing subpath, p2, p3, . . . , pn−1 are
traversing subpaths, and pn is an incoming subpath.

The rationale behind the planning blocks is to break down
the search of a single path, computing independently all its
subpaths. By using simultaneous A* searches for all planning
blocks, we compute in parallel all potential subpaths. This may
pose a problem because of the dependence of the planning
blocks. During an A* search a path is discovered sequentially,
and if a subpath pi−1 inside the planning block Bi−1 then
precedes a subpath pi inside the planning block Bi, we are
unable to launch simultaneous A* searches for Bi−1 and Bi.
However, in a multi-agent scenario it is natural to expect
portions of a path to be shared between agents. Thus, we
can take advantage of this scenario, computing in parallel all
subpaths potentially able to traverse all planning blocks.

B. The parallel search

To perform searches for many thousands of agents in
parallel, we need to find a way of using all planning blocks

A

B

(a) Traversing subpath.

A

B

(b) Incoming subpath.

A

B

(c) Outgoing subpath.

B

A

(d) Internal subpath.

Figure 2. Left (a–b): border-to-border step. All the simultaneous A* searches start from the border tiles and terminate in a border tile of a neighboring
planning block or in a goal state. Right (c–d): start-to-border step. The simultaneous A* searches start from the agent’s positions and terminate on a border
tile of the same planning block or in a goal state.

Figure 1. Example of a 16× 16 grid map with four 8× 8 planning blocks.
Gray indicates border tiles. The circles are two agents in their start positions.
The square is a goal position, and dotted lines are paths that traverse planning
blocks.

simultaneously. Our solution exploits the fact that, given a set
of start states and one goal state, it is likely that the discovered
paths share subpaths. We attempt to determine these shared
subpaths, computing in parallel all potential subpath types
inside the planning blocks, taking into account that they must
converge toward the goal direction. This strategy is achieved in
two steps: border-to-border search and start-to-border search.

In the border-to-border step (Fig. 2a–b), we compute for all
planning blocks the traversing subpaths and incoming subpaths
using multiple A* searches. In particular, for a given planning
block, A* searches have as start states the border tiles, and the
searches determine all states along the way toward the goal
position. A single A* search terminates when a border tile
belonging to a neighboring planning block is discovered or
when the search discovers a goal position. At the end of this
step, we can assemble a path from any border tile toward
the goal position, assembling a sequence of zero or more
traversing paths and an incoming path. Note that this step
is independent from the start positions and can be performed
off-line if the goal is not expected to move anywhere.

In the start-to-border step (Fig. 2c–d), we compute the

outgoing subpaths and internal subpaths using multiple A*
searches. In this case, for all the input agents, A* searches
have as start states the start positions of all agents, and the
searches determine, as described above, all states along the
way toward the goal position. A single A* search terminates
when a border tile belonging to the same planning block is
discovered or when the search discovers a goal position. Thus,
the objective of this step is to search the paths of all agents
from their start positions to the nearest border tiles.

The advantage of this approach is that it can be easily
implemented in parallel because all the searches in the border-
to-border step and in the start-to-border step can be performed
simultaneously. We have removed the dependence between
planning blocks taking into account all possible subpaths
inside the planning blocks. Furthermore, the ability to use
small search areas ensures faster searches and limits memory
use. Finally, in the case of a change in start position, we
need only to perform a start-to-border search where the change
occurred.

C. Paths Reconstruction

At the end of the border-to-border and the start-to-border
step, we have for each border tile its immediate predecessor
in the best path found so far. This information can be used
to reconstruct the subpaths of all planning blocks by working
backwards from the last border tile to the initial border tile or
start positions of all agents. Thus, an agent can use immedi-
ately these subpaths to move along the trajectory from its start
position to the goal position without additional computation.
An advantage of this approach is that when the knowledge of
the agent about the search space changes or the search space
itself changes along the resulting trajectory, we can replan only
blocks where these changes occur with a new border-to-border
and/or start-to-border step.

A problem associated with this approach is the formation
of loops at the end of the border-to-border step, as illustrated
in Fig. 3. There are two possible strategies to tackling this
problem. The first is to handle the loop during the movements

of agents, e.g., prevent the agent from becoming trapped in the
loop. The second is to increment the heuristic associated with
the border tiles that form the loop and then perform a new
border-to-border step only for the planning blocks involved.
In this way, these border tiles will not be taken into account
in the new paths because of their higher movement cost.

B

A

Figure 3. A dead-end causes the A* search from border tile A to stop in
border tile B. Conversely, A* search from border tile B stops in border tile
A.

IV. IMPLEMENTATION DETAILS

NVIDIA’s CUDA is the platform chosen for exploiting
data parallelism in the GPU. From the point of view of
programming model, CUDA is a minimal extension to C
language which permits the writing of a serial program called
kernel which are executed in parallel across a set of parallel
threads. Further details on the GPU architecture and CUDA
programming model are available in NVIDIA’s CUDA Pro-
gramming Guide [9].

Given the CUDA programming model, implementation of
the approach described above on a GPU programming model
is straightforward. To execute all searches simultaneously, we
associate a single GPU thread with each search; in fact, each
search executes the same instructions but with different data.
In the border-to-border step, we couple a single thread block
for each planning block, as illustrated in Fig. 4. This deci-
sion enables us to execute concurrently all border-to-border
searches and to share information through shared memory.
Indeed, heuristic values h[s], used to estimate the goal distance
for each state s, are stored as a single array in the large shared
memory as a planning block. This is possible because in the
border-to-border step all the searches are local, i.e., a search
starts and stops in the same planning block. These single arrays
are initialized on the CPU and copied to the GPU. Note that
each thread, after A* search is also in charge of the path
reconstruction. In such way, at the end of border-to-border
all the subpath are copied from the GPU to the CPU.

Conversely, in the start-to-border step, agents’ start positions
are not all located in the same planning block. However,
even in this case, the array for heuristic values can be shared
between agents. In fact, the array may become as large as
the entire map and must then be stored in a global memory
because its dimensions are too large for shared memory.

block 0

grid
blocks

heuristics
shared

memory

planning
blocks

heuristics heuristics heuristics

block 1

block 2 block 3

block 0 block 1 block 2 block 3

Figure 4. Parallelizing the border-to-border step using GPU. A planning
block is associated with a thread block, and a thread executes a search for
each border tile. This mapping enables us to use the shared memory in a
thread block to store the estimated heuristics of a planning block. Finally, all
planning blocks are gathered in a single CUDA grid.

Also in this step, the threads are in charge of the paths
reconstruction and at the end of start-to-border all the subpaths
are copied from the GPU to the CPU. For both types of steps,
another element that is shared between all agents and stored in
a global memory is the map that retains the cost of movement
from each tile to its neighbors and therefore also the positions
of obstacles.

The planning-block size affects the behavior of searches
because it determines the number of states in a single plan-
ning block, the array dimensions for shared memory used to
maintain the heurists, and the number of border tiles. If the
planning block is too large, the A* algorithm is required to
explore too many states, while if it is too small, there are
fewer states to explore but many searches to execute in the
same length of time. However, to optimize time execution, we
select the planning-block size to always be a power of 2 so
that we can use CUDA bitwise operations to replace integer
division and modulo operation, which are too expensive to run
and are necessary to retrieve tile coordinates and consequently
the planning-block ids.

V. EXPERIMENTS AND RESULTS

In this section, we provide the results of two experiments.
The first type of experiment demonstrates the efficiency of
our approach, while the second is related to the quality of
the trajectory found using the search space decomposition.
Our tests were performed on an Intel Core i7 CPU 1.6GHz,

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

512 8192 16384 32768 65536 131072 262144

Sp
e

e
d

 U
p

Total Time Speed Up: P-RTAA* vs P-BA*

PB-A* 4x4 PB-A* 8x8 PB-A* 16x16 PB-A* 32x32

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

512 8192 16384 32768 65536 131072 262144

M
e

m
o

ry
 M

B

Memory Footprint: P‐RTAA* vs P‐BA*

P-RTTA* P-BA* 4x4 P-BA* 8x8 P-BA* 16x16 PB-A* 32x32

(a) GPU total time speed-up and memory footprint (MB) for a 512× 512 map.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

512 8192 16384 32768 65536 131072 262144

Sp
e

e
d

 U
p

Total Time Speed Up: P‐RTAA* vs P‐BA*

PB-A* 4x4 PB-A* 8x8 PB-A* 16x16 PB-A* 32x32

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

512 8192 16384 32768 65536 131072 262144
M

e
m

o
ry

 M
B

Memory Footprint: P‐RTAA* vs P‐BA*

P-RTAA* PB-A* 4x4 PB-A* 8x8 PB-A* 16x16 PB-A* 32x32

(b) GPU total time speed-up and memory footprint (MB) for a 1024× 1024 map.

Figure 5. GPU total time speed-up values and memory footprint compared to GPU implementation of RTAA* with groups of agents ranging in size from
512 to 262144. We also include the time to transfer data from CPU to GPU and vice versa. Memory footprints are for border-to-border and start-to-border
searches. Note that in two cases the required memory is higher than the memory available for computation.

NVIDIA Fermi GTX 480 1.5GB, Windows 7. All the kernels
were written in CUDA 4.0 and using Microsoft’s Visual C++
2010 compiler.

The first experiment compares our GPU parallel approach
based on planning blocks (P-BA*) with a GPU implementation
of RTAA* (P-RTAA*) [8]. RTAA* is a real-time heuristic
search method that selects its local search spaces in a very
fine-grained way. The basic principle is to update the heuristics
of all states in the local search space swiftly and to save the
heuristics so as to speed up future A* searches. This approach
uses a variable called lookahead, which specifies the largest
number of states to expand during A* searches, and was used
in the GPU implementation to reduce the memory footprint
required for each agent. We chose to compare our approach
with a GPU parallel version of RTAA* because in previous
work [3] this implementation was found to be faster than a
parallel GPU implementation of A* [1].

Two grid maps measuring 512× 512 and 1024× 1024 with
several groups of agents ranging in size from 512 to 262144
were used to assess performance and memory footprint with
planning blocks measuring 4×4, 8×8, 16×16, and 32×32.
In P-RTAA* the number of searches and then threads run on
the GPU is always equal to number of agents. Conversely,
in P-BA* the number of agents determines only the number
of start-to-border searches because border-to-border searches

depend on the planning-block dimensions and on the number
of border tiles. For instance, in the 1024× 1024 map we have
786432, 458752, 245760, and 126976 threads for all planning-
block sizes tested.

In all configurations, start positions were randomly chosen
in the grid map, whereas the stop tile was always the center
tile of the map. Also, the heuristic values h[s] are precomputed
off-line and stored in a matrix large as the grid maps. Figure
5 reports GPU total speed-up time and memory footprint
compared to P-RTAA*. GPU implementation of RTAA* is
always executed with lookahead = 3, which is the optimal
value for achieving best performance as described in [3]. The
results indicate that our approach is faster than P-RTAA*.
The average speed up acceleration for each group of agents
ranging from 5X to 45X in the 512× 512 map and from 9X
to 44X in the 1024×1024 map; measured time values include
memory transfer time (CPU to GPU and vice versa) and
kernel execution time. However, although we observed that
shared memory improves performance, its use implies a degree
of variability across the tested configurations. Conversely, P-
RTTA* exhibited a better memory footprint in most cases,
because of the greater amount of memory required to store
the searches generated in the border-to-border step compared
with P-RTAA*. However, as the number of agents increases,
the number of searches is expected to rise considerably, and

0

50

100

150

200
P-BA* 4x4

0

50

100

150

200
P-BA* 8x8

0

50

100

150

200
P-BA* 16x16

0

50

100

150

200
P-BA* 32x32

0

50

100

150

200

250

300
P-BA* 4x4

0

50

100

150

200

250

300
P-BA* 8x8

0

50

100

150

200

250

300
P-BA* 16x16

0

50

100

150

200

250

300
P-BA* 32x32

Figure 6. GPU times (ms) broken down into different steps on map 512 × 512 (up) and 1024 × 1024 (down) using a groups of agents ranging in size
from 512 to 262144. Times are grouped in border-to-border searches (blue), GPU to CPU memory transfer for border-to-border outputs (red), start-to-border
search (green), and GPU to CPU memory transfer for the start-to-border outputs (violet).

so also the memory footprint. Note that in general a planning
block measuring 8 × 8 offers better performance in terms of
acceleration and memory footprint.

The second experiment computes the computational times
of our GPU implementation broken down in different steps as
illustrated in Figure 6. It is clearly shown how border-to-border
is independent from the number of agents and depends only
on the planning blocks size. On the other hand, start-to-border
is strongly dependent on the number of agents.

The last experiment concerns the lengths of paths obtained
via our approach through the introduction of planning blocks
and the number of paths computed respect to A* algorithm. We
measured the average path length using 32×32, 64×64, 128×
128, 256×256, and 512×512 grid maps with an increasing rate
of obstacles. One A* search and three P-BA* searches were
performed with planning blocks measuring 4× 4, 8× 8, and
16×16 with the upper-left corner as the start position and the
lower-right corner as the goal position. Table I lists the average
path lengths for 100 runs. For each run, we placed obstacles
chosen randomly, and because of this, there may have been
maps where there was no path from start to goal positions. We
report the number of the paths found as A* paths. The results
indicate that the length of the path retrieved with our approach
is substantially the same as calculated with sequential A* and
increasing the size of planning blocks involves a path length
near the optimal solution. On the other hand, some paths are
not returned especially as the number of obstacles increase.

This is due to the formation of the loops described above.

These experiments suggest that our approach finds paths
whose difference from the optimal path length is not signifi-
cant. This deficiency is compensated for in terms of efficiency,
as shown in the performance experiments. Fine-tuning the
planning-block dimensions allows the user to trade off speed
against path optimality. For example, in real-time applications,
speed is the highest priority and suboptimal paths may thus
be acceptable.

VI. CONCLUSION

In this work, we have demonstrated a parallel implemen-
tation based on the A* algorithm that fits well with GPU
parallel architecture. By using it to explore each potential
subpath per thread, the method offers a simple and powerful
way of planning trajectories for many thousands of agents
in parallel. Our results show that the GPU implementation
improves by up to 45 times on that of RTAA*. The proposed
solution follows other studies that have examined large multi-
agent path planning problems trading the completeness for an
improved efficiency. We believe that this is the first study that
tries to exploit the GPU to obtain in practice a solution to the
multi-agent path planning problem, allowing a real-time use of
a vast number of agents in applications such as video games.

Future work may investigate the management of dynamic
obstacles that occur in the grid map and in particular agent
collisions. One of the advantages of this approach is that once

TABLE I
AVERAGE STEPS AND NUMBER OF PATHS FOUND OF A* AND P-BA*.

Map Obstacle Rate A* P-BA*-4 P-BA*-8 P-BA*-16 A* Paths P-BA*-4 Paths P-BA-8 Paths P-BA*-16 Paths

32× 32

10% 33.850 33.897 33.838 33.778 100 97 99 99
15% 35.102 35.500 35.489 35.277 98 84 92 94
20% 37.553 36.822 37.016 37.181 85 45 61 72
25% 39.338 38.000 38.441 38.625 74 18 34 48

64× 64

10% 68.53 68.67 68.29 68.45 97 85 90 95
15% 70.66 71.88 71.32 71.44 93 64 73 87
20% 74.66 73.50 73.83 73.75 85 30 42 53
25% 79.78 77.40 77.29 78.24 69 10 17 29

128× 128

10% 138.12 138.88 138.48 138.09 99 82 86 94
15% 142.84 143.38 142.84 142.92 91 47 63 79
20% 151.02 148.60 149.32 149.41 85 10 19 34
25% 161.43 - 155.00 153.00 69 0 3 7

256× 256

10% 277.10 277.93 276.73 276.49 100 54 8 14
15% 287.48 288.60 287.93 286.56 97 15 13 13
20% 301.57 292.00 296.40 298.64 88 1 9 15
25% 324.21 - 314.00 309.75 61 0 1 3

512× 512

10% 557.17 561.42 556.53 556.33 99 33 45 61
15% 577.04 580.50 571.88 573.86 99 4 16 28
20% 605.31 - - 601.33 91 0 0 3
25% 639.09 - - - 90 0 0 0

the system recognizes the presence of an obstacle, only in the
planning blocks where they occur will a new border-to-border
and/or start-to-border step be performed. Thus, agents should
be able to adapt swiftly to changes in the map. Also, we plan
to investigate an approach to detect and remove loop formation
before the path is available to an agent. Finally, we plan to
validate this approach in larger simulations and experiments on
a collection of maps extracted from popular video games and
to release this implementation over an open source license.

REFERENCES

[1] A. Bleiweiss, “GPU accelerated pathfinding,” in Proceedings of the 23rd
ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware,
ser. GH ’08. Aire-la-Ville, Switzerland, Switzerland: Eurographics
Association, 2008, pp. 65–74.

[2] M. Erdmann and T. Lozano-Prez, “On multiple moving objects,” Algo-
rithmica, vol. 2, pp. 477–521, 1987.

[3] U. Erra and G. Caggianese, Real-time Adaptive GPU multi-agent path
planning, GPU Computing Gems Jade Edition ed. Morgan Kaufmann
Publishers Inc., 2011, vol. 2, ch. 22, pp. 295–308.

[4] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic de-
termination of minimum cost paths,” Systems Science and Cybernetics,
IEEE Transactions on, vol. 4, no. 2, pp. 100 –107, july 1968.

[5] J. E. Hopcroft, J. T. Schwartz, and M. Sharir, “On the complexity of
motion planning for multiple independent objects: PSPACE-hardness
of the “warehouseman’s problem”,” International Journal of Robotics
Research, vol. 3, no. 4, pp. 76–88, 1984.

[6] G. J. Katz and J. T. Kider, Jr, “All-pairs shortest-paths for large
graphs on the GPU,” in Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, ser. GH
’08. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association,
2008, pp. 47–55.

[7] J. Kider, M. Henderson, M. Likhachev, and A. Safonova, “High-
dimensional planning on the GPU,” in Robotics and Automation (ICRA),
2010 IEEE International Conference on, may 2010, pp. 2515 –2522.

[8] S. Koenig and M. Likhachev, “Real-Time Adaptive A*,” in Proceedings
of the fifth international joint conference on Autonomous agents and
multiagent systems, ser. AAMAS ’06. New York, NY, USA: ACM,
2006, pp. 281–288.

[9] Nvdia, NVIDIA CUDA Compute Unified Device Architecture - Program-
ming guide.

[10] M. R. K. Ryan, “Exploiting subgraph structure in multi-robot path
planning,” J. Artif. Int. Res., vol. 31, no. 1, pp. 497–542, Mar. 2008.

[11] D. Silver, “Cooperative pathfinding,” in AIIDE, 2005, pp. 117–122.
[12] E. Stefan and S. Damian, “Parallel state space search on the GPU,” in

International Symposium on Combinatorial Search (SoCS), 2009.

