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Abstract Exposure to toxic metals is a well-known prob-
lem in industrialized countries. Metals interfere with a
number of physiological processes, including central ner-
vous system (CNS), haematopoietic, hepatic and renal
functions. In the evaluation of the toxicity of a particular
metal it is crucial to consider many parameters: chemical
forms (elemental, organic or inorganic), binding capability,
presence of speciWc proteins that selectively bind metals,
etc. Medical treatment of acute and chronic metal toxicity
is provided by chelating agents, namely organic compounds
capable of interacting with metal ions to form structures
called chelates. The present review attempts to provide
updated information about the mechanisms, the cellular tar-
gets and the eVects of toxic metals.
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Introduction

Exposure to potentially toxic metals represents a wide-
spread problem in most industrialized countries. In fact,

although metals occur naturally in the ecosystem, anthropo-
genic sources, i.e. pollution, contribute to their introduction
in the ecosystem. Toxic metals generally interfere with a
number physiological processes, including central nervous
system (CNS), haematopoietic, hepatic and renal functions.

A generally accepted classiWcation of metals is based on
their role in living organism. Thus, “essential metals”, such
as copper, iron, magnesium and zinc, are those indispens-
able for several biological processes, functioning as enzy-
matic cofactors or as functional groups of proteins (e.g.,
iron in haemoglobin). By contrast, “non essential metals”,
such as arsenic, cadmium, lead, mercury and chromium, do
not play any role in physiological functions and are often
considered as toxicants. Nevertheless, this classiWcation is
not absolutely correct, since both classes of metals may
potentially disturb normal biological functions, being their
toxicity concentration dependent. Indeed, short supply of
essential metals can aVect proper functioning of many tis-
sues and organs, whereas an excess of essential metals can
provide toxicity through mechanisms similar to those
ascribed to non essential elements.

Metals and semimetals (metalloids) associated with con-
tamination and potential toxicity or ecotoxicity are often
deWned “heavy metals”. This designation refers to an
extremely disparate group of elements, and even a more
disparate group of their compounds, including elements
lighter than carbon and excluding some of the heaviest met-
als that often lack functional similarities in their chemical,
biological and toxicological properties. Therefore, the term
“heavy metals” has been queried for many years and eVorts
to replace it by chemically sound terminology have so far
failed (see DuVus 2002). In general, scientiWc literature
considers as heavy metals the following elements: alumin-
ium, iron, silver, barium, beryllium, cadmium, cobalt, man-
ganese, mercury, molybdenum, nickel, lead, copper, tin,
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titanium, thallium, vanadium, zinc and some metalloids,
such as arsenic, bismuth and selenium, with properties sim-
ilar to heavy metals. Most heavy metals are characterized
by atomic density and number higher than 5.0 g/cm3 and
20, respectively, low water solubility of their hydrates and
high tendency to form complex compounds. Several toxic
metals possess high aYnity for thiolic, aminic, phosphoric
and carboxylic groups of organic compounds, thus showing
a high tendency to combine with reactive sites of the bio-
logical molecules, including proteins and nucleic acids.

Heavy metals are considered among the most dangerous
and damaging polluting substances. They may be found in
food, water and air, and, when high amounts are assumed,
they may alter biological functions and cause damage. In
the last century, their mobilization due to the technological
progress linked to human activities (agriculture, industry,
combustion processes) and their consequent introduction
into the environment as polluting waste have promoted
their growing accumulation in the biosphere and their intro-
duction into the food chain with consequent serious health
risks for humans, animals and plants.

In particular, the metals of the Earth crust can enter the
environment through geologic, biologic and anthropo-
genic processes. Natural sources of metals are erosions,
volcanic eruptions, wood Wre and bioaccumulation due to
their introduction into the food chain though plants and
animals. The most important anthropogenic sources of
environmental metal pollution include combustion of fos-
sil fuels, foundry, mining and manufacturing industries,
as well as civil and industrial waste disposal. Obviously,
atmospheric contamination in industrial areas is mainly
due to anthropogenic causes when compared to natural
sources.

Factors aVecting metal toxicity

Several factors have to be taken into account when consid-
ering toxicity of metals. In general, children and elderly
persons are more susceptible than adults to the deleterious
eVects of metals. In fact, children are at higher risk of metal
exposure through food, since they need more calories per
kilogram of body weight and have a higher gastrointestinal
absorption of metals when compared to adults (Heath et al.
2003). For some metals, exposure to an excessive amount is
well tolerated, since absorption is limited to the amount
required by the individual; whereas, others may show a
strong tendency to accumulate. For instance, the half-life of
mercury is 60–70 days, whereas that of cadmium is 10–
20 years. Moreover, half-life may vary with the type of tis-
sue where the metal accumulates. Accordingly, half-life of
lead in soft tissues corresponds to some weeks, whereas in
the bone it may reach 20 years.

Two important parameters that have to be taken into
account when considering the toxicity of a particular metal
are its chemical forms (elemental, organic or inorganic) and
its binding capability. In fact, the chemical form can
strongly aVect the pharmacokinetic properties of the metal,
including its absorption, distribution and ability to reach the
cellular and intracellular targets.

Organic forms of metals are usually highly lipophilic
and, thus, easily cross biological membranes (e.g., gastroin-
testinal wall, placenta, blood–brain barrier). Accordingly,
the organic forms of mercury induce neurotoxicity, due to
their ability to cross the blood–brain barrier and to accumu-
late in lipophilic tissue, whereas the inorganic forms of the
metal mainly cause renal toxicity.

In some cases, toxicity of non essential metals can be
ascribed to their ability to compete, in virtue of physical–
chemical similarities, with essential metals, thus disrupting
homeostatic ionic equilibrium. This is the case of lead and
cadmium that may interact with calcium and iron equilib-
rium. For example, lead can substitute for iron in the ferro-
chelatase structure, thus disrupting iron incorporation into
haemoglobin (Fig. 1). Inhibition of ferrochelatase by lead
represents one of the mechanisms implicated in the devel-
opment of anaemia (Labbé et al. 1999; Rettmer et al. 1999).
Moreover, gastrointestinal absorption of lead is increased in
conditions of lack of iron (Bradman et al. 2001). Lead, in
fact, competes with iron for the binding to intestinal ferri-
tin. Similarly, in conditions of short calcium supply, stimu-
lation of the synthesis of proteins implicated in calcium
binding at the gastrointestinal level, promotes absorption of
lead and cadmium.

Metal-binding proteins

It is important to underline that toxic eVects of metals are
often tissue-speciWc, and this is in most cases due to the
presence of speciWc proteins that selectively bind metals.
The metal–protein complexes, that are usually devoid of
enzymatic activity, play several roles in metals homeosta-
sis, as they represent a form of temporary reservoir, con-
tribute to the transport of essential metals and may play a
detoxicant role by limiting an excess of free metal concen-
tration. Typical examples of these proteins are as follows:
Calmodulin that binds calcium, Ferritin and Transferrin
that bind iron, Ceruloplasmin that is involved in copper
transport, Metallothionein (MT) that binds copper, zinc,
mercury and lead (Table 1). These proteins are particularly
rich in cysteine residues that may be implicated in the inter-
action with the metals.

MT serves many roles in both normal and pathological
conditions, acting as a reservoir of essential heavy metals
(e.g., Cu2+, Zn2+), as a scavenger for both heavy metal
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toxicants (e.g., Hg2+, Cd2+) and free radicals, and as a regu-
lator of transcription factor activity (Vasak 2005). In mam-
mals, two isoforms of MT have been isolated, which are
expressed in most organs (MT-I and MT-II), and a isomeric
form (MT-III), mainly expressed in cerebral tissue. Recent
studies have underscored the crucial involvement of MT in
the modulation of the immune system by metals (Lynes
et al. 2007).

Hypersensitivity reactions to metals

Some metals (e.g., Hg, Au, Pt, Be, Cr, Ni) may induce
hypersensitivity reactions, and in such cases it is necessary
to evaluate the immune reactivity of the subject exposed.
Heavy metals behave as haptens, since they are devoid of
antigenicity, but become fully antigenic when associated
with proteins (Büdinger and Hertl 2000; Martin et al.
2006).

Metals can potentially induce all the four forms of
hypersensitivity reactions (Fig. 2):

– Type I: this reaction can be caused, for example, by plat-
inum exposure, is characterized by IgE production and is
responsible for asthma, urticaria and anaphylaxis;

– Type II: this reaction can be caused, for example, by
exposure to organic salts of gold. It is mainly mediated
by IgG and is often associated with thrombocytopaenia.

– Type III: in addition to gold, this reaction can also be trig-
gered by exposure to mercury vapours. It is characterized
by the formation of immune complexes that precipitate
and cause damage to the glomerulus and, thus, proteinuria.

– Type IV: chromium and nickel exposure are possible
causes of this type of reaction. It is a delayed-type hyper-
sensitivity reaction, characterized by a cell-mediated,
antibody-independent, immune memory response that
causes contact dermatitis (e.g. after Cr or Ni exposure) or
formation of granulomas (e.g., after Be or Zr exposure).

Carcinogenicity

Having a high aYnity for nucleophilic centres of nucleic
acids, most metals may function as carcinogens or co-car-
cinogens (Salnikow and Zhitkovich 2008; Snow 1992).
Nevertheless, carcinogenic metals are typically weak muta-
gens and, with the exception of chromium, they do not form
DNA adducts, which represent a pivotal initiating event in
cancer-inducing activity of organic carcinogens.

Fig. 1 Inhibition of haeme bio-
synthesis by lead

Succinyl-CoA   +  Glycine 
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Uroporphyrinogen III 
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δ-Aminolevulinic dehydratase 
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Protoporphyrinogen  oxidase 

Ferrochelatase + Fe2+ 

Inhibition by Pb Possible inhibition by Pb

Accumulation of δ-ALA in plasma 

Accumulation of protoporphyrin IX and 
Fe2+ in plasma 

Table 1 Metal-binding proteins

Protein MW (D) Localization Metal Function

Calmodulin 14,000 Ubiquitous Ca Activator of various enzymes 
(second messenger)

Ferritin 470,000 Bone marrow, intestine, liver Fe Deposit

Transferrin 90,000 Plasma, extracellular space Fe Transport

Ceruloplasmin 132,000 Plasma Cu Transport

Metallothionein 6,500 Ubiquitous Ag, Hg, Cu, Cd, Pb, Zn Deposit
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The exact mechanism implicated in the genotoxic action
of metals is not completely understood, although several
studies have suggested the existence of a correlation
between cancerogenicity, electronegativity and solubility.
Usually, the cancerogenic potency increases with increas-
ing electronegativity and decreasing water solubility. The
electronegativity range for most carcinogenic metals is
between 1.2 and 1.9. Moreover, the scarcely soluble oxides
and sulphides of Ni and Cr are more potent carcinogens
than are the soluble salts.

Based on epidemiological evidence, arsenic, cadmium,
chromium (VI) and nickel compounds are classiWed as
human carcinogens, and there is evidence suggesting that
inorganic lead compounds, metallic nickel and its alloys
may also be carcinogenic in humans (Table 2). By contrast,
the cancerogenicity of cobalt, iron, manganese, platinum,
titanium and zinc has also been conWrmed in animal studies
and at very high doses.

Lead

Lead is an element of the IV group of the periodic system.
It is a naturally occurring element and a very common envi-
ronmental contaminant. Lead is used in many industries,
including lead smelting and processing, the manufacturing

of batteries, pigments, solder, plastics, cable sheathing,
ammunition and ceramic glazes. Moreover, tetraethyl and
tetramethyl lead have been in use as anti-knock additives in

Fig. 2 Hypersensitivity reactions to metal ions

Table 2 IARC classiWcation of metals and/or their compounds as
human carcinogens

Group 1 the agent is carcinogenic to humans, Group 2A the agent is
probably carcinogenic to humans, Group 2B the agent is possibly car-
cinogenic to humans, Group 3 the agent is not classiWable as to its car-
cinogenicity to humans

Substances IARC category

Substances IARC category

Arsenic and arsenic compounds Group 1

Arsenic in drinking water Group 1

Beryllium and beryllium compounds Group 1

Cadmium and cadmium compounds Group 1

Chromium [VI] Group 1

Chromium [III] Group 3

Chromium, metallic Group 3

Gallium arsenide Group 1

Lead Group 2B

Lead compounds, inorganic Group 2A

Lead compounds, organic Group 3

Nickel compounds Group 1

Nickel, metallic and alloys Group 2B
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gasoline for almost 60 years. Although most cases of lead
poisoning in adults result from occupational exposure, lead
exposure in the general population is primarily through diet
and from old lead-based paint (Brodkin et al. 2007).

Absorption of environmental lead occurs through the
lungs and gastrointestinal tract for both organic and inor-
ganic forms; organic lead compound may also be absorbed
through the skin. Gastrointestinal absorption is the most
common route of exposure to lead in the general popula-
tion, being higher in children (40%) than in adults (5–15%).
By contrast, in occupational settings, exposure is largely
through inhalation (Brodkin et al. 2007). Indeed, combus-
tion of fossil fuels containing lead may release in the atmo-
sphere lead dioxide and lead carbonate, as well as particles
of PbBrCl or gaseous Pb that can be readily absorbed
through the lung.

Following absorption, lead enters the bloodstream where
it is predominantly bound to erythrocyte proteins (Fig. 3),
with an average clearance half-time of approximately
35 days (Rabinowitz 1991; O’Flaherty 1993). Clearance
occurs through distribution into soft tissues (brain, liver,
kidney, bone marrow), bone, where it accumulates as
Pb3(PO4)2, as well as excretion, primarily via the kidneys.
A small amount of the metal is also excreted in faeces,
sweat, hair and nails. Lead circulates widely and easily
crosses the blood–brain barrier and placenta, making the
brain and the developing foetus among the targets of con-
cern (Hu 1998). Up to 95% of the body burden of lead is in
bone, where it has a half-life of years to decades (Hu et al.
2007). Pregnancy, lactation, menopause, osteoporosis and
other events that lead to increased bone resorption will
cause an increase in blood lead levels in people who have
substantial amounts of the metal stored in bone, and it can
be an unexpected source of poisoning.

Given its high capacity of accumulating in bone and
erythrocytes, acute intoxications by lead are rare. Symp-
toms include nausea, vomiting, constipation or diarrhoea,
dark faeces (for the formation of PbS), abdominal pain,

anorexia, hypothermia and hypotension. It may also cause
peripheral neuropathy, nephropathy and anaemia.

Chronic intoxication (also known as plumbism or saturn-
ism) is more common and is often associated with occupa-
tional exposure (Patrick 2006). Symptoms are mainly
gastrointestinal (nausea, abdominal pain), neuromuscular
(loss of coordination, numbness and tingling in the extrem-
ities) and neurological (loss of short-term memory or con-
centration, depression, irritability, headaches), also
including alterations of haematopoiesis (anaemia). Saturn-
ism is also characterized by a “lead hue” of the skin with
pallor and by a blue line along the gum (Pearce 2007), as
well as by hepatic or renal complications. Chronic lead
exposure can potentially induce an irreversible nephropathy
that is often associated with the development of saturnine
gout and hypertension and may ultimately evolve into renal
failure (Nolan and Shaikh 1992). In children, lead may
cause reduced growth and slowed cognitive development,
with neuropsychological deWcits occurring at blood lead
levels lower than 10 �g/dl (Murata et al. 2009). In fact, lead
can aVect several neurotransmitter systems and in particular
the mechanisms of synaptic plasticity implicated in learn-
ing and memory (White et al. 2007).

At a molecular level, lead binds to many proteins, espe-
cially to thiol and carboxyl groups, and mimics calcium in
many biological pathways (Rabinowitz et al. 1973; Kern
et al. 2000). Thus, lead can inactivate several enzymes,
including those implicated in haeme biosynthesis (Fig. 1).
The enzymes delta-aminolevulinic acid dehydratase that
catalyses the formation of the porphobilinogen ring, and
ferrochelatase that inserts iron into the protoporphyrin ring,
both are compromised by lead. This, together with an
increased fragility of erythrocyte cell membrane contrib-
utes to the appearance of anaemia, characterized by reduced
levels of haemoglobin, haematocrit and red blood cells
count.

Many toxic eVects of lead also result from its inhibition
of cellular functions requiring calcium. In fact, lead binds
to calcium-activated proteins with much higher aYnity than
calcium itself, thus altering the function of a number of cal-
cium-dependent eVector mechanisms, such as calmodulin,
protein kinase C, Ca2+-dependent K+ channels in the
plasma membrane and neurotransmitter release.

In addition to the appearance of clinical signs and symp-
toms, lead poisoning should be conWrmed by determination
of lead concentration in blood and protoporphyrin in eryth-
rocytes. In fact, since lead at low concentrations decreases
haeme synthesis, it is diagnostically important to measure
levels of �-aminolevulinc acid and coproporphyrin in the
urine and of zinc protoporphyrin in the red cells as erythro-
cyte protoporphyrin.

Initial treatment of acute exposure to lead involves sup-
portive measures, including control of Xuid and electrolyteFig. 3 Tissue distribution of lead
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balances, diazepam or phenytoin to treat seizures, mannitol
and dexamethasone to treat cerebral oedema. In symptom-
atic patients or in patients with a blood lead concentration
in excess of 50–60 �g/dl (about 2.5 �M), chelation therapy
should be performed with edetate calcium disodium
(CaNa2EDTA), dimercaprol, D-penicillamine and 2,3-dim-
ercaptosuccinic acid (Bradberry and Vale 2009; Patrick
2006; Kalia and Flora 2005). CaNa2EDTA and dimercaprol
are usually employed in combination for the treatment of
lead encephalopathy.

Cadmium

Cadmium possesses two electrons in the outermost s sub-
shell and a complete d subshell. This makes cadmium a
post-transition metal, characterized by a low melting point,
similar to mercury. Moreover, similar to zinc, the soft, blu-
ish-white cadmium prefers the oxidation state +2 in most of
its compounds.

Cadmium occurs in nature at low concentrations, mainly
in association with the sulphide ores of zinc, lead and cop-
per. In fact, cadmium ores are not abundant, but given its
similarity with zinc, cadmium is found in most zinc ores as
a result of isomorphic substitution. However, due to the
widespread nature of its occurrence, cadmium is present in
measurable amounts in almost everything we eat, drink and
breath (WHO 1992a, b).

Human activities contributing to cadmium contamina-
tion of the environment include combustion of fossil fuels,
leachate from landWll sites, run-oV from agricultural land
and mining residues, especially from zinc and lead mines
(Muntau and Baudo 1992). Cadmium is also produced as a
by-product in the manufacturing of Ni–Cd batteries, pig-
ments, stabilizers and alloys and in the electroplating to
protect steel from corrosion (WHO 1992a, b; IARC 1993;
Martelli et al. 2006).

Atmospheric deposition of airborne cadmium, mining
activities and the application of cadmium-containing fertil-
izers and sewage sludge on farm land may lead to the con-
tamination of soils and increased cadmium uptake by crops
and vegetables grown for human consumption.

Cadmium has been recognized as an occupational health
hazard for many decades, whereas the risks to environmen-
tally exposed populations were emphasized later (Hagino
and Kono 1955). Indeed, the general population can be
exposed to the health eVects of cadmium mainly through
ingestion of contaminated food or tobacco smoke, also in
the absence of speciWc industrial exposure. It has been esti-
mated that the average cadmium intake is between 8 and
25 �g per day, with more than 80% of the food-metal com-
ing from cereals, vegetables and potato (Olsson et al.
2002). In addition to that, cadmium may derive from

tobacco smoking, since a person smoking 20 cigarettes per
day will absorb about 1 �g of the metal per day (Järup and
Åkesson 2009). Recently, the European Food and Safety
Authority (EFSA) performed a meta-analysis of a large
number of studies and established a tolerable weekly intake
(TWI) of 2.5 �g/kg (EFSA 2009).

The dietary cadmium absorption rate is about 5%, rising
to 20–30% in some individuals. By contrast, bioavailability
of inhaled cadmium oxide is relatively high, with 10%
deposited in lung tissues and another 30–40% absorbed into
the systemic blood circulation of smokers (Satarug and
Moore 2004).

Although classiWed among the Wve more toxic metals,
cadmium has been considered a “stimulatory element” or
an “essential ultratrace element” for its ability to slightly
stimulate growth of animals fed low (less than 5 �g/kg diet)
cadmium (Nielsen 1998). In vitro, the metal has transform-
ing growth factor activity and stimulates cell growth.
Because it is consistently associated with metallothionein,
cadmium may have some biochemical eVects through this
biosubstance (Kostial 1986). However, given its long half-
life and its toxicological properties, further studies are
needed to better deWne its biological functions and its nutri-
tional importance at low intakes.

The biological half-life of cadmium is very long and
biphasic, having a fast component of 75–128 days and a
slow component of 7.4–26 years (Järup et al. 1983;
Matsuno et al. 1991; WHO 1992a, b), thus raising the
possibility of cumulative eVects even at low-level intake.

After absorption, cadmium bound to albumin is trans-
ported to the liver, where it promotes the synthesis of
metallothionein, a small cysteine-rich heavy metal–binding
protein (Nordberg et al. 1992). The MT–cadmium complex
is then released from the liver to the plasma and eliminated
in the urine. MT-bound cadmium can be reabsorbed from
the glomerular Wltrate by the renal tubule cells, where it is
cleaved by lysosomal action, thus releasing Cd2+ ions that
are re-excreted into the tubular Xuid (Nordberg et al. 1992)
(Fig. 4).

Although the binding to MT is responsible for accumula-
tion of the metal in tissues and for its long biological half-
life in the body, induction of MT has been shown to protect
against acute cadmium-induced lethality and acute toxicity
to the liver and lung. Intracellular MT also plays important
roles in ameliorating cadmium toxicity following chronic
exposure, particularly to the kidney, bone, lung, liver and
immune system (Klaassen et al. 2009).

Acute cadmium poisoning causes pulmonary oedema,
haemorrhage, fulminate hepatitis, testicular injury, and
lethality; whereas prolonged exposure to the metal pro-
duces nephrotoxicity, osteotoxicity and immunotoxicity
(ATSDR 1999; Liu et al. 2007a, b). A wide spectrum of
deleterious eVects on the reproductive tissues and the
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developing embryo has also been described (Thompson and
Bannigan 2008). More recently, cadmium, even at low-
level environmental exposure, has been classiWed by IARC
as a class 1 human carcinogen (IARC 1993), causing
tumours to the lung, prostate, pancreas and kidney
(Waalkes 2003; Järup and Åkesson 2009). In fact, although
being only weakly genotoxic, cadmium may trigger adap-
tive, stress-induced protective and antiapoptotic mecha-
nisms (Beyersmann and Hartwig 2008). Other cellular
eVects of this toxic metal are induced by disruption of
physiological signal transduction systems, including those
mediated by Ca2+, cAMP, NO, MAP-kinase, PKB/Akt and
nuclear factor-kappa-B (Thévenod 2009).

The major target organ following acute cadmium poi-
soning is liver, and hepatotoxicity is considered the major
cause of lethality due to acute exposure (Goering and
Klaassen 1983). Changes within the liver are dose- and
time-dependent, ranging from moderate diVuse hepatocellu-
lar degeneration through to multifocal necrosis (El-Ashmawy
and Youssef 1999; Sauer et al. 1997). Acute exposure to
cadmium fumes (as CdO) or aerosols produces pulmonary
oedema and haemorrhaging followed by inXammation,
scarring, Wbrotic changes and carcinogenesis (ATSDR
1999; Waalkes 2003). In experimental animals, there is also
evidence of an acute, rapid toxicity to testis, characterized
by swelling, congestion, oedema, haemorrhage and
necrosis.

Following chronic dietary exposure, the major target
organ is the kidney, where cadmium accumulates with a
half-life of approximately 10–30 years. Renal damage is
characterized by proximal tubular reabsorptive dysfunction
and glomerular damage, with early increase in low molecu-
lar weight proteins (�2 and �1 microglobulins) excretion,
but also glycosuria and aminoaciduria (threonine and
serine) (Bernard 2008; Kobayashi et al. 2008). Moreover,

cadmium may potentiate diabetes-induced eVects on kidney
(Åkesson et al. 2005; Buchet et al. 1990; Chen et al. 2006).
For decades, it has been thought that nephrotoxicity was
mediated by the cadmium–MT complex, since the latter is
extremely toxic to the kidney after i.v. injection to experi-
mental animals (Nordberg et al. 1975). Nevertheless, more
recent Wndings have suggested that nephrotoxicity is due to
accumulation of inorganic cadmium, rather than metal–MT
complex (Klaassen et al. 2009).

It has been known since the 1950s that prolonged expo-
sure to high cadmium levels may give rise to bone disease,
Wrst reported from the Jinzu river basin in Japan. In the
decades leading up to World War II, Japanese mining oper-
ations contaminated the Jinzu River with cadmium and
traces of other toxic metals. The local agricultural popula-
tion consuming rice irrigated with the contaminated water
developed the so-called Itai-Itai disease, characterized by
multiple fractures and distortion of the long bones in the
skeleton, and by severe pain in the joints and spine (Järup
et al. 1998). The disease exhibits a mixed pattern of mainly
osteomalacia but also osteoporosis in combination with
kidney damage and anaemia. Bone demineralization begins
soon after cadmium exposure, well before the onset of kid-
ney injury. Cadmium exposure in conjunction with calcium
deWciency, pregnancy, and lactation are key aetiologic fac-
tors for Itai-Itai disease (Wang et al. 1994). Interestingly,
several studies have addressed a possible association
between long-term low-level environmental cadmium
exposure and osteoporosis (Bhattacharyya 2009). There is
evidence that low-level cadmium exposure has negative
eVects on bone mineral density, produces reactive changes
in calciotropic hormones and increases calciuria as a result
of increased bone resorption (Åkesson et al. 2006; Schutte
et al. 2008a). Cadmium alters calcium metabolism as it
reduces the normal activation of vitamin D in the kidney

Fig. 4 In the liver, Cd can bind to glutathione (GSH) and be excreted
through the bile or it may bind to metallothionein, thus forming a com-
plex (Cd-MT) that represents a form of metal accumulation. When the
Cd-MT complex is released in plasma, it can be eliminated with the

urine and reaches the renal tubule cells, where it is hydrolysed by the
lysosomes to MT and Cd2+. Metal ions can then be re-excreted into the
tubular Xuid
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and binds to the intestinal calcium-binding protein, thus
reducing calcium absorption from the gut and impairing
bone mineralization (Washko and Cousins 1977; Berglund
et al. 2000).

Urinary cadmium concentration has been associated
with myocardial infarction and with changes in some phys-
iological indicators of cardiovascular function, i.e. pulse
wave velocity, arterial pulse pressures and arterial compli-
ance and distensibility (Everett and Frithsen 2008; Schutte
et al. 2008b). The pathogenesis of these abnormalities is
unclear at present.

Cadmium in blood is widely used as biological indica-
tor of current exposure, while urinary concentration is usu-
ally measured to estimate chronic exposure risks.
Moreover, because of its half-life of several months, the
amount of cadmium accumulated in hair should better reX-
ect an average of integrated environmental exposure, than
does blood or urine. However, the possibility of exoge-
nous contamination has lead to substantial controversy
concerning the reliability of hair analysis as a measure of
the absorbed dose.

Based on data from several European studies (Buchet
et al. 1990; Hotz et al. 1999; Järup et al. 2000), a recent
European risk assessment report (EU RAR 2007) proposed
a LOAEL of 2 �g Cd/g creatinine. However, in an evalua-
tion of the risk assessment document, the EC ScientiWc
Committee on Toxicity, Ecotoxicity and the Environment
concluded that eVects may occur even at levels as low as
0.5 �g/g creatinine (EC 2004).

Although there is no proven beneWt, some clinicians rec-
ommend chelation therapy with CaNa2EDTA. The dose of
CaNa2EDTA is 75 mg/kg per day for 5 days. Alternatively,
therapy with dimercaprol and substituted dithiocarbamates
appears promising for individuals chronically exposed to
cadmium.

Mercury

Mercury is a non transition metal, like zinc and cadmium.
The symbol Hg derives from the latinized greek word
“hydrargyrum” (meaning water or liquid silver), since this
silvery metal is liquid at standard conditions of temperature
and pressure. Mercury is an extremely rare element in the
Earth’s crust, having an average crustal abundance by mass
of only 0.08 ppm. However, given its low tendency to
blend with other elements that constitute the majority of the
crustal mass, mercury ores can be extraordinarily concen-
trated, containing up to 2.5% of the metal. The most com-
mon mineral is cinnabar (HgS), which is highly toxic by
ingestion or inhalation of the dusts, and can be roasted to
oxide that decomposes at 500°C, releasing mercury
vapours by distillation.

Compared to other heavy metals, mercury has a peculiar
behaviour. In fact, it is monoatomic in vapour phase and,
already at 20°C, has a relatively high vapour pressure (1.3
10¡3 mm). It is highly soluble in both polar and non-polar
liquids, i.e. a saturated solution in disareated water at 25°C
contains 6.39 10¡7 g/L of the metal. Mercury is easily
released from diluted aqueous solutions and from solution
of Hg(II) salts, following its reduction caused by the pres-
ence of reducing agents or by dismutation.

Given its high volatility and extended lifetime, the gas-
eous phase of elemental mercury (Hg0) plays an important
role in the transport of the metal in the geoclimatic systems.
Mercury has a long (approx. 1 year) atmospheric residence
time. The natural sources of mercury emissions to the
atmosphere are represented mainly by volcanic emissions
and, to a lesser extend, by volatilization of the metal from
aquatic environments, re-emission from vegetation, degas-
sing from geological materials and release associated with
wind-blown dust (e.g. Lindqvist et al. 1991; Mason et al.
1994; Lamborg et al. 2002). Anthropogenic sources include
burning of fossil fuels (e.g., coal-Wred power plants), metal
mining and extraction, cement production and disposal of
products containing mercury (Pacyna et al. 2009). In fact,
mercury is used in several scientiWc and medical apparatus,
such as thermometers, barometers, manometers, Xoat
valves and sphygmomanometers, in dentistry (amalgam
material for dental restoration) and in electricity (Xuores-
cent lamp bulbs), plastic and paint industries (EPA 2009).

Vapours of atomic Hg and inorganic salts (HgO, HgS
and Hg2Cl2) may be responsible of human poisoning, but
the most toxic forms are organic compounds, such as meth-
ylmercury, ethylmercury and phenylmercury. Indeed, the
chemical form of mercury strongly aVects its route of expo-
sure and bioavailability, as well as the toxicity proWle
(Fig. 5) (Clarkson et al. 2003; Guzzi and La Porta 2008).

The vapours of elemental (metallic) mercury, being
highly liposoluble, are readily absorbed through the lungs
(80%) and easily distribute in tissues and organs. Acute
poisoning is characterized by damage to the liver, the kid-
ney and the nervous system. Organic compounds are rap-
idly absorbed through the skin, the gastrointestinal tract or
the lungs and, due to their high liposolubility, bioavailabil-
ity is extremely elevated (more than 80%). Methylmercury
binds (more than 90%) to erythrocytes and accumulates
mainly in liver and, to a lower extent, in kidney. Toxic
eVects of organic derivatives include anaemia, neurological
deWcits and alterations of embryonal and foetal develop-
ment. This latter eVect is of interest since all chemical
forms of mercury can cross the placenta. Inorganic salts
(e.g., HgCl2) are usually absorbed through the gastrointesti-
nal tract, but display a low bioavailability (5–10%) when
compared to organic compounds, and may produce inXam-
matory reactions in kidney or gastrointestinal apparatus.
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The general population is primarily exposed to mercury
vapour released from dental amalgams and to organic
(methyl) mercury from Wsh consumption (Clarkson et al.
2003; DHHS 2009). In fact, in natural aquatic systems,
anaerobic bacteria synthesize methylmercury from
inorganic mercury as a by-product of their life processes
(Ullrich et al. 2001). Methylmercury is then easily taken up
by aquatic plants and animals, reaching the top of the
aquatic food chain and, ultimately, humans. Other sources
of exposure include Thimerosal (ethyl mercury), a preser-
vative found in some vaccines (Bigham and Copes 2005),
and some Ayurvedic medicinal products (Saper et al.
2004). Exposure risks from other sources are conWned to
certain sectors, including occupationally exposed workers
and people using mercury-containing products.

Elimination of Hg0 is through urine (60%) and faeces
(40%, as Hg2+) and its half-life in the blood, similarly to
ionic mercury, is approximately 60 days. However, half-
life in brain tissue is much higher due to formation of com-
plexes with selenium that are biologically inactive. Organic
mercury is mainly (90%) eliminated through the bile, after
being complexed with glutathione and cysteine in the liver.
Almost half of methylmercury secreted in the bile is deme-
thylated to Hg0 and excreted as such. Depending on the
type of compounds, the half-life of organic mercury is
between 40 and 105 days (Clarkson et al. 2003; Brodkin
et al. 2007).

Mercury readily forms covalent bonds with sulphur
atoms, and this property underlies most of its biological and
toxicological actions. In particular, divalent mercury can
replace the hydrogen atom in sulphydryl groups to form
mercaptides, X-Hg-SR and Hg(SR)2, where X is an electro-
negative radical and R is a protein. This strong thiol bind-
ing capacity can cause depletion of cellular glutathione and
inactivation of enzymes, thus disregulating biological func-
tions regulated by sulphydryl compounds, including cellu-
lar metabolism, maintenance of intracellular redox balances
and cell signalling pathways (Guzzi and La Porta 2008; Vas
and Monestier 2008).

Acute toxicity is relatively rare and occurs after expo-
sure to inorganic mercury forms, as a consequence of

accidental contamination or suicide attempts. Acute expo-
sure to elemental mercury results in lung damage, charac-
terized by chest pain, dyspnea, cough, interstitial
pneumonitis and, ultimately, severe impairment of pulmo-
nary function (McFarland and Reigel 1978). Moreover,
mercury vapours may acutely induce profound central ner-
vous system eVects, including psychotic reactions charac-
terized by delirium, hallucinations and suicidal tendency.
Acute ingestion of inorganic ionic mercury (e.g., mercuric
chloride) can damage mucous membrane of the mouth,
pharynx and intestine. Haematochezia, hypovolemic shock
and death can occur in the absence of proper treatment.
However, the most serious and frequent systemic eVect of
inorganic salts of mercury is renal toxicity, characterized by
tubular necrosis leading to oliguria and anuria (Zalups
2000). Renal injury does also occur after long-term expo-
sure to inorganic mercury, where glomerular injury pre-
dominates, due to direct eVects on the glomerular basement
membrane and indirect eVects mediated by immune com-
plexes.

Prolonged exposure to Hg0 may induce damage to the
nervous system, since this liposoluble form easily crosses
the blood–brain barrier, reaches the brain where it is oxi-
dized to mercuric ions, and accumulates as Hg2+ in cortex
and cerebellum. Symptoms include axonal sensor motor
polyneuropathy, hallucinations and mercurial erythrism, a
syndrome characterized by excitability, loss of memory,
insomnia, extreme shyness and neurocognitive impairments
(Vroom and Greer 1972; WHO 1991).

The most common intoxications in humans derive from
ingestion of foods, primarily Wsh, contaminated with meth-
ylmercury. Being highly liposoluble, this organic com-
pound is almost completely absorbed through the
gastrointestinal tract and can easily cross the blood–brain
barrier and the placenta. Levels in the foetal brain are about
5–7 times that in maternal blood (Cernichiari et al. 1995),
although epidemiological studies on the developmental
neurotoxicology of methylmercury have led to controver-
sial results (see Guzzi and La Porta 2008). In adult, the
major toxic eVects of methylmercury are on the central
nervous system, where loss of neuronal cells may occur in

Fig. 5 Bioavailability of mercury and its compounds
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speciWc anatomical regions. Signs and symptoms include
paresthesia, cerebellar ataxia, dysarthria, constriction of the
visual Welds and loss of hearing (Bakir et al. 1973; Weiss
et al. 2002). The serious health consequences of methyl-
mercury exposure were dramatically manifested in 1953,
when an epidemic poisoning caused by consumption of
contaminated Wsh occurred in people leaving around Mina-
mata Bay, in Japan (Tsuda et al. 2009). Apart from many
deaths, symptoms due to methylmercury poisoning
included mental retardation, cerebral palsy, deafness, blind-
ness and dysarthria, especially in children exposed in utero.
However, it is important to underline that the general popu-
lation does not face signiWcant health risks from methyl-
mercury exposure with the exception of certain groups with
high Wsh consumption.

Exposure to elemental and inorganic forms of mercury
can be assessed by measuring mercury levels in either urine
or blood, although individuals with a past history of expo-
sure may have elevated levels of the metal in urine but not
in blood. The normal upper limit for excretion of mercury
in urine is 5 �g/l. By contrast, measurement of mercury in
whole blood is the preferred test for exposure to organic
mercury, since this form is primarily excreted in the faeces.
Mercury in hair may be used to estimate long-term expo-
sure, but potential contamination may make interpretation
diYcult. Thus, it is important to choose the appropriate test
depending on the suspected source of exposure (Baselt
1988; Brodkin et al. 2007).

Poisoning with either inorganic or elemental mercury is
routinely treated with dimercaprol (for high-level expo-
sures or symptomatic patients) or penicillamine (for low-
level exposures or asymptomatic patients). Although the
orally eVective chelator 2,3-dimercaptosuccinic acid
appears to be an eVective chelator for mercury, it has not
been approved by the FDA for this purpose (Baum 1999;
Risher and Amler 2005).

The short-chain organic mercurials, especially methyl-
mercury, are the most diYcult forms of mercury to mobi-
lize from the body, presumably because of their poor
reactivity with chelating agents. Since methylmercury
compounds undergo extensive enterohepatic recirculation,
the use of nonabsorbable mercury-binding substances into
the intestinal tract should facilitate their removal from the
body. A polythiol resin used for this purpose showed eVec-
tiveness in removing the metal and displayed fewer adverse
eVects than do sulphydryl agents (Bakir et al. 1980; Risher
and Amler 2005).

Arsenic

Arsenic is a notoriously poisonous metalloid with many
allotropic forms, including a yellow (molecular non-metallic)

and several black and grey forms (metalloids). The more
toxic form is yellow arsenic (As4), in which the four atoms
are arranged in a tetrahedral structure. This allotrope is the
least stable, most reactive, more volatile and less dense than
the other forms. It is produced by rapid cooling of arsenic
vapour with liquid nitrogen and it is rapidly transformed
into the grey allotrope by light.

Arsenic is a widely distributed environmental contami-
nant that can be found in soil, water and airborne particles
as the result of both natural and human activities (Järup
2003; Tchounwou et al. 2003, 2004). The two major indus-
trial processes that lead to arsenic contamination of the
environment are smelting of non-ferrous metals and pro-
duction of energy from fossil fuel, the former being the
largest single anthropogenic source of atmospheric pollu-
tion (Brooks 2008). Other sources of contamination include
the use of arsenic trioxide in the manufacture and use of
pesticides and wood preservatives (chromated copper arse-
nate). Moreover, arsenic is used in the glass manufacturing
as arsenic trioxide or as arsenic acid as a bubble dispersant
or decoloring agent. High-purity arsenic metal is used for
gallium arsenide and indium arsenide semiconductors used
in light-emitting diodes and solar cells. Thus, arsenic can be
found in discarded electronics, such as computers, televi-
sions, mobile phones, circuit boards, relays and switches
(Brooks 2008).

In the past, a number of arsenic compounds have been
used as drugs. Among these, arsphenamine was employed
to treat syphilis and trypanosomiasis, and arsenic trioxide
for various pathological conditions such as psoriasis and,
more recently, for cancer (Antman Karen 2001). In 2000,
the U.S. Food and Drug Administration approved arsenic
trioxide for the treatment of patients with acute promyelo-
cytic leukaemia that is resistant to all-trans retinoic acid
(Shen et al. 2001; Miller et al. 2002; Tallman 2007).

Inorganic arsenic is present in groundwater used for
drinking in several countries all over the world, as a result
of weathering of arsenic-containing minerals exposed by
natural processes or disturbed by mining or other anthropo-
genic activities (Brooks 2008). FDA’s standard of quality
for bottled water allows no more than 10 �g/l (FDA 2007).
Moreover, organic arsenic compounds (such as arsenobe-
taine) are primarily found in Wsh, which thus may give rise
to human exposure (Järup 2003).

Toxicity of arsenic is strongly related to its chemical
form: elemental arsenic, inorganic [e.g., arsenic oxide,
As2O3; orpiment, As2S3; realgar, As4S4; arsenic acid,
H3AsO4; arsine, AsH3; calcium arsenate, Ca3(AsO4)2; lead
hydrogen arsenate, PbHAsO4; gallium arsenide, GaAs] and
organic compounds [e.g., trimethylarsine, (CH3)3As; arsen-
obetaine, C5H11AsO2]. Inorganic As such as the pentava-
lent form arsenate (As5+), and the trivalent form arsenite
(As3+) are the most aggressive single substance toxicants.
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Epidemiological studies have highlighted that arsenite is
more toxic than arsenate with regard to cancer risk (Lerman
et al. 1983; Bertolero et al. 1987). This may be due to a bet-
ter cellular uptake and accumulation of the trivalent form,
when compared to the pentavalent form.

Nowadays, acute intoxication rarely occurs in western
Europe countries, being usually the result of intentional
(suicide or homicide) or accidental poisoning, or caused by
occupational exposure to arsine gas (Vahidnia et al. 2007).
Acute toxicity of arsenic is related to its chemical form and
oxidation state. In general, acute toxicity of trivalent
arsenic is greater than pentavalent form and, although
methylation has been considered a detoxiWcation reaction
for many years, more recently several studies have demon-
strated that some organic forms may be even more toxic
than arsenite (Styblo et al. 2000; Petrick et al. 2001).
Symptoms of severe acute arsenic toxicity include gastroin-
testinal discomfort, vomiting, diarrhoea, bloody urine,
anuria, shock, convulsions, coma and eventually death
(Hughes 2002).

Chronic exposure to arsenic may aVect several systems
within the body, including the cardiovascular, nervous and
endocrine systems (Hughes 2002; Vahidnia et al. 2007;
Iavicoli et al. 2009). One of the hallmarks of chronic toxic-
ity in humans from oral exposure to arsenic is skin lesions,
which are characterized by hypo- or hyper-pigmentation
and hyperkeratosis (Yeh et al. 1968; Cebrián et al. 1983).
Blackfoot disease, a vasoocclusive disease that leads to
gangrene of the extremities, has also been observed in indi-
viduals chronically exposed to arsenic in their drinking
water (Tseng 2005). Other eVects of chronic exposure
include peripheral neuropathy, encephalopathy, hepato-
megaly, cirrhosis, altered haeme metabolism, bone marrow
depression, diabetes, proximal tubule degeneration, papil-
lary and cortical necrosis. Moreover, prolonged exposure
has been linked to cancer of the skin, bladder, liver and
lungs (ATSDR 2007). Indeed, inorganic arsenic is classi-
Wed by the International Agency for Research on Cancer
(IARC 1987, 2004) and by the U.S. Environmental Protec-
tion Agency (EPA 1999) as a known human carcinogen.

General population exposure to arsenic is mainly via
intake of food and drinking water, and absorption mainly
takes place in the small intestine. However, a minimal
absorption may also occur from skin contact and inhalation
of airborne particles (Enterline et al. 1987; Hertz-Picciotto
and Smith 1993; Centeno et al. 2002). Hydrosoluble arse-
nite and arsenate compounds are more easily absorbed than
the less soluble oxides. After absorption, arsenic accumu-
lates mainly in the liver, but also in kidney, heart, lung and,
to a lesser extent, in muscle and neural tissue. Given its
high aYnity for sulphydryl groups, arsenic strongly inter-
acts with keratin of hair and nails; whereas, its chemical
similarity with phosphorus facilitates its deposition in bone

and teeth, where it is retained for long periods. Moreover,
arsenic readily crosses the placenta, and foetal damage has
been reported.

Inorganic arsenic is metabolized to organic compounds,
mainly represented by methylated metabolites that are rap-
idly excreted through the urine. Bioavailability and toxicity
of arsenic strongly depends on its chemical forms and oxi-
dation state, thus, chemical speciation analysis in biological
samples (e.g., urine, Wngernails and hair) is crucial to evalu-
ate exposure and potential health risks (Styblo et al. 2000;
Mandal et al. 2004).

Methylated arsenic metabolites are produced in the liver
by conjugation reactions catalysed by methyltransferases
that use S-adenosylmethionine as methyl donor (Aposhian
and Aposhian 2006; Cohen et al. 2006). These arsenic
metabolites include pentavalent or trivalent monomethy-
lated (MMA) and dimethylated (DMA) compounds. Since
methylated species are excreted much faster than inorganic
forms, methylation is considered a part of the detoxiWcation
program. However, organic arsenic compounds may have
deleterious eVects on diVerent human cell types, with the
methylated trivalent arsenicals signiWcantly more toxic than
their pentavalent counterparts (Petrick et al. 2000; Styblo
et al. 2000; Thomas et al. 2001). This is of interest since, in
the liver, methylation is followed by reduction of pentava-
lent arsenate to trivalent arsenite, via a reaction that
involves glutathione and other thiols (Buchet and Lauwerys
1988).

Arsenic metabolites exert their toxicity by inactivating
many enzymes, especially those involved in the production
of energy by the cell and in DNA synthesis and repair. In
particular, inorganic and organic compounds of trivalent
arsenic may interact with thiol groups of proteins and
enzymes in their reduced state, thus inhibiting their func-
tion (Aposhian et al. 2004; Vahidnia et al. 2007). By this
mechanism, arsenic may disrupt several processes impli-
cated in cell metabolism. Inhibition of pyruvate dehydroge-
nase (PDH), the enzyme crucially involved in Acetyl-CoA
production, leads to disruption of the energetic cellular
homeostasis (Aposhian and Aposhian 2006) and to the
release of apoptosis-inducing factor (AIF) resulting in cell
damage and death (Akay et al. 2004). PDH is particularly
sensitive to trivalent arsenicals because of their interaction
with two sulphydril groups of lipoic acid to form a stable
six-membered ring.

Pentavalent arsenic is substituted for phosphorus in
many biochemical reactions. In fact, given their chemical
similarity, AsO4

3¡ may replace PO4
3¡ in a number of bio-

logical compounds, including ATP. Being arsenate anion
less stable than phosphate, a rapid hydrolysis of high-
energy bonds in compound such as ATP may occur. At the
level of the citric acid cycle, arsenic inhibits succinate
dehydrogenase and, by competing with phosphate, it
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uncouples oxidative phosphorylation, thus inhibiting reduc-
tion of NAD, mitochondrial respiration and ATP produc-
tion. This causes loss of high-energy phosphate bonds and
eVectively uncouples oxidative phosphorylation, by a
mechanism termed arsenolysis (Saha et al. 1999; Hughes
2002) (Fig. 6).

Several mechanisms have been proposed to explain
arsenic carcinogenicity (Salnikow and Zhitkovich 2008).
Inorganic arsenic has been shown to induce chromosomal
aberrations in a number of cell types, and arsenite is more
potent than arsenate in producing this eVect. Moreover,
both inorganic and organic arsenicals are genotoxic either
in vitro or in vivo (Hughes 2002). Inhibition of enzymes
implicated in DNA repair, such as poly-(ADP-ribose)poly-
merase, has also been suggested to contribute to the carcin-
ogenic eVects of arsenic compounds (Yager and Wiencke
1997). Other mechanisms include alteration of DNA meth-
ylation, oxidative stress, increased cell proliferation, co-
carcinogenesis and tumour promotion (Hughes 2002).

The concentration of arsenic (and/or its metabolites) in
blood, urine, hair or nails is considered a biomarker of
exposure (Mandal et al. 2004; Vahidnia et al. 2007).
Assessment of arsenic content in hair and nails can be a
useful indicator of past arsenic exposure, if care is taken to
avoid exogenous contamination. By contrast, speciation of
metabolites in the urine is generally the best estimate of
recent exposure. Since consumption of certain seafood may
confound estimation of inorganic arsenic exposure, it
should be avoided before urine sampling.

For the treatment of acute arsenic poisoning, in addition
to routine measures aimed at preventing further absorption
of the poison (e.g., gastric lavage, activated charcoal), the
primary concern is to correct dehydration in order to avoid
fatal hypovolemic shock. Dimercaprol and D-penicillamine
have been used with successful results, although neurologi-
cal complications, occurring as late eVects of acute poison-
ing, are often non-responsive to chelation (Vahidnia et al.
2007). After long-term exposure to arsenic, treatment with
dimercaprol and D-penicillamine may also be used,
although administration of oral penicillamine alone is
usually suYcient.

Chromium

Chromium is the 21st most abundant element in the Earth
crust, with an average concentration of 100 ppm (Emsley
2001). Several compounds of this transition metal are
found in the environment, due to erosion of chromium-con-
taining rocks and volcanic eruptions, and may be found in
soil, sea water, rivers and lakes (Kotam and Stasicka 2000).
In most cases, trivalent chromium is the dominating spe-
cies, although in some geographical areas ground water
may contain higher amounts of the hexavalent form (Kotam

and Stasicka 2000).
Chromium and its compounds have a long history of

industrial uses in the manufacture of a large number of
products. Given the strengthening eVect of forming stable
metal carbides at the grain boundaries and the strong
increase in corrosion resistance, chromium is an important
alloying material for steel. Thus, chromium is used in stain-
less steel (widely used for cookware and cutlery) and in
nickel superalloys for jet engines and gas turbines. Other
uses include surface coating by electroplating techniques
and anodizing of aluminium. Chromate and chromium(III)
oxide are widely employed as pigments for metal, glass and
synthetic rubies. Moreover, chromium is used in the preser-
vation of wood, in the tanning of leather, for the production
of high temperature refractory materials and as catalyst. In
addition to occupational exposure of industrial workers,
environmental exposure impacts a high number of people
drinking chromium-containing water, residing in the vicin-
ity of industrial sites (Zhitkovich 2002; OSHA 2006).

Chromium is probably the most controversial of the tran-
sition metal ions in term of its biological activities (Cronin
Joseph 2004). Chromium speciation has attracted a great
deal of attention, since its chemical species may display
diVerential toxicity. In its most stable oxidation state, Cr3+,
it cannot usually cross cell membranes and its toxicity is
considered relatively low (De Flora et al. 1990; IARC
1990). Moreover, Cr3+ is regarded by many nutritionists as
an essential micronutrient for humans, because of its role in
glucose and lipid metabolism. Nevertheless, recent data
suggest that the potential genotoxic side eVects of Cr3+

complexes may outweigh their possible beneWts as insulin
enhancers, and that recommendation for their use as either
nutritional supplements or antidiabetic drugs need to be
reconsidered (Levina and Lay 2008). In its higher oxidation
state (VI), chromium is transported into the cell through
anion channels as chromate (CrO4

2¡) (De Flora and Wet-
terhahn 1989), and can be reduced by several intracellular
systems (such as glutathione, ascorbate, tocopherols and
diVerent enzyme cofactors) to generate stable Cr3+ or unsta-
ble Cr(IV) and Cr(V) intermediates, all of which are capa-
ble of forming complexes with proteins and DNA and
generating oxidative stress (Bagchi et al. 2002; Wise et al.

Fig. 6 Arsenolysis
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2002; Levina and Lay 2005; Zhitkovich 2005). Moreover,
Cr(VI) induces cytotoxicity and genotoxicity via a variety
of mechanisms and is a well-established human carcinogen
and a very common occupational hazard (IARC 1990;
Levina et al. 2003; Stallings and Vincent 2006) (Fig. 7).

In occupational settings, Cr(VI) exposure mainly occurs
through inhalation and may be an important cause of lung
cancer (ATSDR 2000). Moreover, chromium compounds
may be readily absorbed through the skin and the gastrointes-
tinal tract. This is of interest, since relatively high concentra-
tions of Cr3+ may be found in food, such as egg yolk, brewer’s
yeast, liver, beef, cheese, wine, wholemeal, rye, potatoes and
oysters (Kumpulainen 1992; Roussel et al. 2007).

In addition to lung cancer, toxicity due to chromium
salts includes hand ulcers, dermatitis, perforation of the
nasal septum. Ingestion of hexavalent chromium (chromate
or dichromate salts) causes ulceration of the bowel, diar-
rhoea, and renal and hepatic damage, and there is also evi-
dence of toxicity of hexavalent chromium after cutaneous
absorption (see Costa 1997; Katz and Salem 1993).

Evaluation of environmental exposure can be deter-
mined by assessing chromium content in urine, plasma,
red and white blood cells and, as more recently suggested,
in exhaled breath condensate (Coogan et al. 1991;
Paustenbach et al. 1997; Goldoni et al. 2006).

Nickel

Nickel is a transition metal, hard and ductile and is one of
the Wve ferromagnetic elements. There is evidence suggest-
ing that it may be an essential trace element for mammals.
However, although nickel is present at a concentration of
approximately 0.5 nM in the human bloodstream, neither
the source of nickel requirement nor a single nickel-depen-
dent enzyme has been detected so far in mammals (Denk-
haus and Salnikow 2002; Ragsdale 2009). By contrast, the
presence of nickel is essential for eight enzymes (glyoxy-
lase I, aciductone dioxygenase, nickel superoxide dismu-
tase, urease, NiFe hydrogenase, CO dehydrogenase,
Acetyl-CoA synthase and methyl-CoM reductase), most of
which involve the use and the production of gases that play
important roles in the global biological carbon, nitrogen
and oxygen cycles (Ragsdale 2009).

In the environment, nickel is primarily found in the form
of oxides or sulphides that occur in the earth’s crust, or
combined with other elements in soils, meteorites and vol-
canoes. In modern industry, it is used to form alloys with
other metals. Approximately 65% of nickel used in western
countries is employed to produce stainless steel, and 12%
to produce superalloys. Other uses of nickel include the
manufacturing of rechargeable batteries, coins, jewellery,

Fig. 7 Pathways involved in Cr metabolism in erythrocytes (bottom)
and induction of DNA damage by Cr(VI) (top). Cr(III) is poorly
absorbed by cells, while Cr(VI) is brought into the cell via sulphate

anion channels. Once in the cell, Cr(VI) is reduced to Cr(III)—a muta-
genic form of Cr (adapted from O’Brien et al. 2003)
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electric guitar strings, catalysts for production of carbon
nanoparticles. It is also used for plating and as a green tint
in glass.

The toxicity of nickel is dependent on the route of expo-
sure and on the solubility of its compounds. Inhalation is
the primary route of human exposure to nickel and may be
the cause of acute respiratory symptoms, ranging from mild
pulmonary irritation and inXammation to bronchitis, pul-
monary Wbrosis, asthma and pulmonary oedema (Morgan
and Usher 1994). Nickel may be absorbed as the soluble
ion Ni2+, while sparingly soluble compounds may be
phagocytized. The mucociliary system removes nickel from
the respiratory tract resulting in the material entering the
gastrointestinal tract. Although gastrointestinal absorption
of nickel is poor (1–10%), ingestion of contaminated food
and drinking water provides most of the intake of nickel
(EPA 1986; Das et al. 2008). The metal is poorly absorbed
through the skin, but some compounds such as nickel chlo-
ride or sulphate can penetrate occluded skin resulting in up
to 77% absorption within 24 h (ATSDR 1988).

Following absorption, nickel is excreted in the urine. In
humans most ingested nickel is not absorbed through the
gastrointestinal tract and is therefore eliminated in the fae-
ces.

In addition to respiratory symptoms, nickel exposure
may cause cardiovascular and kidney disease, as well as
allergic dermatitis. However, the most serious concern is
represented by its carcinogenetic activity, since Ni2+ com-
pounds are classiWed as human carcinogens (Group 1) and
metallic nickel as possibly carcinogenic to humans (Group
2B) by the International Agency for Research on Cancer
(IARC 1990), that most likely occurs through non-geno-
toxic mechanisms induced by Ni2+ (Salnikow and Zhitko-
vich 2008). In general, water-soluble Ni2+ compounds
display lower toxicity and carcinogenic potential when
compared to semisoluble compounds, such as nickel sub-
sulphide Ni3S2 (Kasprzak et al. 2003).

The most frequent health eVect of nickel in humans is an
allergic skin reaction that develops in subjects sensitive to
the metal. In fact, nickel is among the most common causes
of immediate and delayed hypersensitivity observed in
occupationally exposed workers and in the general popula-
tion. In this regard, nickel is not only an allergen, but also a
potential immunomodulatory and immunotoxic agent (Das
et al. 2008).

Chelating agents for the treatment of metal 
intoxications

In order to prevent the deleterious eVects of metals, it is
crucial to promote their elimination and inactivation. If the
therapeutic intervention occurs immediately after the

toxicant ingestion, it is possible to limit its absorption by
performing a gastric lavage. Alternatively, various human
metal intoxications can be eYciently treated by administra-
tion of a chelating agent.

Chelators are chemical compounds able to bind the
metal with a higher aYnity when compared to endogenous
ions, and to form a hydrophilic complex that can be easily
eliminated. Successful chelation of the toxic metal depends
on the nature and properties of the metal and of the chelator
(e.g., ionic diameter, ring size and deformability, hardness/
softness of electron donors and acceptors), but also on
organism-related factors (e.g., route of administration, bio-
availability, metabolism, organ and intra/extracellular com-
partmentalization, excretion) (Andersen and Aaseth 2002).

A good chelating agent should have the following prop-
erties:

– capacity of irreversibly bind the toxic metal (chemical
aYnity for the toxic metal should be higher than the aYn-
ity of the metal for the sensitive biological molecules);

– low aYnity for essential metals (EDTA, for example,
can bind essential metals thus producing toxicity due to
their depletion. To overcome this limitation, EDTA is
usually administered as a complex with the essential
metals for which it displays aYnity, e.g. CaNa-EDTA);

– low toxicity of the chelator itself and of the complex it
forms with the metal (this is not always achieved, since
most chelating agents produce toxic eVects. For exam-
ple, CaNa-EDTA is nephrotoxic, penicillamine causes
acute allergy-like reactions, dimercaprol induces tachy-
cardia and nausea);

– eVectiveness after oral administration;
– limited metabolic transformation of the chelating agent

and of the chelate;
– accessibility of the adduct to urine and bile to allow rapid

elimination of the metal;
– stability of the chelator-metal complex at the physiologi-

cal (and urinary) pH

The main chelating agents used to treat metal intoxications
are dimercaprol, ethylene diamine tetraacetic acid (EDTA),
dimercaptosuccinic acid (DMSA) and dimercaptopropionic
sulphonate (DMPS), D-penicillamine and deferoxamine.

Dimercaprol (2,3-dimercaptopropanol), also known as
British anti-Lewisite (BAL), was developed by British bio-
chemists during the Second World War as an antidote for
dicholorovinyl arsine (Lewisite) the now-obsolete Arsenic-
based chemical warfare agent (Peters et al. 1945).

BAL is a dithiol chelating agent, with high aYnity for
the “sulphur-seeking” metals, such as mercury and arsenic.
BAL forms heterocyclic ring complexes with some heavy
metals, preventing or reversing the binding of metallic cat-
ions to body ligands, such as the essential sulphydryl-con-
taining enzymes.
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Major drawbacks for the clinical use of BAL include the
following: its low therapeutic index; its tendency to redis-
tribute arsenic and mercury to brain and testes; the need for
(painful) intramuscular injection and its unpleasant odour.
Toxic eVects of BAL include nausea, vomiting, abdominal
pain, high fever, hypertension, tachycardia, thrombocyto-
paenia and nephrotoxicity (Mückter et al. 1997). Adminis-
tration of the glucoside derivative (BAL-glucoside) allows
intravenous injection of the chelator and results in dimin-
ished toxicity due to the increased polarity of the molecule
(Danielli et al. 1947).

BAL is used as an antidote for arsenic, mercury and lead
(in conjunction with EDTA), but evidence suggests its
eVectiveness also in the treatment of antimony, bismuth,
chromium, mercury, gold and nickel poisoning. It is not
indicated for the treatment of iron, cadmium, selenium, sil-
ver and uranium poisoning, since the complexes it forms
with these elements are more toxic, especially to the kid-
neys, than the metal alone.

Because it is a lipophilic drug, dimercaprol penetrates
rapidly the intracellular space. The highest concentrations
are found in the liver, kidneys, brain and small intestine.
Biological half-life is short and metabolic degradation and
renal excretion are complete within 6–24 h. The dimercap-
rol–metal complexes dissociate rapidly in the body, espe-
cially in an acid internal medium; thus, alkalinization of the
urine may prevent this dissociation and protect the kidneys
from metal and BAL nephrotoxicity.

The breakthrough in the development of chelation ther-
apy came after the introduction of EDTA, initially used to
treat lead intoxication. EDTA is a synthetic amino acid that
can form complexes with several metals, such as chro-
mium, iron, mercury, copper, lead, zinc, aluminium, man-
ganese, calcium and magnesium.

Chelation of iron and copper occurs when they are not
included in enzymatic complexes or transport systems,
namely only when they are in an unbound (free) state, thus
providing a very selective mechanism of action. However,
the value of EDTA as a clinical chelating agent was
reduced by the need for slow intravenous administration,
low intestinal uptake, exclusive extracellular action and
high stability constants with essential metals (e.g., zinc;
Powell et al. 1999). Moreover, the major toxic eVect of this
chelator occurs on the renal system with necrosis and
hydropic degeneration of tubular cells.

EDTA is administered as CaNa2EDTA by slow endove-
nous infusion (lasting not less than 3 h). It has a very short
half-life (45 min to 1 h) and is eliminated in its metal-com-
plexed form by the kidney (95%) and the liver (5%).

The eVectiveness of DMSA and DMPS against arsenic
and lead poisoning was demonstrated in the early eighties.
When compared to BAL, these newer chelating agents
show several advantages, such as a signiWcantly lower

toxicity and eVectiveness after oral or intravenous adminis-
tration (Kalia and Flora 2005). DMSA and DMPS are
eYcient antidotes for intoxications with several divalent
metals besides lead and mercury, as well as some organo-
metal or metalloid compounds (Andersen 1999; Aposhian
et al. 1995). Adverse reactions during treatment with these
chelators include gastrointestinal discomfort, skin reac-
tions, mild neutropaenia and elevated liver enzymes.

Penicillamine (3,3-dimethylcysteine) is used as D-form
since L-penicillamine is toxic (it inhibits the action of pyri-
doxine). D-Pencillamine chelates mercury, lead, copper and
iron to form stable and hydrosoluble complexes that are
excreted by the urine. This chelator is also used to treat cys-
tinuria, since it binds with cysteine to yield a mixed disul-
phide which is more soluble than cystine, thus avoiding
formation of cystine stones.

D-Penicillamine is absorbed through the gastrointestinal
tract and therefore can be administered orally. The
improvement of metal intoxication symptoms is usually
observed after some weeks of treatment. The major toxic
eVect of penicillamine is antagonising pyridoxine and
inhibiting pyridoxine-dependent enzymes, such as transam-
inases. Other adverse eVects include glomerulonephritis
and hypersensitive allergic reactions such as fever, skin
rashes, leucopaenia and thrombocytopaenia (Shannon et al.
1988). In the elderly, the risk of haematologic and renal
toxicity is increased. Toxicity of D-penicillamine can be
potentiated by association with phenylbutazone.

Deferoxamine is used in severe, acute iron poisoning to
facilitate the removal of the metal from the body (Henretig
et al. 1983; Mann et al. 1989; Cheney et al. 1995). It is usu-
ally associated with standard treatment measures such as
induction of emesis, gastric lavage, whole bowel irrigation,
clinical control of shock and correction of acidosis.

Acute iron poisoning usually follows a biphasic course:
within the Wrst 30 min and up to several hours vomiting
occurs, followed, 6–12 h later, by abdominal pain, diar-
rhoea, and eventually lethargy, hyperglycaemia and fever.
More severe complications may occur after weeks or
months after the acute episode.

Deferoxamine displays high aYnity for the ferric form
(Fe3+) of the metal that speciWcally chelates ferritin, hemo-
siderin and, to a lower degree, transferrin. By contrast,
deferoxamine does not seem to chelate iron ions included in
the molecules of haemoglobin, myoglobin and cyto-
chromes. Deferoxamine displays low aYnity for Fe2+ and a
very low aYnity for Ca2+. The complex formed with Fe3+

(ferrioxamine) is very stable and hydrosoluble and is elimi-
nated by renal excretion.

This chelator has to be administered by parenteral route,
since gastrointestinal absorption is low.

In acute iron poisoning, the drug is administered by
intravenous infusion at doses between 15 and 90 mg/kg
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every 8 h. Administration by intramuscular injections
(90 mg up to 1 g/kg) can also be performed, including sub-
cutaneous infusions (20–40 mg/kg for 8–24 h) for chronic
intoxications. Whichever route is chosen, the daily dose
should not exceed 6 g. After treatment, the patient should
be monitored to prevent shock (24 h later) and gastrointesti-
nal complications (2 weeks later).

Deferoxamine can also be used to treat patients exposed
to aluminium intoxications, including those maintained
with haemodialysis. The main side eVects include urticaria,
skin rash, hypotension, respiratory distress syndrome, audi-
tory and ocular toxicity.

Conclusions

Metal intoxications represent a real health problem in most
industrialized countries. The chemical properties of metals
and of their compounds strongly aVect their toxico-kinetic
(e.g., absorption, distribution and excretion) and toxico-
dynamic properties. Despite numerous studies have
attempted to elucidate the mechanisms implicated in their
toxicity, further studies are still needed in order to improve
pharmacological treatment. Indeed, chelating agents are the
only drugs nowadays available to limit metal toxicity, and
their use is often limited by their lack of selectivity, making
it urgent to identify novel chemical compounds that allow
to speciWcally remove the toxic metal from the body with-
out aVecting physiological ionic homeostasis.
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