
 Procedia Computer Science 9 (2012) 1847 – 1856

1877-0509 © 2012 Published by Elsevier Ltd.
doi: 10.1016/j.procs.2012.04.203

International Conference on Computational Science, ICCS 2012

GPU Accelerated Multi-agent Path Planning based on Grid Space

Decomposition

Giuseppe Caggianese, Ugo Erra

Dipartimento di Matematica e Informatica, Università della Basilicata, Viale Dell’Ateneo, Macchia Romana, 85100, Potenza, Italy

Abstract

In this work, we describe a simple and powerful method to implement real-time multi-agent path-finding on

Graphics Processor Units (GPUs). The technique aims to find potential paths for many thousands of agents, using the

A* algorithm and an input grid map partitioned into blocks. We propose an implementation for the GPU that uses

a search space decomposition approach to break down the forward search A* algorithm into parallel independently

forward sub-searches. We show that this approach fits well with the programming model of GPUs, enabling plan-

ning for many thousands of agents in parallel in real-time applications such as computer games and robotics. The

paper describes this implementation using the Compute Unified Device Architecture programming environment, and

demonstrates its advantages in GPU performance compared to GPU implementation of Real-Time Adaptive A*.

Keywords: path-finding, GPU acceleration, A* algorithm, real-time search, search space decomposition

1. Introduction

Navigation-planning techniques for multi-agents have been traditionally studied in the domain of robotics and in

recent years have been increasingly applied to real-time strategy games and non-player characters in video games.

In these applications, the principal challenge is the safe navigation of an agent to its target location while avoiding

collision with static or dynamic obstacles and other moving agents. Agents are therefore not directly controlled by

humans but rely instead on path-planning algorithms.

A*[1] is the most famous algorithm for finding cost-minimal paths in state spaces, which are usually represented

as graphs. Given a start state (or start node) and a goal state (or goal node), A* finds the least-cost path by using a

distance–cost heuristic function to determine the order in which the search visits states. The search performed by A*

is ideal for off-line artificial intelligence applications where for each agent we perform a search from the start state

to the goal state in turn. However, it is not suitable for search paths in real-time where the topology of the graph, its

edge costs, the start state or the goal states change over time. Several approaches have been developed to tackle these

problems, such as Fringe Saving A*, Generalized Adaptive A*, Lifelong Planning A*, and D*. Worthy of note for

this paper is Real-Time Adaptive A*(RTAA*) [2], which we used as a comparison in our performance benchmarks.

In a scenario where an agent navigates to its goal position avoiding collisions, using for instance A*, the planning

for many thousands of agents lends itself well to the parallel computing data paradigm. Essentially, for each agent a

Email addresses: giuseppe.caggianese@unibas.it (Giuseppe Caggianese), ugo.erra@unibas.it (Ugo Erra)

Available online at www.sciencedirect.com

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/

1848 Giuseppe Caggianese and Ugo Erra / Procedia Computer Science 9 (2012) 1847 – 1856

single program, A*, consults the global connectivity data and concurrently resolves an agent’s optimal path, bound by

a start and goal position. As the number of agents and the size of the search space increase, planning tends to become

computationally burdensome. Hence, path-finding on large maps can result in serious performance bottlenecks. In

the last few years, Graphics Processor Units (GPUs) have increased rapidly in popularity because they offer an op-

portunity to accelerate many algorithms. In particular, applications that have large numbers of parallel threads that do

similar work across many data points with limited synchronization are good candidates with which to exploit GPU

acceleration. All of this means that in a multi-agent scenario with large maps, we can take into account the idea that

exploration of different paths can be performed in parallel with large numbers of threads that explore simultaneous

subpaths. These subpaths will be likely shared between different agents’ paths.

In this paper, we describe an approach for a path-planning system for many thousands of agents that uses A*.

The approach is based on the search space decomposition of the input grid map into blocks. For all blocks, we

perform simultaneous A* searches to obtain all potential subpaths of the input agents toward the goal state that

traverse these blocks. In this way, given the start positions of agents and a goal position as input, we are able to

break down the forward search A* algorithm into parallel independently forward sub-searches. This approach fits

well with the parallel architecture of GPUs, where many hundreds of threads are necessary to exploit the GPU fully.

In addition, our method is simple and easy to implement using a GPU programming model such as the platform

chosen in this work, NVIDIA’s Compute Unified Device Architecture (CUDA). The empirical results demonstrate the

GPU performance-speed up advantages for large numbers of agents compared to GPU implementations of RTAA*

and suboptimal solutions, thus trading optimality for improved execution performance. This offers a powerful way to

accelerate simultaneous path planning in real-time application as for instance robotics and computer games.

The rest of the paper is organized as follow. Section 2 relates similar work on parallel path-planning problems.

Section 3 introduces formally the A* algorithm and illustrates briefly the GPU programming model. Section 4 de-

scribes the fundamentals of our parallel path-planning method. In Section 5, we present some details about the

implementation on the GPU. In Section 6, we assess performance trade-off and results on quality. Finally, in Section

7, we present our conclusions and future research directions.

2. Related Work

Researchers have recently developed parallel-based implementations of path-finding that use the computational

power of the GPU. In 2008, Bleiweiss [3] implemented the Dijkstra and the A* algorithms using CUDA. After

several benchmarks, he observed that the Dijkstra implementation reached a speed up of a factor 27 compared to a

C++ implementation without SSE instructions, while A* implementation reached speed up of a factor 24 compared

to a C++ implementation with SSE instructions. In [4], Katz et al. present a cache-efficient GPU implementation

of the all-pairs shortest-path problem and demonstrate that it results in a significant improvement in performance. In

[5], Stefan et al. obtained speedups for breadth-first search using a bit-vector representation of the search frontier

on a GPU. In [6], Kider et al. present a novel implementation of a randomized heuristic search, namely R* search,

that scales to higher-dimensional planning problems. They demonstrate how R* can be implemented on a GPU and

show that it consistently produces lower-cost solutions, scales better in terms of memory, and runs faster than R* on a

Central Processing Unit (CPU). In [7], Erra et al. propose an efficient multi-agent planning approach for GPUs based

on an algorithm called RTAA*. The implementation of RTAA* enables the planning of many thousands of agents

by using a limited memory footprint per agent. In addition, benchmarks support the GPU CUDA performance scale

compared to multi-threading CPU implementation in running one, two, and four threads.

These approaches provide strong evidence that GPUs can substantially accelerate path-finding algorithms, partic-

ularly for real-time applications such as video games and real-time applications in robotics, which require efficient

path-finding to support large numbers of agents moving through expansive and increasingly large dynamic environ-

ments.

3. Background

In this section, we introduce the reader to the A* algorithm and the GPU programming model.

1849 Giuseppe Caggianese and Ugo Erra / Procedia Computer Science 9 (2012) 1847 – 1856

3.1. A* Algorithm

Before explaining the proposed approach, we give a brief overview of the A*. In A* (Algorithm 1), for every state

s, the user supplies a heuristic h[s] that estimates the goal distance, which is the cost of a minimal path from the state

s to a goal state. Classical heuristics are based on Manhattan, diagonal, or Euclidean distance calculations. During its

execution, A* maintains two values, g[s] and f [s]. The value g[s] is the smallest cost of any discovered path from the

start state sstart to state s. The value f [s] = g[s]+h[s] estimates the distance from sstart to the goal state via state s. The

algorithm maintains two lists, the open list and the closed list. The open list is a priority queue and contains the most

recently discovered states. Initially it contains only the start state sstart. The closed list contains the expanded states,

those from which all adjacent states have been explored and inserted into open list. At each iteration, A* removes the

state s with the smallest f [s] value from the open list. If state s is a goal state, it terminates. Otherwise, it explores the

adjacent states and updates the g-value of each visited state. If the g-value decreases, it updates the g-value and the

corresponding f -value in the open list. It then repeats the process. Finally, the g-value of every visited state s will be

the distance from the start state sstart to state s.

Algorithm 1: A*

input : A start node, a goal node, and an heuristic function

output: A partition of the bitmap

ClosedList←− ∅
OpenList←− start
g[start]←− 0

h[start]←− HeuristicEstimate (start, goal)
f [start]←− h[start]
while OpenList � ∅ do

x←− ExtractLowerValue (OpenList)
if x = goal then

return (ReconstructPathFrom (goal))

foreach s ∈ NeighborNodes(x) do
newg←− g[x] + Cost(x, s)
if s ∈ OpenList and newg < g[s] then

Remove (OpenList, s)

if s ∈ ClosedList and newg < g[s] then
Remove (ClosedList, s)

if s � OpenList ands � ClosedList then
parent[s]←− x
g[s]←− newg
h[s]←− HeuristicEstimate (s, goal)
f [s]←− g[s] + h[s]
Add (OpenList, s)

Add (ClosedList, x)

For real-time applications, A* has two main drawbacks. The first is the computational time required to perform a

search from the start state to the goal state. The second disadvantage relates to memory footprint during the execution

of the algorithm. Each agent must store and update the h[s], g[s], and f [s] values for each state s. This makes A*

unsuitable for multi-agent path planning in large state spaces when memory is limited.

3.2. The GPU programming model

In the last years, the increasing performance of the GPUs has led researchers to explore mapping general non-

graphics computation onto these new parallel architectures. The GPGPU phenomenon has shown some impressive

results, but the limitations and difficulties of a mapping a problem via graphics APIs leaved these successful experi-

mentations only to 3D graphics experts. The demand to use the GPU as a more general parallel processor motivated

NVIDIA to release in 2006 a new generation of graphics cards (the so called G80 architecture or one of its successors)

that significantly extended the GPU beyond graphics through a new unified graphics and computing GPU architecture

and the CUDA programming model [8].

1850 Giuseppe Caggianese and Ugo Erra / Procedia Computer Science 9 (2012) 1847 – 1856

thread

thread block

per thread local memory

per block
shared
memory

thread block

y

grid 0

global
memorygrid 1 memory

Figure 1: Levels of parallel granularity and memory sharing on the GPU [8].

From the point of view of hardware model, the GPU architecture is built as a scalable array of multithreaded

multiprocessors. Each multiprocessor consist of a number of SIMD ALUs which one called processor. The pro-

cessor executes at the same time the same instruction in a SIMD fashion and has access to local registers. On the

multiprocessor level, all processors of a multiprocessor have read/write access to a shared memory.

From the point of view of software model, CUDA is a minimal extension to C language which permits the writing

of a serial program called kernel. A kernel executes in parallel across a set of parallel threads. Following the represen-

tation in Figure 1, each thread has a private local memory. The programmer organizes these threads into a hierarchy

of thread blocks and grids. A thread block is a set of concurrent threads that can cooperate among themselves through

barrier synchronization and have access to the shared memory with latency comparable to registers. The grid is a set

of thread blocks that may each be executed independently. All threads have access to the same global, constant or

texture memory. These three memory spaces are optimized for different memory usages and thus have different time

access. For example, the read-only constant cache and texture cache are shared by all scalar processor cores and this

speeds up reads from the texture memory space and constant memory space.

The grid and block sizes must be defined for every kernel invocation. Each block is mapped to one multiprocessor

and then multiple thread blocks can be mapped on the same multiprocessor and are executed concurrently. Multi-

processor resources (registers and shared memory) are split among the mapped thread block. As a consequence, this

limits the number of thread blocks that can be mapped onto the same multiprocessor. In order to maximize the number

of threads supported by a multiprocessor it is important to take into account the resources required by each kernel.

Then, the choice to design a framework by using several kernels is a crucial point to exploit the resources of the GPU

and to maximize the amount of thread parallelism.

Further details on the GPU architecture and CUDA programming model are available in NVIDIA’s CUDA Pro-

gramming Guide [9].

4. The Proposed Approach

In this section, we describe an approach to compute in parallel simultaneous path planning in a multi-agent sce-

nario. As inputs we have a set of start states, a goal state, and a search space that represents the environment in which

the agents move. We first describe the reference scenario for our path planning and how we decompose the search

space. We then describe the necessary steps to perform the parallel search from the start states to the goal state.

4.1. Search space decomposition
The approach we propose is suitable for scenarios that are based on a grid map. In these scenarios, the environment

is subdivided into small regular zones called tiles. Each tile represents a state s of the search space and is connected

to all nearby tiles. The cost of moving from a tile to each of its neighbors is specified by an integer. This can be used

1851 Giuseppe Caggianese and Ugo Erra / Procedia Computer Science 9 (2012) 1847 – 1856

Figure 2: Example of a 16 × 16 grid map with four 8 × 8 planning blocks. Gray indicates border tiles. The circles are two agents in their start

positions. The square is a goal position, and dotted lines are paths that traverse planning blocks.

A

B

(a) Traversing subpath.

A

B

(b) Incoming subpath.

A
B

(c) Outgoing subpath.

B
A

(d) Internal subpath.

Figure 3: Left (a–b): border-to-border step. All the simultaneous A* searches start from the border tiles and terminate in a border tile of a

neighboring planning block or in a goal state. Right (c–d): start-to-border step. The simultaneous A* searches start from the agent’s positions and

terminate on a border tile of the same planning block or in a goal state.

to model terrain elements that are difficult or impossible to pass, for example hills and lakes. A common metric used

to measure distance on grid maps, which we adopt for this work, is the Manhattan distance.

The grid map used as search space S is further divided into k regular regions Bi called planning blocks. Planning

blocks are all of the same size and decompose the search space into non-overlapping search sub-spaces such that

S = B1 ∪ B2 ∪ . . . ∪ Bk. We refer to the edge states of a planning block as border tiles, which enable a state transition

from a planning block to a neighboring block, as illustrated in Fig. 2.

Given two distinct planning blocks Bi and Bj, let pi = 〈s1, s2, . . . , sm〉 a subpath with si ∈ Bi for i = 1, . . . ,m − 1.

We name pi a traversing subpath of Bi if s1, sm ∈ Bj are border tiles (Fig. 3a). We call pi an incoming subpath of Bi

if sm ∈ Bi and s1 is a border tile (Fig. 3b). If sm ∈ Bi is a border tile we call pi an outgoing subpath of Bi (Fig. 3c).

Finally, if sm ∈ Bi and none of the states si is a border tile then pi is an internal subpath of Bi (Fig. 3d). A path p from

a start state to a goal state has subsequent subpaths pi with i = 1, 2, . . . , n. If n = 1, we have only an internal subpath.

With n ≥ 3, p1 is an outgoing subpath, p2, p3, . . . , pn−1 are traversing subpaths, and pn is an incoming subpath.

The rationale behind the planning blocks is to break down the search of a single path, computing independently all

its subpaths. By using simultaneous A* searches for all planning blocks, we compute in parallel all potential subpaths.

This may pose a problem because of the dependence of the planning blocks. During an A* search a path is discovered

sequentially, and if a subpath pi−1 inside the planning block Bi−1 then precedes a subpath pi inside the planning block

Bi, we are unable to launch simultaneous A* searches for Bi−1 and Bi. However, in a multi-agent scenario it is natural

to expect portions of a path to be shared between agents. Thus, we can take advantage of this scenario, computing in

parallel all subpaths potentially able to traverse all planning blocks.

1852 Giuseppe Caggianese and Ugo Erra / Procedia Computer Science 9 (2012) 1847 – 1856

4.2. The parallel search
To perform searches for many thousands of agents in parallel, we need to find a way of using all planning blocks

simultaneously. Our solution exploits the fact that, given a set of start states and one goal state, it is likely that the

discovered paths share subpaths. We attempt to determine these shared subpaths, computing in parallel all potential

subpath types inside the planning blocks, taking into account that they must converge toward the goal direction. This

strategy is achieved in two steps: border-to-border search and start-to-border search.

In the border-to-border step (Fig. 3a–b), we compute for all planning blocks the traversing subpaths and incoming

subpaths using multiple A* searches. In particular, for a given planning block, A* searches have as start states

the border tiles, and the searches determine all states along the way toward the goal position. A single A* search

terminates when a border tile belonging to a neighboring planning block is discovered or when the search discovers a

goal position. At the end of this step, we can assemble a path from any border tile toward the goal position, assembling

a sequence of zero or more traversing paths and an incoming path. Note that this step is independent from the start

positions and can be performed off-line if the goal is not expected to move anywhere.

In the start-to-border step (Fig. 3c–d), we compute the outgoing subpaths and internal subpaths using multiple

A* searches. In this case, for all the input agents, A* searches have as start states the start positions of all agents,

and the searches determine, as described above, all states along the way toward the goal position. A single A* search

terminates when a border tile belonging to the same planning block is discovered or when the search discovers a goal

position. Thus, the objective of this step is to search the paths of all agents from their start positions to the nearest

border tiles.

The advantage of this approach is that it can be easily implemented in parallel because all the searches in the

border-to-border step and in the start-to-border step can be performed simultaneously. We have removed the depen-

dence between planning blocks taking into account all possible subpaths inside the planning blocks. Furthermore, the

ability to use small search areas ensures faster searches and limits memory use. Finally, in the case of a change in

start position, we need only to perform a start-to-border search where the change occurred.

A problem associated with this approach is the formation of loops at the end of the border-to-border step, as

illustrated in Fig. 4. There are two possible strategies to tackling this problem. The first is to handle the loop during

the movements of agents, e.g., prevent the agent from becoming trapped in the loop. The second is to increment the

heuristic associated with the border tiles that form the loop and then perform a new border-to-border step only for the

planning blocks involved. In this way, these border tiles will not be taken into account in the new paths because of

their higher movement cost.

B
A
B
AAAAAAA

Figure 4: A dead-end causes the A* search from border tile A to stop in border tile B. Conversely, A* search from border tile B stops in border tile

A.

5. GPU Implementation

Implementation of the approach described above on a GPU programming model is straightforward. To execute all

searches simultaneously, we associate a single GPU thread with each search; in fact, each search executes the same

instructions but with different data. In the border-to-border step, we couple a single thread block for each planning

block, as illustrated in Fig. 5. This decision enables us to execute concurrently all border-to-border searches and to

1853 Giuseppe Caggianese and Ugo Erra / Procedia Computer Science 9 (2012) 1847 – 1856

block 0

grid
blocks

heuristics
shared

memory

planning
blocks

heuristics heuristics heuristics

block 1

block 2 block 3

heuristics heuristics heuristics heuristics

block 0 block 1 block 2 block 3

Figure 5: Parallelizing the border-to-border step using GPU. A planning block is associated with a thread block, and a thread executes a search for

each border tile. This mapping enables us to use the shared memory in a thread block to store the estimated heuristics of a planning block. Finally,

all planning blocks are gathered in a single CUDA grid.

share information through shared memory. Indeed, heuristic values h[s], used to estimate the goal distance for each

state s, are stored as a single array in the large shared memory as a planning block. This is possible because in the

border-to-border step all the searches are local, i.e., a search starts and stops in the same planning block.

Conversely, in the start-to-border step, agents’ start positions are not all located in the same planning block.

However, even in this case, the array for heuristic values can be shared between agents. In fact, the array may become

as large as the entire map and must then be stored in a global memory because its dimensions are too large for shared

memory. For both types of steps, another element that is shared between all agents and stored in a global memory is

the map that retains the cost of movement from each tile to its neighbors and therefore also the positions of obstacles.

The planning-block size affects the behavior of searches because it determines the number of states in a single

planning block, the array dimensions for shared memory used to maintain the heurists, and the number of border tiles.

If the planning block is too large, the A* algorithm is required to explore too many states, while if it is too small,

there are fewer states to explore but many searches to execute in the same length of time. However, to optimize time

execution, we select the planning-block size to always be a power of 2 so that we can use CUDA bitwise operations

to replace integer division and modulo operation, which are too expensive to run and are necessary to retrieve tile

coordinates and consequently the planning-block ids.

6. Experiments and Results

In this section, we provide the results of two experiments. The first type of experiment demonstrates the efficiency

of our approach, while the second is related to the quality of the trajectory found using the search space decomposition.

Our tests were performed on an Intel Core i7 CPU 1.6GHz, NVIDIA Fermi GTX 480 1.5GB, Windows 7. All the

kernels were written in CUDA 4.0 and using Microsoft’s Visual C++ 2010 compiler.

The first experiment compares our GPU parallel approach based on planning blocks (P-BA*) with a GPU imple-

mentation of RTAA* (P-RTAA*) [2]. RTAA* is a real-time heuristic search method that selects its local search spaces

in a very fine-grained way. The basic principle is to update the heuristics of all states in the local search space swiftly

1854 Giuseppe Caggianese and Ugo Erra / Procedia Computer Science 9 (2012) 1847 – 1856

512 8192 16384 32768 65536 131072 262144
PB-A* 4x4 4.60 6.08 9.36 14.37 23.56 38.75 67.41
PB-A* 8x8 6.08 7.74 11.49 16.69 24.63 34.33 47.18
PB-A* 16x16 6.11 7.35 9.88 12.98 16.28 19.14 23.00
PB-A* 32x32 4.95 5.55 6.95 7.72 8.51

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00

Sp
ee

d
U

p

Total Time Speed Up: P-RTAA* vs P-BA*

512 8192 16384 32768 65536 131072 262144
P-RTTA* 2.56 25.91 50.81 100.63 200.25 399.50 798.00
P-BA* 4x4 110.75 110.75 110.75 110.75 110.75 110.75 147.00
P-BA* 8x8 147.69 147.69 147.69 147.69 147.69 168.50 335.00
P-BA* 16x16 128.00 128.00 128.00 128.00 227.25 452.50 903.00
PB-A* 32x32 341.67 341.67 341.67 352.63 703.25 1404.50 2807.00

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

M
em

or
y

M
B

(a) GPU total time speed-up and memory footprint for a 512 × 512 map.

512 8192 16384 32768 65536 131072 262144
PB-A* 4x4 7.19 8.23 10.16 13.12 18.77 28.61 48.42
PB-A* 8x8 9.79 11.09 13.50 17.05 23.69 33.92 51.82
PB-A* 16x16 9.91 10.81 13.04 15.84 20.42 26.06 34.13
PB-A* 32x32 9.09 9.58 11.04 12.49 14.49

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Sp
ee

d
U

p

512 8192 16384 32768 65536 131072 262144
P-RTAA* 5.56 28.91 53.81 103.63 203.25 402.50 801.00
PB-A* 4x4 443.00 443.00 443.00 443.00 443.00 443.00 443.00
PB-A* 8x8 590.75 590.75 590.75 590.75 590.75 590.75 590.75
PB-A* 16x16 852.69 852.69 852.69 852.69 852.69 852.69 909.00
PB-A* 32x32 1366.67 1366.67 1366.67 1366.67 1366.67 1410.50 2813.00

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

M
em

or
y

M
B

(b) GPU total time speed-up and memory footprint for a 1024 × 1024 map.

Figure 6: GPU total time speed-up values and memory footprint compared to GPU implementation of RTAA* with groups of agents ranging in

size from 512 to 262144. We also include the time to transfer data from CPU to GPU and vice versa. Memory footprints are for border-to-border

and start-to-border searches. Note that in two cases the required memory is higher than the memory available for computation.

and to save the heuristics so as to speed up future A* searches. This approach uses a variable called lookahead,

which specifies the largest number of states to expand during A* searches, and was used in the GPU implementation

to reduce the memory footprint required for each agent. We chose to compare our approach with a GPU parallel

version of RTAA* because in previous work [7] this implementation was found to be faster than a parallel GPU

implementation of A* [3].

Two grid maps measuring 512 × 512 and 1024 × 1024 with several groups of agents ranging in size from 512 to

262144 were used to assess performance and memory footprint with planning blocks measuring 4× 4, 8× 8, 16× 16,

and 32 × 32. In P-RTAA* the number of searches and then threads run on the GPU is always equal to number of

agents. Conversely, in P-BA* the number of agents determines only the number of start-to-border searches because

border-to-border searches depend on the planning-block dimensions and on the number of border tiles. For instance,

in the 1024 × 1024 map we have 786432, 458752, 245760, and 126976 threads for all planning-block sizes tested.

In all configurations, start positions were randomly chosen in the grid map, whereas the stop tile was always the

center tile of the map. Also, the heuristic values h[s] are precomputed off-line and stored in a matrix large as the grid

maps. Figure 6 reports GPU total speed-up time and memory footprint compared to P-RTAA*. GPU implementation

of RTAA* is always executed with lookahead = 3, which is the optimal value for achieving best performance as

described in [7]. The results indicate that our approach is faster than P-RTAA*. The average speed up acceleration

for each group of agents ranging from 5X to 45X in the 512 × 512 map and from 9X to 44X in the 1024 × 1024

map; measured time values include memory transfer time (CPU to GPU and vice versa) and kernel execution time.

However, although we observed that shared memory improves performance, its use implies a degree of variability

across the tested configurations. Conversely, P-RTTA* exhibited a better memory footprint in most cases, because of

the greater amount of memory required to store the searches generated in the border-to-border step compared with

P-RTAA*. However, as the number of agents increases, the number of searches is expected to rise considerably, and

so also the memory footprint. Note that in general a planning block measuring 8×8 offers better performance in terms

1855 Giuseppe Caggianese and Ugo Erra / Procedia Computer Science 9 (2012) 1847 – 1856

Map Obstacle Rate A* P-BA*-4 P-BA*-8 P-BA*-16

32 × 32

10% 33,850 33,897 33,838 33,778

15% 35,102 35,500 35,489 35,277

20% 37,553 36,822 37,016 37,181

25% 39,338 38,000 38,441 38,625

64 × 64

10% 68,53 68,67 68,29 68,45

15% 70,66 71,88 71,32 71,44

20% 74,66 73,50 73,83 73,75

25% 79,78 77,40 77,29 78,24

128 × 128

10% 138,12 138,88 138,48 138,09

15% 142,84 143,38 142,84 142,92

20% 151,02 148,60 149,32 149,41

25% 161,43 - 155,00 153,00

256 × 256

10% 277,10 277,93 276,73 276,49

15% 287,48 288,60 287,93 286,56

20% 301,57 292,00 296,40 298,64

25% 324,21 - 314,00 309,75

Table 1: Average steps of A* and P-BA*.

of acceleration and memory footprint.

The second type of experiment concerns the lengths of paths obtained via our approach through the introduction

of planning blocks. We measured the average path length using 32× 32, 64× 64, 128× 128, and 256× 256 grid maps

with an increasing rate of obstacles. One A* search and three P-BA* searches were performed with planning blocks

measuring 4×4, 8×8, and 16×16 with the upper-left corner as the start position and the lower-right corner as the goal

position. Table 1 lists the average path lengths for 100 runs. For each run, we placed obstacles chosen randomly, and

because of this, there may have been maps where there was no path from start to goal positions. The results indicate

that the length of the path retrieved with our approach is substantially the same as calculated with sequential A* and

increasing the size of planning blocks involves a path length near the optimal solution.

These experiments suggest that our approach finds paths whose difference from the optimal path length is not

significant. This deficiency is compensated for in terms of efficiency, as shown in the performance experiments.

Fine-tuning the planning-block dimensions allows the user to trade off speed against path optimality. For example, in

real-time applications, speed is the highest priority and suboptimal paths may thus be acceptable.

7. Conclusion

In this work, we have demonstrated a parallel implementation based on the A* algorithm that fits well with GPU

parallel architecture. By using it to explore each potential subpath per thread, the method offers a simple and powerful

way of planning trajectories for many thousands of agents in parallel. Our results show that the GPU implementation

improves by up to 45 times on that of RTAA*, allowing the real-time use of this technique even in scenarios with a

vast number of agents, which is common in applications such as video games.

Future work may explore further the shared memory and in particular explore how to improve its impact in the

border-to-border step. It would also be interesting to investigate the management of dynamic obstacles that occur

in the grid map. Once the system recognizes the presence of dynamic obstacles, only in the planning blocks where

they occur will a new border-to-border and/or start-to-border step be performed. Thus, all retrieved paths combining

multiple subpaths should be able to adapt swiftly to changes in the map.

We also propose an extension of this technique to manage very large maps using an out-of-core technique to reduce

memory footprint requirements. Finally, we intend to release this implementation over an open source license.

References

[1] P. Hart, N. Nilsson, B. Raphael, A formal basis for the heuristic determination of minimum cost paths, Systems Science and Cybernetics, IEEE

Transactions on 4 (2) (1968) 100 –107.

1856 Giuseppe Caggianese and Ugo Erra / Procedia Computer Science 9 (2012) 1847 – 1856

[2] S. Koenig, M. Likhachev, Real-Time Adaptive A*, in: Proceedings of the fifth international joint conference on Autonomous agents and

multiagent systems, AAMAS ’06, ACM, New York, NY, USA, 2006, pp. 281–288.

[3] A. Bleiweiss, GPU accelerated pathfinding, in: Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics hard-

ware, GH ’08, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland, 2008, pp. 65–74.

[4] G. J. Katz, J. T. Kider, Jr, All-pairs shortest-paths for large graphs on the GPU, in: Proceedings of the 23rd ACM SIG-

GRAPH/EUROGRAPHICS symposium on Graphics hardware, GH ’08, Eurographics Association, Aire-la-Ville, Switzerland, Switzerland,

2008, pp. 47–55.

[5] E. Stefan, S. Damian, Parallel state space search on the GPU, in: International Symposium on Combinatorial Search (SoCS), 2009.

[6] J. Kider, M. Henderson, M. Likhachev, A. Safonova, High-dimensional planning on the GPU, in: Robotics and Automation (ICRA), 2010

IEEE International Conference on, 2010, pp. 2515 –2522. doi:10.1109/ROBOT.2010.5509470.

[7] U. Erra, G. Caggianese, Real-time Adaptive GPU multi-agent path planning, GPU Computing Gems Jade Edition Edition, Vol. 2, Morgan

Kaufmann Publishers Inc., 2011, Ch. 22, pp. 295–308.

[8] J. Nickolls, I. Buck, M. Garland, K. Skadron, Scalable parallel programming with CUDA, Queue 6 (2) (2008) 40–53.

[9] Nvdia, NVIDIA CUDA Compute Unified Device Architecture - Programming guide.

