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1 Introduction

Many types of computer games involve player and non player characters
moving over terrain. In some types of game, the player directly controls
a main character while the non player characters are controlled by path
planning algorithms. In real time strategy games the player doesn’t control
any characters directly. Instead, the player selects a group of characters
(or agents) and then selects a target position with the mouse. The target
position can be in a known position (a position that the agents have observed
before) or an unknown position. The agents then have to find their own
way to the target position. The characters do not know the whole terrain in
advance, instead they observe a certain range around them and remember
the positions they’ve observed for future use. If they observe that their
current trajectory is blocked after they have started moving, they have to
search for another path. A fast path planning algorithm is therefore essential
for the agents to move smoothly around obstacles.

A*[1] is the most famous algorithm for finding cost-minimal paths in state
spaces, which are usually represented as graphs. Given a start state (start
node) and a goal state (goal node) A* finds the least-cost path by using a
distance-cost heuristic function to determine the order in which the search
visits states. The search performed by A* is ideal for off-line artificial intel-
ligence applications, but it is not suitable for computer games where agents
have to search paths in real-time.

This work proposes an efficient multi-agent planning approach for the GPU.
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The implementation is based on a previous algorithm called Real-Time
Adaptive A* (RTAA*)[2]. In RTAA*, the search is restricted to a small
part of the state space that can be reached from the current state using
a single A* search episode. For each search episode, the agent determines
a local search space, searches it, updates the distance-cost heuristics, and
moves along the resulting trajectory. The agent repeats this process until it
reaches a goal state. RTAA* is efficient in real-time applications but has a
major drawback, the large amount of memory required for each agent, limits
the number of simultaneous searches. Our approach reduces the amount of
memory for each agent, enabling the design of a parallel implementation of
RTAA* for the GPU architecture. This offers a simple and powerful way
to accelerate simultaneous path planning in real-time applications such as
computer games and robotics.

2 Core Method

Before explaining the GPU implementation, we give a brief overview of the
A* and RTAA* algorithms. In A* (Algorithm 1), for every state s, the user
supplies a heuristic h[s] that estimates the goal distance, which is the cost
of a minimal path from the state s to a goal state. Classical heuristics are
based on Manhattan, diagonal, or Euclidian distance calculations. During
its execution, A* maintains two values, g[s] and f [s]. The value g[s] is the
smallest cost of any discovered path from the start state sstart to state s.
The value f [s] = g[s] + h[s] estimates the distance from sstart to the goal
state via state s. The algorithm maintains two lists, the open list and the
closed list. The open list is a priority queue and contains the most recently
discovered states. Initially it contains only the start state sstart. The closed
list contains the expanded states, those from which all adjacent states have
been explored and inserted into open list. At each iteration, A* removes the
state s with the smallest f [s] value from the open list. If state s is a goal
state, it terminates. Otherwise, it explores the adjacent states and updates
the g-value of each visited state. If the g-value decreases, it updates the
g-value and the corresponding f -value in the open list. It then repeats the
process. Finally, the g-value of every visited state s will be the distance
from the start state sstart to state s.

For real-time applications, A* has two main drawbacks. The first is the
computational time required to perform a search from the start state to the
goal state. The second disadvantage relates to memory footprint during the
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execution of the algorithm. Each agent must store and update the h[s], g[s],
and f [s] values for each state s. This makes A* unsuitable for multi-agent
path planning in large state spaces when memory is limited.

Algorithm 1 A*

1: ClosedList⇐ ∅
2: OpenList⇐ start
3: g[start]⇐ 0
4: h[start]⇐ HeuristicEstimate(start, goal)
5: f [start]⇐ h[start]
6: while OpenList 6= ∅ do
7: x⇐ ExtractLowerValue(OpenList)
8: if x = goal then
9: return ReconstructPathFrom(goal)

10: end if
11: for all s ∈ NeighborNodes(x) do
12: newg ⇐ g[x] + Cost(x, s)
13: if s ∈ OpenList and newg < g[s] then
14: Remove(OpenList, s)
15: end if
16: if s ∈ ClosedList and newg < g[s] then
17: Remove(ClosedList, s)
18: end if
19: if s /∈ OpenList or s /∈ ClosedList then
20: parent[s]⇐ x
21: g[s]⇐ newg
22: h[s]⇐ HeuristicEstimate(s, goal)
23: f [s]⇐ g[s] + h[s]
24: Add(OpenList, s)
25: end if
26: Add(ClosedList, x)
27: end for
28: end while

Real-Time Adaptive A* (Algorithm 2) is a real-time heuristic search method
that chooses its local search spaces in a very fine-grained way. The main idea
is to update the heuristics of all states in the local search space very quickly
and to save the heuristics to speed up future A* searches. This approach
uses a variable called lookahead, which specifies the largest number of states
to expand during an A* search. After the A* search, we define s to be the
state that was about to be expanded when the A* search terminated. At
this point, RTAA* updates the heuristic of all the expanded states s in the
closed list by setting h[s] = g[s]+h[s]−g[s]. RTAA* then executes the plan
along the trajectory found by the A* search until state s is reached. Koenig
et al. [2] have proven that this heuristic becomes more informed over time
and that it is consistent, ensuring a trajectory of smaller cost for a given
time-limited search episode.
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Algorithm 2 RTAA*

1: lookahead⇐ any integer greater than zero
2: movements⇐ any integer greater than zero
3: while scurr 6= goal do
4: A*() {Expand lookahead states in A*}
5: if s = FAILURE then
6: return FAILURE
7: end if
8: for all s ∈ ClosedList do
9: h[s]⇐ g[s] + h[s]− g[s]

10: while scurr 6= s and movements > 0 do
11: a⇐ ActionOnTrajectory()
12: scurr ⇐ succ(scurr, a)
13: movements⇐ movements− 1
14: ChangeCosts()
15: end while
16: end for
17: end while

The key aim in designing and implementing a RTAA* multi-agent path plan
in the GPU is to reduce the memory required for g[s], h[s], and g[s] for all
states s. Table 1 shows the main input and output variables handled by
RTAA* for each agent. Note that, for each search episode, we need a Start
state variable, and the queues for Open List, Closed List, and Par-
ent List that must be sufficiently large to handle the number of lookahead
states. Moreover, for each search episode we need a Goal state variable and
the arrays Gcost, Hcost, and Fcost to keep updated the values of any discov-
ered path g[s], estimated cost distance h[s], and the cost of the estimated
path f [s], respectively, of each state s. The amount of memory required for
Gcost, Hcost, and Fcost depends on the number of states.

The proposed implementation is based on the observation that after each
search episode Gcost, Hcost, and Fcost values only in the surrounding area
of an agent’s current position are updated. In addition, as the agent moves
along the path toward the goal state, values related to explored states will
not be required in the current search episode. Thus, we do not maintain
these values after a certain number of search episodes. In our GPU imple-
mentation, we exploit the variable lookahead in order to take into account
only those values in the surrounding area of the agent’s current position and
then to reduce the memory footprint required for each agent.
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INPUT
Used Variable Description Init

PER SEARCH
EPISODE

Start Start state USER
Open List List of discovered states ZERO
Closed List List of expanded states ZERO
Parent List List of successors ZERO

FOR ALL
SEARCH
EPISODES

Goal Goal state USER
Gcost Cost of any discovered path g[s],

for each state s
∞

Hcost Estimated goal distance h[s], for
each state s

Heuristic function

Fcost Cost of estimated path f [s], for
each state s

ZERO

OUTPUT
Used Variable Description Init

PER SEARCH
EPISODE

s Start state for the next A* search ZERO
Path List Path state list ZERO

Table 1: INPUT and OUTPUT data for RTAA*. The variables in a search episode keep
state expansion information for the current A* search.

3 Implementation

In this section, we describe a path planning system for many thousands
of agents that uses RTAA*. NVIDIA’s CUDA is the platform chosen for
exploiting data parallelism in the GPU. The following subsections discuss
parallel pathfinding implementation on the GPU.

3.1 Grid map

Our implementation is suitable for games that are based on a grid map. In
these games, the world is subdivided into small regular zones called tiles.
Each tile represents a state s of the state space and is connected to all nearby
tiles. These connections form a tile-graph as illustrated in Figure 1.

The cost of moving from a tile to each of its neighbours is specified by an
integer. This can be used to model terrain elements that are difficult or
impossible to pass, for example hills and lakes. A common metric used on
grid maps, which we adopt for this work, is the Manhattan distance. The
memory footprint for each grid map is 4 × h × w words, where h and w
are the height and width of the map, respectively. At the initial phase of
planning, the grid map is copied from host memory to the device’s global
memory region and processed by a grid of threads.
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Figure 1: a) Grid map. An integer indicates a terrain element. b) Tile-graph. A light
grey tile indicates a hill, the dark grey a mountain, and the black tile an obstacle which
is unreachable.

3.2 Lookahead and movements array

In order to perform searches for many thousands of agents in parallel we
need a way to reduce the working set per thread. Our solution exploits the
lookahead parameter of the RTAA* algorithm, and this parameter allows
us to store for each agent the Gcost, Hcost, and Fcost values only for a limited
area surrounding the current agent position. This area is tracked by using
two overlay arrays, called the lookahead array and the movements array
(Figure 2).

The lookahead array is centred on the agent start position at the beginning
of a search episode and tracks all the tiles that are discoverable during the
search episode. Its size is (lookahead × 2 + 1)2 because during the search
episode an agent can explore, at the most, lookahead tiles in all directions.
These tiles are inserted in the queues Open List and Closed List as
illustrated in Section 2. Thus, the memory required for Open List and
Closed List is (lookahead×2+1)2 words. However, the memory required
for Parent List is lookahead words, because for each search episode we
need only to store lookahead expanded tiles from which all adjacent tiles
have been explored and inserted in the Open List.

The movements array is used to keep track of those tiles that are explorable
during a certain number of successive search episodes. Each agent, by using
the movement arrays, keeps a cost list for Gcost, Hcost, and Fcost only for
those tiles contained in the movements array. When an agent performs a
search episode, it stores and updates g[s], h[s], and f [s], where s is a tile in
the movements array. This array enables us to avoid maintaining an array
of the same size as the grid map to store Gcost, Hcost, and Fcost values for
each agent. The inspiration for this arises from the observation that an
agent rarely requires or updates the values g[s], h[s], and f [s] for some tile
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Figure 2: The dark-grey array is the lookahead array. The light-grey array is the move-
ments array. Behaviour of the arrays during a search episode with lookahead=1. The
white dot is the start tile. The white star is the next start tile. a) The lookahead ar-
ray position is always centred on the start position. b) After each search episode, the
lookahead array will move according to the next start tile. As long as the movements
array contains the lookahead array, it does not change its current position. c) When the
lookahead array moves out from the movements array then we must shift both arrays and
centre them on the new start tile.

Figure 3: Two examples of movements array motion. The grey cells show that values g−,
h−, and f− are still valid when the movements array is moved. These values must be
retained and then copied.

s discovered in past search episodes. In our implementation the size of the
movement array is (lookahead×4+1)2. Thus, the memory layout required
for the three cost lists is (lookahead× 4 + 1)2 × 3 words.

According to the positions of the lookahead and movements arrays for each
agent, we update only those values in the agent’s surrounding area. Initially,
both arrays are centred on a start tile (Figure 2a). After a search episode
the lookahead array will move according to the next start tile (Figure 2b).
As long as the movements array contains the lookahead array, it does not
change its current position. When the lookahead array moves out from the
movements array, both arrays must be moved and centred on a new start
tile (Figure 2c).

Note that before the movements array moves into a new position, the same
values may still be valid and must be retained for the next search episode.
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In Figure 3, we show valid values in the movements array between two
positions. Based on the direction these values must be copied to another
part of the movements array. This operation is performed by simple read and
write operations inside the same block of memory with negligible overhead.

3.3 The working set

The implementation of a search episode is designed using four kernels that
have several inputs and two outputs. The input for all agents is a grid map.
Whereas, the inputs for each agent include:

• A Start and a Goal tile. Initialized by the user.

• A NextStartTile value to keep track of the next starting tile g[s].

• A State value to maintain the state of the search.

• The Open List, Parent List, and Closed List. Initialized to zero.

• A cost list of updated heuristics Hcost. Initialized the first time by the
host.

• A cost list of discovered paths Gcost. Initialized to ∞.

• A cost list of estimated paths Fcost. Initialized to zero.

• A Counter value to keep track of the current search episode.

• A list of values search(s) = i if state s has been generated last by the
ith A* search. This list is used to check if a tile has been generated in
the previous search episodes. In the case search(s) 6= counter we set
g[s] =∞, enable us to rediscover this tile and improve the trajectory.
Initialized to zero.

The pair of outputs for each agent are:

• A trajectory found in the last search episode without obstacles.

• The start tile s for the next A* search.

All input data structures reside in global memory. Static data structures,
e.g., the grid map, are kept in cached constant global memory. While any
modifiable data structures are kept in non cached read-write global mem-
ory locations. All data structures are stored in an efficient collection of
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Map States Memory KB

T0 20× 20 400 1600
T1 40× 40 1600 6400
T2 80× 80 6400 25600
T3 160× 160 25600 102400
T4 320× 320 102400 409600
T5 1024× 1024 1048576 4194304

Agents Blocks Memory MB

G0 128 1 0.39
G1 8192 64 24.72
G2 28800 225 86.69
G3 80000 625 241.39
G4 139392 1089 420.61
G5 294912 2304 889.88

Table 2: Left: the size of the grid maps and the GPU memory footprint for each one.
Right: the number of agents (threads), the number of thread blocks (128 threads per
block), and the memory footprint for each group of agents with lookahead=3. In the
worst-case scenario (T5 grid map and 294912 agents) the total amount of memory used is
below 5MB.

Structure-of-Arrays (SoA) that improves the probability of coalesced mem-
ory transactions across a half-warp.

3.4 The CUDA kernels

Each agent is processed by a thread on the GPU. In order to improve the
distribution of resources in the streaming multiprocessors, we implement the
search episode process in four sequential CUDA kernels:

• InitializeArray: moves the lookahead array in the current tile s and
moves the movements array when necessary.

• InitializeSearch: initializes g[s] and f [s] for the current tile s and
inserts it in the Open List.

• SearchEpisode: performs the A* search from s expanding lookahead
tiles. The priority queue is implemented in a similar way to that
proposed in [3].

• UpdateAndCheck: updates the heuristics h[s] of the tiles s contained
in the Closed List, creates the path using the Parent List, and
checks the presence of obstacles along the path.

4 Results

In this section, we show the results of two types of experiments. The first
experiment demonstrates the efficiency of our approach, the second is related
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Average Path Lengths Average Search Episodes

T0 10 7
T1 20 13
T2 38 27
T3 77 53
T4 151 105
T5 478 336

Table 3: Average path lengths and average search episodes in planning all groups of agents
on each grid map.

to the quality of the trajectory found using the lookahead and movements
arrays.

The experiments were performed on six grid maps of sizes ranging from
20 × 20 to 1024 × 1024. Start and goal tiles were randomly chosen, and
lookahead was set to 3. For each grid map, we launched several groups
of agents, of size 128 to 294912, and each CUDA block had 128 threads.
The GPU memory footprint for the grid maps and agent groups can be seen
in Table 2. Our tests were performed on an Intel Core i7 CPU 1.6GHz,
NVIDIA Fermi GTX 470 1.28GB, Windows 7. All the kernels were written
in CUDA 2.1 and Microsoft’s Visual C++ 2008 compiler.

Table 3 lists the average path lengths and the average number of search
episodes that occurred for all groups of agents. Figure 4 shows the perfor-
mance of the GPU. The absolute running time for the benchmarks executed
on the GPU ranges from 458 milliseconds for T0 to 21717 milliseconds for
T5 and an average time per search episode of 65 milliseconds for T0, up to
63 milliseconds for T5. The smallest value, as observed for G5, arose be-
cause as the number of search episodes in T5 increases, the average time per
search episode decreases, although the number of agents is greater than G0
(see Table 3). At the bottom of Figure 4, we can see the total average time
taken for agent to reach its goal. Figure 5 supports the GPU CUDA perfor-
mance scale compared to multithreading CPU implementation in running
one-, two-, and four-threads.

A GPU implementation of the A* algorithm has been presented by Bleiweiss
[3]. Although the results of this work cannot be directly compared owing to
the different hardware generation used, we can note the difference in terms of
memory footprint. In Bleiweiss’s work, with a map of 340 nodes and 115600
agents, the working set memory (about 1.5GB) exceeds the available GPU
global memory, and searches are thereby broken into multiple pathfinding
passes, each one responsible for a subset of the total agents. In our work,
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Figure 4: GPU performance for all group of agents run over all six grid maps. We
measured the total time to search the paths for all six groups of agents, the average time
per search episode, which is critical for real-time applications, and average total search
time per agent, which measures parallelism efficiency on the GPU.
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Figure 5: T5 performance of the NVIDIA GTX 470 GPU compared to three multi-thread
CPU versions, using an Intel Core i7 CPU 1.6 GHz.

Task 1 Task 2 Task 3

Task 4 Task 5

Figure 6: In each task the start position is on the left and the end position is on the right.
The sketched line is the optimal path.

a comparable configuration with T0 grid map and G4 agent configuration,
the memory footprint is below 500MB.

The second type of experiment concerns the length of the path obtained from
our approach owing to the introduction of the lookahead and movements
arrays. For this purpose, we use the five tasks shown in Figure 6. For each
task, we perform A* and RTAA* with lookahead set to 3–7. Table 4 shows
the results of this experiment. Note that, for task T1, the length of the path
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is the same, independent of the value of lookahead. The worst case is task
T3 where lookahead equals 7. In this scenario, the path length is 19 for A*
and 34 for RTAA*. The results of this experiment suggest that in some cases
the approach finds paths whose lengths are worse than the optimal solution
though the difference from the optimal path length is not significant. This
deficiency is compensated for in terms of efficiency as shown in performance
experiments. Tuning the lookahead parameter allows the user to trade
off speed against path optimality. For example, in a real-time application,
speed is the highest priority and suboptimal paths may be acceptable.

Pathfinding Task 1 Task 2 Task 3 Task 4 Task 5

A* Length 18 19 19 19 23

RTAA*-3
Length 18 28 33 26 31
Search episodes 10 18 18 13 16

RTAA*-4
Length 18 23 40 20 29
Search episodes 6 10 23 7 12

RTAA*-5
Length 18 25 23 20 27
Search episodes 5 10 8 6 9

RTAA*-6
Length 18 21 32 20 26
Search episodes 5 8 14 5 6

RTAA*-7
Length 18 19 34 22 27
Search episodes 4 4 11 6 7

Table 4: For all the tasks, the A* row reports the least-cost paths, while GPU RTAA*
rows report the path lengths and the search-episode counts with increasing lookahead

values.

4.1 Results and Conclusions

In this chapter, we have shown that an implementation based on the Real-
Time Adaptive A* algorithm fits well with the GPU parallel architecture.
By using a limited memory footprint per thread, it offers a simple and pow-
erful way to plan trajectories for many thousands of agents in parallel. The
implementation manages only static and known obstacles reported in the
grid map. In future research, we plan to implement the management of
unknown obstacles that occur in the grid map. Once an agent recognizes
the presence of an unknown obstacle, it will report it in the grid map and
share this information with other agents. The unknown obstacle will be-
come visible and will be taken into account in subsequent search episodes.
This approach can easily be extended to cope with the presence of dynamic
obstacles.
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