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Abstract. Continuous monitoring of atmospheric humid-
ity profiles is important for many applications, e.g., assess-
ment of atmospheric stability and cloud formation. Nowa-
days there are a wide variety of ground-based sensors for at-
mospheric humidity profiling. Unfortunately there is no sin-
gle instrument able to provide a measurement with complete
vertical coverage, high vertical and temporal resolution and
good performance under all weather conditions, simultane-
ously. For example, Raman lidar (RL) measurements can
provide water vapor with a high vertical resolution, albeit
with limited vertical coverage, due to sunlight contamination
and the presence of clouds. Microwave radiometers (MWRs)
receive water vapor information throughout the troposphere,
though their vertical resolution is poor. In this work, we
present an MWR and RL system synergy, which aims to
overcome the specific sensor limitations. The retrieval algo-
rithm combining these two instruments is an optimal estima-
tion method (OEM), which allows for an uncertainty analysis
of the retrieved profiles. The OEM combines measurements
and a priori information, taking the uncertainty of both into
account. The measurement vector consists of a set of MWR
brightness temperatures and RL water vapor profiles. The
method is applied to a 2-month field campaign around Jülich
(Germany), focusing on clear sky periods. Different experi-
ments are performed to analyze the improvements achieved
via the synergy compared to the individual retrievals. When
applying the combined retrieval, on average the theoretically
determined absolute humidity uncertainty is reduced above
the last usable lidar range by a factor of ∼ 2 with respect to
the case where only RL measurements are used. The analysis
in terms of degrees of freedom per signal reveal that most in-
formation is gained above the usable lidar range, especially

important during daytime when the lidar vertical coverage is
limited. The retrieved profiles are further evaluated using ra-
diosounding and Global Position Satellite (GPS) water vapor
measurements. In general, the benefit of the sensor combina-
tion is especially strong in regions where Raman lidar data
are not available (i.e., blind regions, regions characterized
by low signal-to-noise ratio), whereas if both instruments
are available, RL dominates the retrieval. In the future, the
method will be extended to cloudy conditions, when the im-
pact of the MWR becomes stronger.

1 Introduction

Highly resolved, accurate and continuous measurements of
water vapor are required for a deeper understanding of many
atmospheric phenomena (Stevens and Bony, 2013). Specifi-
cally, processes on short timescales such as convection, cloud
formation or boundary layer turbulence are challenging due
to their high associated water vapor variability, which is dif-
ficult to capture with one instrument alone (Steinke et al.,
2015). In order to overcome this limitation, the scientific
community has started merging different data from several
instruments in the last 15 years.

Some examples of ground-based synergies have been pro-
posed by Stankov (1998), Löhnert et al. (2004), Furumoto
et al. (2003) or Bianco et al. (2005) and Delanoe and Hogan
(2008) for satellite applications. In the present paper, the
synergy between ground-based Raman lidar (RL) and mi-
crowave radiometer (MWR) instruments is described. Both
instruments present some advantages and disadvantages and,
by bringing them together in an optimal and new retrieval al-
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gorithm, it is possible to overcome some of the disadvantages
of the single devices and enhance their benefits.

Water vapor RL systems provide humidity profiles with
high vertical resolution. For this reason, such lidars have be-
come a powerful tool in active ground-based observations
over recent years. New retrieval algorithms optimally ex-
ploiting the information content have been developed (Sica
and Haefele, 2015; Povey et al., 2014; Sica and Haefele,
2016). However, the RL techniques alone show some draw-
backs, which hinder the operational application. For exam-
ple, ground-based RL cannot provide information above and
within optically thick clouds, as the radiation emitted by the
lidar is severely attenuated once the laser beam reaches a liq-
uid layer within the cloud. Moreover, daytime measurements
are affected by solar background radiation, which strongly
reduces the vertical extent of the profile. The continuous and
effective detection of the weak Raman signals demands a ro-
bust and stable alignment of the receiving system. Daytime
operation requires the use of powerful lasers whose continu-
ous operation though possible, is technically demanding (Di-
noev et al., 2013; Brocard et al., 2013). Additionally, RL
needs to be regularly calibrated. This calibration is usually
performed based on the use of radiosounding data, which
presents some caveats. First, the balloon might measure a dif-
ferent air volume due to its drift. Second, it implies rather
high costs, both instrumental as well as human resources.
The calibration of the lidar is a key point that still stimu-
lates new solutions (Foth et al., 2015). In addition, lidar data
from the lowest atmospheric layers typically cannot be used,
due to the presence of a blind region (or zero overlap region
(ZOR)) associated with the overlap function (OVF) of the
RL.

The MWR allows automated continuous data acquisition
and is a robust operational instrument (Rose et al., 2005),
measuring unattended in a 24/7 mode. Brightness tempera-
ture measurements at different frequencies allow the deter-
mination of humidity and temperature profiles. In contrast to
RL, the instrument offers a limited vertical resolution in the
retrieved atmospheric profiles, especially in the higher layers
of the atmosphere (i.e., above an altitude of 1 km) (Löhnert
et al., 2007), but performs best for measurements close to the
ground, where the lidar data are missing. The MWR also pro-
vides accurate integrated quantities such as integrated water
vapor (IWV) or liquid water path (LWP) (Crewell and Löhn-
ert, 2003; Löhnert and Crewell, 2003). The calibration of this
instrument is performed with internal and external references
with known temperature (hot load–cold load) or by observ-
ing the atmosphere under different elevation angles (i.e., sky
tipping) (Maschwitz et al., 2013). An advantage of the MWR
is its capability of measuring in almost all weather conditions
(also cloudy cases) except for rainy scenarios, where the re-
ceived signal must be discarded in most of the cases.

A method to combine RL and MWR was already proposed
by Han et al. (1997), where the authors developed a two-stage
algorithm to derive atmospheric water vapor profiles. In the

first stage, a Kalman filtering algorithm was applied using
surface in situ and RL measurements. In the second stage,
a statistical inversion technique was applied to combine the
Kalman retrieval (used as prior information, not as observa-
tions) with the integrated water vapor of a two-channel MWR
and climatological data. Their method showed that the syn-
ergy of these two sensors compensates for the individual sen-
sors’ drawbacks. A continuation of this work was carried out
by Schneebeli (2009) who, still following the Kalman filter
two-stage configuration, extends this approach to also tem-
perature profiles.

The method described in this document is a new approach
based on an optimal estimation method (OEM), an iterative
optimal and physically consistent method that allows uncer-
tainty assessment and provides the most probable estimated
atmospheric state together with its uncertainty description.
The aim of this study is to combine the information provided
by the two instruments in an OEM to retrieve atmospheric
water vapor profiles. Note that this flexible framework al-
lows the retrieval of temperature once corresponding RL and
MWR data are available. The method was applied to the 2-
month dataset collected during HOPE (HD(CP)2 Observa-
tional Prototype Experiment), where a multitude of ground-
based remote sensing instruments for the investigation of
boundary layer and cloud processes were operated (Steinke
et al., 2015; Behrendt et al., 2015; Foth et al., 2015). Here
we focus on clear sky cases and absolute humidity profiles.
A description of the method is presented in Sect. 3. Sec-
tion 4 describes the results when the OEM is applied to a
case study, whereas Sect. 5 evaluates the OEM when applied
to the 2-month period of HOPE. Finally, Sect. 6 summarizes
the results and provides an outlook.

2 Observations: HOPE

In this study we make use of the data collected during HOPE
(HD(CP)2 Observational Prototype Experiment), which was
a major field campaign in North Rhine-Westphalia, Germany,
from April to June 2013. One main goal of HOPE was to pro-
vide information on subgrid variability (i.e., of water vapor)
and microphysical properties on scales smaller than 1 km,
which corresponds to the horizontal resolution of state-of-
the-art operational mesoscale models. During the measure-
ment period, three supersites were operating that were dis-
tributed within the 5–10 km surroundings of Forschungszen-
trum Jülich, Germany (50.905, 6.411944). Each supersite
was composed of a rich variety of remote sensing instruments
such as cloud radar, lidar and microwave radiometer instru-
ments. A large set of more than 200 radiosondes (RSs) was
launched only 4 km away from the JOYCE (Jülich Observa-
torY for Cloud Evolution) site and at least twice a day.

At the permanent supersite JOYCE (Löhnert et al., 2014),
measurements by the University of Basilicata Raman lidar
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system (BASIL) and an MWR were carried out, and auxiliary
data from other instruments are available.

2.1 BASIL

The Raman lidar system BASIL (Di Girolamo et al., 2009;
Di Girolamo et al., 2012) is an active instrument detecting
the elastic and Raman backscattered radiation from atmo-
spheric constituents. BASIL includes a Nd:YAG laser emit-
ting pulses at its fundamental wavelength, and its second and
third harmonics: 355, 532 and 1064 nm, respectively, at a rep-
etition rate of 20 Hz. For the purpose of water vapor profil-
ing, Raman scattering of the 355 nm beam is used because
of the higher cross section with respect to other wavelengths.
The average power emitted at 355 nm is 10 W. Nevertheless,
other transmitting wavelengths could also be used for water
vapor detection, as reported by Althausen et al. (2000). The
receiver is built around a larger telescope in Newtonian con-
figuration (45 cm diameter primary mirror) and two smaller
telescopes (5 mm diameter lenses). The larger telescope is
primarily dedicated to the collection of the Raman signals,
i.e., the water vapor and molecular nitrogen roto-vibrational
Raman signals, at 407.5 and 386.7 nm, respectively, which
are used to estimate the water vapor mixing ratio profiles.

Signal selection is performed by means of narrowband
interference filters, whose specifications were reported in
Di Girolamo et al. (2004) and Di Girolamo et al. (2009).
Sampling of the Raman signals is performed by means of
transient recorders with double-signal acquisition mode (i.e.,
both analog, A/D conversion and digital, photon counting).
Depending on the application, water vapor mixing ratio pro-
files can be derived with different vertical and temporal res-
olutions. These two parameters can be traded off to improve
measurement precision. For the purposes of this study, the
lidar products are characterized by a vertical resolution of
30 m and a temporal resolution of 5 min. Because of the ab-
sence of overlap between the laser beam and receiver field
of view, there is a blind region in the lower altitudes. Con-
sequently, vertical profiles of water vapor mixing ratio typi-
cally start at 150–180 m above ground. Humidity profiles ex-
tend vertically up to different altitudes during daytime and
nighttime depending on the altitude where the signal gets
completely extinguished. For water vapor, considering a ver-
tical/temporal resolution of 30 m/5 min, this typically takes
place around 4–5 km during daytime and around 12 km dur-
ing the night. The different ranges result from the additional
noise due to solar contamination during daytime.

During HOPE, BASIL was calibrated based on the com-
parison with the radiosondes launched approximately 4 km
away from the instrument. A mean calibration coefficient
was estimated by comparing BASIL and radiosonde data.
Every clear sky radiosonde coincident with BASIL measure-
ments (60 in total) is compared to the lidar profile in an alti-
tude region with an extent of 1 km above the boundary layer.
We choose this region to minimize the air mass differences

related to the distance between the lidar station and the ra-
diosonde launch facility station. For every profile compari-
son, a value for the calibration constant is calculated. From
these 60 values, we calculate the mean value and use it as the
calibration constant for the complete period of HOPE. The
standard deviation of the mean calibration coefficient from
the single values does not exceed 5 %.

In addition to the calibration constant uncertainty, other
smaller systematic uncertainty sources might affect the water
vapor measurements. For example, an additional uncertainty
(< 1 %) may be considered related to the use of narrowband
filters, the temperature dependence of H2O Raman scattering
and the thermal sensitivity of the filters (Whiteman, 2003).
Further, an additional 1 % may be associated with the deter-
mination of the differential transmission term at the water va-
por and molecular nitrogen Raman wavelengths (Whiteman,
2003). These sources of uncertainty, in principle negligible,
are not taken into account for the calculations in our algo-
rithm.

The statistical uncertainty of the water vapor mixing ratio
is calculated based on the application of the Poisson statis-
tics (Di Girolamo et al., 2004) and varies for each range bin.
Providing a profile with 5 min time resolution and 30 m verti-
cal grid, the statistical uncertainty affecting water vapor mix-
ing ratio measurements for nighttime operation is typically
smaller than 2 % up to 3 km and smaller than 20 % up to
9 km. For daytime operation, it is typically smaller than 40 %
up to 3 km and smaller than 100 % up to 4.5 km.

Note, the operation of BASIL has not been continuous dur-
ing HOPE. The instrument collected a total of 430 h of mea-
surements distributed over 44 days, which represents 30 % of
the whole HOPE period.

2.2 MWR

The microwave radiometer profiler HATPRO (Rose et al.,
2005) was manufactured by Radiometer Physics GmbH,
Germany (RPG), as a network-suitable microwave radiome-
ter allowing retrieval of liquid water path (LWP) and inte-
grated water vapor (IWV) at high temporal resolution (1 s)
(Crewell and Löhnert, 2003). It is a passive MWR that mea-
sures radiation expressed as brightness temperature in two
frequency bands (Rose et al., 2005). The seven channels of
the K band contain information about the vertical profile of
humidity through the pressure broadening of the optically
thin 22.235 GHz H2O line. This band also provides the in-
formation for determining LWP as emission by liquid wa-
ter increases with frequency. The seven channels of V-band
contain information on the vertical profile of temperature re-
sulting from the homogeneous mixing of O2 throughout the
atmosphere (Löhnert and Maier, 2012). For temperature, re-
trieval improvement can be obtained by including off-zenith
observations under the assumption of horizontal homogene-
ity; however for water vapor profiling, only zenith observa-
tions are beneficial (Löhnert et al., 2009).
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The absolute calibration of the instrument is performed
roughly every 6 months, taking a cold and a hot load as
reference, which are assumed to be ideal black bodies. The
cold black body is a liquid-nitrogen-cooled load at approx-
imately 77 K that is attached externally to the radiometer
box. This standard, together with an internal ambient black
body load inside the radiometer, is used for the absolute cal-
ibration procedure (Maschwitz et al., 2013). In addition, a
calibration by tip-curve observations can be performed for
the K-band channels using observations at different elevation
angles (Turner et al., 2007). The reliability of sky tipping
calibrations strongly depends on how good the assumption
of a horizontally stratified atmosphere is. Further details on
the calibration procedures of the instrument can be found in
Maschwitz et al. (2013).

The temporal resolution of this instrument is higher than
for the RL: it is able to provide one measurement every 1–
3 s. Thus, a temporal adaptation to the lidar time resolution
is performed, averaging MWR measurements in 5 min inter-
vals. A major drawback of MWR water vapor and tempera-
ture profile retrievals is the limited vertical resolution. Typi-
cally, only two pieces of independent information for water
vapor profiles are contained in the measurements, whereby
three–four are obtained for the temperature profile (Löhnert
et al., 2009).

3 Method

3.1 Optimal estimation method

An optimal estimation method is applied which allows the
state of the atmosphere and its associated uncertainty to
be estimated. Using this scheme requires a set of measure-
ments (with their uncertainty specification), a forward model,
which relates the atmospheric state to the instrument mea-
surements and some a priori information. In the following,
a short description of the scheme is presented. More details
can be found in Rodgers (2000).

Given the moderately nonlinear nature (Rodgers, 2000) of
our problem, the iterative equation applied to find the best
atmospheric state estimate is

xi+1 = xa+ (SaKT
i (KiSaKT

i +Sε)−1
[y−F(xi)

+Ki(xi − xa)]), (1)

where xi is a vector containing the atmospheric state at the
iteration i. The observation vector y contains the brightness
temperatures (TBs) from the MWR and the profile of the
mixing ratio from the lidar. The term xa represents the a pri-
ori information of the atmosphere, in our case, coming from
radiosondes. Sa and Sε are the covariance matrices of the
prior and observation uncertainties, respectively. F(xi,b) is
the forward model applied to the state vector xi , and depends
on the model parameters b. For simplicity, it will be referred
to as F(xi) in the following. The forward model output lies

in the observation space. The term K represents the Jacobian,
which can be understood as the response of the observation
vector when a perturbation is performed in the atmospheric
state vector (Eq. 2):

Ki =
∂F(xi)
∂xi

. (2)

The iterative equation described in Eq. (1) finds the most
optimal atmospheric state xop. Convergence of the solution
is reached once the convergence criterion is fulfilled; i.e., the
difference between the forward model applied to the atmo-
spheric state at iterations n and n+1 is 1 order of magnitude
smaller than the estimated error. To evaluate this difference
we must scale the change in the solution by its estimated er-
ror, leading to

d2
i = (F(xi+1)−F(xi))T (Sε(KSaKT

+Sε)Sε)−1(F(xi+1)

−F(xi)) < m/10, (3)

wherem is the number of elements in the observation vector.
An uncertainty estimation of the solution Sop is calculated
via

Sop = Sa−SaKT (Sε +KSaKT )−1KSa, (4)

where K is the Jacobian calculated in the last iteration. From
Sop, the theoretical error (in kg m−3) associated to each al-
titude of the retrieved profile xop is calculated as the square
root of the main diagonal elements in Sop. The word “theo-
retical” emphasizes that it is an a posteriori estimate, and not
a direct difference to a given reference. It is also possible to
estimate the information content of the result. The degrees
of freedom (DOF) of a profile represent the number of in-
dependent pieces of information in the signal. They can be
calculated as the trace of the matrix in Eq. (5):

Aker = SaKT (Sε +KSaKT )−1K, (5)

where Aker is the averaging kernel. This matrix is very im-
portant to describe the information content, as it describes the
subspace of the state space in which the retrieval must lie. Its
diagonal elements can be seen as a measure of the number of
degrees of freedom per discrete altitude level. The recipro-
cal denotes the number of levels per degree of freedom and
can be interpreted as a measure of resolution. The vertical
resolution 1z is thus defined as the range of heights covered
divided by the number of independent quantities measured:

1z=
δz

diag(Aker)
, (6)

where δz is the vertical spacing grid for the retrieval. It is im-
portant to note the difference between the vertical discretiza-
tion of the retrieved profile and the quantification of the ef-
fective vertical resolution 1z.
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3.2 A priori: xa and Sa

The a priori information is calculated from the set of ra-
diosondes launched during HOPE. A total of 217 sondes
have been considered. Generally, at least two of them are
available for every day of the campaign, typically one around
noon and the other at midnight. From these data, the average
profile of absolute humidity q, in kg m−3, is calculated to
represent the a priori knowledge, together with its standard
deviation sq . This profile is used as xa in the algorithm de-
scribed by Eq. (1).

For the same set of radiosondes, the correlation (corr) and
covariance (cov) matrices are calculated according to Wilks
(2006), to describe the relation of absolute humidity between
two different altitude levels. We can define q that represents
absolute humidity as a function of the altitude:

q = [q1,q2, . . .qk], (7)

with k being the total number of altitudes in the retrieval ver-
tical grid. Therefore, the corr and cov matrices have a dimen-
sion of k× k, calculated with the formula:

corrqa ,qb =
cov(qa,qb)
sqasqb

(8)

=

1
n−1

∑n
i=1[(qai − q̄a)(qbi − q̄b)][

1
n−1

∑n
i=1(qai − q̄a)

2
] 1

2
[

1
n−1

∑n
i=1(qbi − q̄b)

2
] 1

2
,

where i denotes each radiosonde, with a total of n= 217. The
parameter q̄ is the mean vertical profile of absolute humidity,
and a and b are indices for all the different k altitudes.

Both covariance and correlation matrices have been cal-
culated as in Eq. (8). The first is needed in the retrieval algo-
rithm as input (Sa), the second because it better illustrates the
relations between water vapor at different altitudes in the at-
mosphere. The correlation matrix (Fig. 1) illustrates how the
absolute humidity at a certain altitude is correlated with the
one at other altitudes, from ground to 10 km. The values for
the correlation are strongest close to the main diagonal, but
decrease quickly for off-diagonal terms. In the lowest 1–2 km
there is a higher correlation, because of the well mixed con-
ditions in the boundary layer. The result is similar to previous
studies (Ebell et al., 2013).

3.3 Observations: y and Sε

The measurement vector y is composed of the TBs from the
MWR and the water vapor mixing ratio (WVMR) profile
from the RL. We choose the TBs to be part of the measure-
ment vector instead of the MWR-derived profile of humidity
in order to give the OEM the freedom to distribute the water
vapor information to those heights where the lidar provides
no information. In addition, for future applications, it allows
us to extend our algorithm to simultaneous, physically con-
sistent retrievals of temperature and liquid water. WVMR is

Figure 1. Correlation matrix derived from 217 radiosondes
launched during HOPE. Correlation is shown for absolute humidity
as a function of the altitude (from 0 to 10 km above the ground).

used as the lidar measurement (with uncertainties given in
Sect. 2.1), which allows the use of a complex lidar forward
operator to be avoided.

The size of y is variable; since it depends on the number
of values, the lidar is able to measure at every given time in-
terval. A lidar mixing ratio profile (kg kg−1), together with
its statistical uncertainty, is provided with a vertical resolu-
tion of 30 m, starting from 180 m (See Sect. 2.1). Below this
altitude, the lidar detectors cannot be interpreted in a mean-
ingful way due to the lack of overlap of the emitted and re-
ceived beams. Due to decreasing signal-to-noise ratio (SNR)
with height, one must determine the altitude up to which the
lidar data can be considered meaningful. This altitude range
has been defined via the relative uncertainty of the WVMR,
which is calculated at each altitude as the ratio between the
uncertainty and the measurement itself. When this value is
larger than 100 %, the data are considered too noisy and are
discarded. Care is required when applying this threshold be-
cause possible random peaks in the lidar uncertainty can lead
to a filtering of too many points. Therefore, a running aver-
age is performed on the data with a 300 m window size in
the vertical. This smoothed profile is only used to select the
clipping altitude for the RL data. The 100 % uncertainty alti-
tude is reached at different heights depending on the weather
situation or night/day periods. Typically it was found around
3–4 km during daytime and around 7–8 km during nighttime
measurements.

In effect, the observation vector y is composed of t +m
elements, and Sε is a matrix with dimensions (t+m,t+m);m
is the number of altitudes where the lidar measurements have
sufficient signal-to-noise ratio, and t is the number of TBs.
Seven brightness temperatures are used for the retrieval of
absolute humidity. Note that within the retrieval procedure,
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TBs from the MWR are used directly in the measurement
vector, while an atmospheric state variable (WVMR) is used
from the lidar to complete the measurement vector that only
requires a conversion of humidity units.

The error covariance matrix associated with the MWR
measurement (with dimensions 7× 7, is obtained empiri-
cally by calculating the covariance for the different channels,
while constantly viewing an ambient black-body target with
known temperature. The diagonal elements represent the co-
variance of each channel with itself, typically with values
around the noise level (∼ 0.25 K). The off-diagonal elements
represent the covariance between the measurements of dif-
ferent channels. Because the channels share some electronic
components inside the instrument, the off-diagonal elements
cannot be considered zero, but typically show values 1 order
of magnitude smaller than the main diagonal.

The part of Sε corresponding to the RL (dimension (m×
m) is defined as a diagonal matrix containing only the ran-
dom uncertainty at every altitude. This definition implies no
correlation between measurements at different heights. This
simplification in the error covariance matrix has also been
considered by other authors (Wulfmeyer et al., 2006; Dun-
bar et al., 2014; Adam et al., 2015). The Sε elements cor-
responding to the correlation between RL and MWR mea-
surements have been set to zero because no correlation is ex-
pected among measurement uncertainty of two separate in-
struments.

3.4 Forward models (FMs)

The forward model for the lidar is straightforward because
in our retrieval approach we consider WVMR as part of the
measurements vector. Therefore, the lidar FM for water va-
por simply performs the conversion from absolute humidity
to mixing ratio. However, the implementation of a more com-
plex lidar forward model, e.g., the approach implemented by
Sica and Haefele (2016), could be considered in future stud-
ies. The FM for the MWR involves a radiative transfer model
(Löhnert et al., 2004). It considers emission and absorption
of radiation by gases in the atmosphere but neglects scatter-
ing, which can be ignored for all atmospheric particles ex-
cept for rain droplets. The model divides the atmosphere into
layers and calculates the optical thickness and absorption co-
efficients at each level. From these values, and applying the
radiative transfer Eq. (9) (Janssen, 1993), the TBs are calcu-
lated:

TBground = TBcos exp(−τ)

+

∞∫
0

T (s)α(s)exp

− s∫
0

α(s′)ds′

ds, (9)

where τ is the optical depth of the whole atmospheric column
(opacity), α is the absorption coefficient (m−1) and TBcos is
the cosmic background radiation (approx. 2.7 K).

The retrieval vertical grid is defined for every profile. It
varies, as well as the observation vector, depending on the
amount of available lidar information for every given profile.
In the atmospheric regions where lidar data are available, the
vertical grid of the retrieval product is 30 m (same as the li-
dar). Above the point where the RL signal is lost, and since
the MWR cannot provide such high resolution, the algorithm
retrieves only one value every 1 km.

4 Application of the OEM: case study

4.1 Single profile retrieval

In a first approach, the OEM is implemented for the combina-
tion of the two instruments to retrieve atmospheric absolute
humidity. The setup is designed such that the OEM can work
with input from a single instrument as well. This aspect al-
lows us to compare the performance of each sensor working
alone in contrast to the combination of the both. In the fol-
lowing, we demonstrate the algorithm presenting the results
corresponding to 24 April at 11:00 UTC, where a collocated
RS is used only as reference (Fig. 2). The a priori profile
is the prior atmospheric knowledge (Sect. 3.2), and also the
starting point (first guess) for the algorithm iteration.

At first, we only introduce the portion of profile in the
OEM where RL data are considered to be valid (i.e., from
180 m to 2.5 km, ∼ 77 layers), not taking into account the
MWR yet. The result of the algorithm is a complete profile
from the ground up to 10 km. In the region with lidar avail-
ability, the result is strongly constrained by the lidar obser-
vations, since the associated uncertainties are very small (on
the order of 0.5 g m−3). In the regions with no lidar data, the
profile is completed with the information provided by the a
priori profile and the a priori covariance matrix. Second, if
only the seven TBs of the MWR are introduced in the OEM,
a very smooth profile is obtained. This is because the seven
frequencies do not provide enough information to distinguish
fine vertical structures: MWR can only provide∼ 2 DOF per
profile, as already mentioned in Sect. 2.2. Therefore, the a
priori profile plays a dominant role in defining the vertical
structures. Finally, the output profile for the RL and MWR
combination is strongly constrained to the RL observations
from 180 m to 2.5 km. Outside this region, the profile is com-
pleted based on the information provided by the TBs and the
a priori.

The OEM uncertainty of the combined retrieval is calcu-
lated as the square root of the main diagonal elements in Sop
(see Eq. 4). The uncertainty is small in the region where there
are RL data available (∼ 0.5 g m−3), but it increases with alti-
tude, as to be expected (Fig. 2). It is also slightly larger close
to the ground (∼ 1 g m−3), due to the absence of lidar data.
Throughout the profile, the combined retrieval uncertainty is
smaller than the “only-RL” and “only-MWR” ones. (see also
Sect. 5.3 for detailed uncertainty statistics).
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Figure 2. Absolute humidity profiles for a priori (yellow), only-
RL (red), only-MWR (green) and MWR+RL (blue). The horizon-
tal blue lines correspond to the theoretical retrieval error for the
MWR+RL case. The RS is used as reference (black). The dashed
horizontal gray lines enclose the region where the lidar data are
used. The inset is a zoom for the region close to the ground, be-
tween 0 and 250 m.

The profile obtained with the RL-MWR combination best
fits the RS (shown as reference), launched at the same time
4 km away. The combined retrieval reveals absolute humid-
ity values closer to the radiosonde at 3 km than single instru-
ment retrievals. This is due to both the additional microwave
radiometer observations as well as propagated lidar informa-
tion (via the a priori covariance matrix). It is interesting to
pay attention to the lower part of the atmosphere, close to
the ground. In Fig. 2, a zoom from 0 to 250 m is shown.
Due to the missing RL information below 180 m, the RL-
MWR combination tends to the MWR values close to the
ground, but quickly approaches the lidar, as soon as the first
RL values are available. One can see that the lowest values
of the RS are 1–1.5 g m−3, more humid than the rest of the
profiles. This might be explained by the fact that the sonde
was launched under different local environmental conditions:
while the instruments site is located inside the research cen-
ter, the RS is launched in an open field area. In addition, the
venting of the RS is not optimal in the lowest 100 m. These
could cause slight differences in the comparisons close to the
ground, but should not be a problem in the free troposphere.

We can additionally evaluate the quality of our retrieval by
calculating the effective vertical resolution. Figure 3 presents
the vertical resolution1z calculated with Eq. (6) for the three
different retrievals on the 24 April 2013, at 11:00 UTC. The

Figure 3. Vertical resolution for the only-RL (red), only-MWR
(green) and MWR+RL (blue). The dashed lines enclose the area
where RL data have been considered.

results nicely show the improvements of the MWR+RL com-
bination. In the region where RL is available (from 180 m to
2.5 km), the only-RL resolution is very high (∼ 100–300 m).
However, outside this region, the vertical resolution for only-
RL becomes infinite, because the diagonal elements of the
averaging kernels tend to zero. The only-MWR resolution
is always coarser: up to 2.5 km it presents values 1 order
of magnitude larger than the other two cases. Neverthe-
less, the advantage of the MWR is that the instrument pro-
vides information throughout the complete profile. Finally,
the MWR+RL case presents the best vertical resolution. It
adopts similar values as the only-RL resolution when RL
is available, and improves the resolution by ∼ 1–2 km com-
pared to the only-MWR case throughout the rest of the pro-
file. Since the solution is strongly constrained by the lidar
observations between 180 m and 2.5 km, the additional in-
formation contained in the MWR observations is now mainly
distributed in the region above the 2.5 km.

4.2 Time series

The combined retrieval is now applied to more than one pro-
file. An example of this is shown in Fig. 4, which presents
a time series of absolute humidity on 4 May 2013 during
HOPE, for RL, MWR and MWR+RL. Note that the plots are
presented for the lowest 4 km because above this altitude, no
significant changes of humidity occur. In addition, and in or-
der to appreciate visually the added value of synergy, the na-
tive retrievals of MWR and RL are shown, i.e., the RL mix-
ing ratio converted into absolute humidity and the absolute
humidity profiles calculated from the MWR with a simple
statistical retrieval based on a quadratic regression method
(a multivariate regression scheme based on an extensive ra-
diosonde data set from DeBilt).
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Figure 4. From left to right and top to bottom, absolute humidity (g m−3) time series of RL, MWR statistical retrieval and MWR+RL
retrieval.

One can see clearly how the RL zero overlap region does
not allow any information from the lowest 180 m to be re-
ceived. In addition, the lidar signal is strongly affected by
the background daytime radiation from around 2.5 km above.
Note that following the explanation in Sect. 3.3, the RL data,
whose relative error is larger than 100 %, are discarded. In
contrast to the RL, the information provided by the MWR
is continuous regardless the background radiation. Neverthe-
less, the vertical resolution of the MWR profiles is extremely
poor compared to the RL.

The MWR+RL time series reveals a successful synergy
between RL and MWR, making use of the TB and a priori
information to complete the profile where RL measurements
are not available (i.e., in the blind region below 180 m and at
regions of too high a lidar noise level).

5 Application of the OEM: statistics over HOPE

The absolute humidity algorithm has been applied to all the
clear sky periods with simultaneous availability of MWR and
RL. The MWR measured continuously, so this selection is
restricted to lidar availability. There are 4201 lidar profiles
in total (30 % of the total campaign). Of these, 717 profiles

are considered as clear sky (around 17 % of the total). Of the
clear sky profiles, the convergence of the OEM is found in
95.8 % of the cases, that is, 687 profiles. In the rest of the
cases, the convergence is not reached because the algorithm
cannot find a profile which is simultaneously consistent with
the measurements of the two instruments and the a priori in-
formation, within their uncertainties.

5.1 Integrated water vapor

Another key atmospheric parameter that we can evaluate af-
ter applying the OEM is the IWV. The independent mea-
surements of IWV from the Global Position Satellite (GPS)
ground station (Bevis et al., 1992) can be used to assess the
quality of the retrieval products. In Fig. 5a, the time series
of the IWV during HOPE is presented. The continuous IWV
signal from GPS measurements is shown together with the
IWV from the joint retrieval, which is only available during
clear sky events. IWV reveals strong fluctuations with values
between 5 and 29 kg m−2 during HOPE, and therefore this
period is well suited for evaluation studies.

Figure 5b quantitatively compares the three OEM retrieval
cases (combined retrieval, MWR and only-RL) against the
GPS signal. Note that a comparison with the original lidar
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Figure 5. (a) Time series of IWV during the whole HOPE period from the continuous GPS signal (black) and the one calculated from the
joint retrieval, which is available only in clear sky cases (blue). Shaded areas represent the RL availability. (b) Scatter plot for the three cases:
only Raman lidar, only MWR and the joint retrieval (from left to right), against the GPS.

data before processing in the OEM is not sensible, since the
lidar lacks information in the lowest atmosphere (due to in-
complete overlap) and also above the altitude where the SNR
is too large. A sensible comparison is only carried out after
OEM processing because these retrieval results provide full
profiles in all three cases.

Figure 5b also shows the values for the bias and the stan-
dard deviation (in kg m−2) for all the cases. The values are
small in all situations and lie inside the GPS uncertainty of
1–2 kg m−2 (Gendt et al., 2004) and the MWR product of
∼ 0.5–1 kg m−2 (Steinke et al., 2015). While the only-MWR
case presents a negative bias of ∼ 0.5 kg m−2, the inclusion
of the RL in the RL+MWR case corrects this bias, reducing
it 1 order of magnitude. The combination of the two instru-
ments and the only-MWR case presents similar standard de-
viations, whereas the only-RL case presents twice as large
a standard deviation in comparison to the other two cases.
This results give us confidence that the developed OEM wa-
ter vapor profiles are well constrained with respect to the in-
tegrated value.

5.2 Comparison to RS

As explained above, the retrieval grid of each profile depends
on how much data from the RL can be taken into account,
which will depend on the atmospheric conditions, day/night,
background noise, etc. In order to clearly assess the benefits
of the sensor synergy, a different retrieval strategy is used for
the subsequent tests: the algorithm is applied using only the

RL profiles up to a fixed altitude in order to retrieve all pro-
files using the same vertical grid. Thus, all RL profiles have
been capped at an altitude of 2.5 km. In the case that a given
lidar profile gets too noisy before this altitude, the profile is
discarded and not taken into account for the statistics. This
cutoff altitude is chosen in order to keep at least 75 % of the
profiles within the statistics (only 23 % of the considered RL
profiles reach 100 % relative uncertainty at a height lower
than 2.5 km). This strategy simplifies the separate study of
three atmospheric regions, defined as follows.

– Region (a) from ground to 180 m: no lidar data are avail-
able

– Region (b) from 180 m to 2.5 km: this is the only do-
main where there are lidar data. It is enclosed inside the
dashed horizontal lines in Fig. 6.

– Region (c) from 2.5 km to 10 km: no lidar data are con-
sidered.

At first, a comparison of the absolute humidity profiles
to the radiosonde profiles is performed. Unfortunately, only
18 valid clear sky radiosondes have been found during the
periods where BASIL measured. In Fig. 6, the bias (on the
left) and the standard deviation (on the right) to the RS are
presented for the three cases: only-MWR, only-RL and the
MWR+RL combination.

Region (a) exhibits the largest standard deviations (SDs)
and biases, with similar values for the three cases. In addi-
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Figure 6. Mean and standard deviation of the difference between
the 18 clear sky radiosondes: MWR (in green), RL (in red) and the
combination of both (blue). The dashed horizontal lines enclose the
region where the lidar data are used.

tion to the fact that no lidar data are available here, this result
may be due to different surface-related local effects at the
site where the RS was launched (∼ 4 km distance) and at the
site where the instruments measure. In addition an insuffi-
cient venting of the RS in the lowest 100 m may act as an
additional uncertainty.

In region (b), bias and standard deviation for the only-
RL and RL+MWR are very similar, whereby only-MWR
reveals the largest values. The similarity between only-RL
and the combination is again explained by the small un-
certainty associated to the lidar measurements. The prod-
uct of the combination tends to the lidar data when avail-
able, as seen in Sect. 4.1. From ∼ 500 m to 2.5 km, both
only-RL and RL+MWR show a small bias on the order of
∼ 0.2 g m−3, but below this altitude, the deviation increases
up to ∼ 0.75 g m−3. This fact may suggest that the lidar data
in the lower 500 m could have some additional issues with
the RL OVF. This feature will be examined in more detail in
Sect. 5.5.

In region (c) all the three values for the different retrievals
are similar. The only-MWR seems to perform best when
comparing to the RS, because both its bias and SD are the
smallest. The only-RL case presents the largest bias and SD
because in this region only information from the a priori is
provided. The combination of the two sensors presents in-
termediate values, however, more similar to the only-MWR
case.

Unfortunately, this set of only 18 radiosondes does not al-
low a significant assessment of the synergy benefits. In ad-
dition, when interpreting the results in Fig. 6, one must take
into account that the RS itself presents some sources of un-
certainty which are not easy to quantify, e.g., the launch dis-
tance of 4 km to the instrument site, drifts of the balloon, dry
bias (Miloshevich et al., 2001). Because of that, other param-
eters are needed to further evaluate the synergy advantages.
One quantity with this capability is the theoretical OEM un-
certainty of the retrieved profiles (see Eq. 4). This parameter
is studied in the following subsections.

5.3 Theoretical error comparison

As already mentioned in Sect. 3, the algorithm provides an
estimation of the a posteriori error for the retrievals, see
Eq. (4). For each profile the associated theoretical error pro-
file is computed in the three different cases: using only-RL,
only MWR and the RL+MWR combination.

In order to investigate the algorithm performance during
day- and nighttime separately, Fig. 7 shows the mean the-
oretical errors for the three algorithm setups, differentiating
between daytime and nighttime. Note that, in this study, no
clipping is performed in the measurements, and thus, we can-
not distinguish three regions according to lidar availability.
This region separation will be used again later on.

Figure 7 presents the number of RL profiles reaching each
specific altitude. Note that, for the sake of comparability, the
theoretical error for each of the three retrieval cases has been
averaged over the same number of profiles. As discussed in
Sect. 2.1, the lidar performance is much better during night-
time, when more than 50 % of the lidar data reach a max-
imum useful altitude of around 7 km. The theoretical error
during night is also lower than during daytime (i.e., about a
factor of 3 smaller at an altitude of 4 km), as expected. Dur-
ing daytime, the highest useful lidar height reaches only a
maximum altitude of around 5.5 km. In addition, only half
of the profiles reach values higher than 3 km. In these situa-
tions, the MWR information is expected to be a more power-
ful supplement to the lidar information. This is seen well in
the improvement of the theoretical error due to the addition
of the MWR information, which improves the theoretical er-
ror by approximately a 25 % in the altitude range between 3
and 5 km. The only-MWR case remains almost invariable be-
cause the instrument performs the same under different light
conditions.

Another theoretical error analysis is performed clipping
all lidar measurements at 2.5 km, following the same argu-
mentation as in Sect. 5.2. This way, the three previous at-
mospheric regions (a), (b) and (c) defined in Sect. 5.2 can be
distinguished according to RL availability. Note that this sim-
plification of the problem allows the relative impact of MWR
and RL to be clearly specified in the different retrievals.

Figure 8 presents the a priori uncertainty, as well as an av-
erage over the 636 theoretical error profiles calculated after

Atmos. Meas. Tech., 9, 4013–4028, 2016 www.atmos-meas-tech.net/9/4013/2016/



M. Barrera-Verdejo et al.: Ground-based lidar and microwave radiometry synergy 4023

Figure 7. Left: mean theoretical error over the 636 clear sky cases
during the complete HOPE period, separated into daytime (solid)
and nighttime (dashed) measurements. In black: a priori uncertainty
(lowest 3 km are out of margins). Red: only-RL. Green: only MWR.
In blue: the MWR+RL. Right: number of RL profiles reaching each
altitude, corresponding to the number of profiles used to calculate
the average in the left panel.

running the OEM for all the HOPE clear sky periods. Clearly
the uncertainty associated to the a priori is the largest, as it
represents the atmospheric variability within the HOPE pe-
riod. When only the TBs of the MWR are introduced in the
algorithm, the average error estimate is reduced at least by
half throughout the whole atmosphere with respect to the a
priori uncertainty. When only the lidar information is used
by the algorithm, the error in region (b) is strongly reduced
with respect to the other two previous cases. Compared to the
only-MWR error, which has an average of ∼ 0.7 g m−3, the
only-RL is lowered to almost 0.1 g m−3. In regions (a) and
(c) the only-RL error is larger than in region (b) because no
lidar data are available and thus only the a priori informa-
tion is used to complete the profile. The only-RL uncertainty
is indeed especially large above 3 km, where it tends to the
a priori uncertainty, presenting larger values than the only-
MWR error.

However, when the combination of RL+MWR is per-
formed, the resulting error is the smallest for all the altitudes.
In region (b), the error is almost the same as for the only-
RL case. Outside this region, the MWR contribution plays
an important role in reducing the uncertainty. In region (c),
from average uncertainty values of 0.17 and 0.22 g m−2 for
only-MWR and only-RL respectively, the uncertainty of the
combination is reduced to an average value of 0.12 g m−2.
Similarly, in the lowest region, the average error for the com-

bination is 0.30, in comparison to 0.71 and 0.33 g m−2 for
the only-RL and only-MWR cases, respectively. In general,
we can say that there is clear improvement in the theoretical
error due to the synergy of the two instruments.

One can quantify the relative error reduction errred of
the joint retrieval in comparison to the instruments working
alone. We can calculate this value as the difference between
the single instrument and joint theoretical error profiles, di-
vided by the single instrument one; that is

err red,i =
err i − err joint

err i
· 100, (10)

where i = [RL, MW] and represents the averaged error pro-
files for the two different scenarios: when only-RL and only-
MWR is used (Fig. 8). Then, err red,i is a profile represent-
ing a relative error reduction as a function of the altitude.
The average error reduction for the absolute humidity in the
complete atmospheric profile is 60 % (38 %), with respect to
the retrieval using only-MWR data (only-RL). This improve-
ment is especially clear in region (c), above the available li-
dar data. The improvement of the combination in region (a)
is better analyzed with the experiment in Sect. 5.5.

5.4 Degrees of freedom

Another parameter to assess the retrieval performance is the
DOF (see Sect. 3.1). DOF allow us to study the amount of in-
formation provided by the different instruments in the three
different atmospheric regions described in Sect. 5.2. Figure 9
represents the vertical profile of cumulative degrees of free-
dom (CDOF) for the different instrument combinations, ob-
tained as an average over 636 profiles. In the case of only-
MWR, the CDOF are smaller than for the other cases, reach-
ing a maximum of 2.26 at 10 km, in agreement with previ-
ous studies (Löhnert et al., 2007). Whenever lidar data are
available, the CDOF increase linearly, due to the indepen-
dent information of each altitude bin measured by the li-
dar. In the case of only-RL, above 2.5 km the cumulative
DOF remain constant because no additional information is
introduced. However, for the RL+MWR, the CDOF increase
above 2.5 km thanks to the inclusion of the MWR measure-
ments. Table 1 summarizes the values in Fig. 9. For the only-
RL case: in the regions where no lidar data are available (a
and c), the DOF are, as expected, zero. In region (b), the to-
tal number of average DOF are around 26. This means that
the lidar data, with the assumed Se and the constraint pro-
vided by Sa, provide∼ 26 independent pieces of information
for humidity profile retrieval on average. The average total
number of DOF in the column is largest for the combination
of the two instruments, increasing by almost 2 DOF with re-
spect to the only-RL case. The numbers for the MWR+RL
combination show that the inclusion of MWR results mainly
in an increase of DOF (+1.6) in region (c), whereas in re-
gion (b) the DOF remain almost the same. This implies that
large parts of the DOF contained in the only-MWR retrieval
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Figure 8. Mean theoretical error over 636 clear sky cases during the
complete HOPE period. The lidar data have been artificially cut off
at 2.5 km. In black: a priori uncertainty. Red: only-RL. Green: only
MWR. In blue: the MWR+RL. The dashed horizontal lines enclose
the region where the lidar data are used.

for the complete profile (2.26) have now been shifted to the
region above 2.5 km. This optimal exploitation of the MWR
information content due to constraints set by the lidar in other
altitude regions clearly shows the synergy benefit.

5.5 Sensitivity study 1: lower atmosphere

As argued in Sect. 5.2, the high bias values for only-RL
and RL+MWR from ground to 500 m (Fig. 6) might reveal
a problem with the lidar OVF in this region. To assess the
retrieval performance in the case of a larger non-overlap re-
gion, we run the retrieval considering that the OVF of the
RL does not allow us to obtain valid measurements from the
lowest 500 m, instead of 18 m. Thus, lidar data from 180 to
500 m are discarded in all the profiles. The algorithm is run
again for the complete HOPE period, taking this condition
into account and maintaining the clipping altitude at 2.5 km
as described in Sect. 5.2.

Figure 10 shows the mean theoretical error for the ex-
panded zero overlap region (ZOR) together with the initial
ZOR (up to 180 m). In both cases (initial ZOR and increased

Figure 9. Cumulative degrees of freedom per profile for the differ-
ent instrument combinations: in red, only-RL; in green, only-MWR
and in blue, MWR+RL. The dotted-dashed lines represent the de-
grees of freedom for the case where the RL uncertainty has been
multiplied by 4. The average number of DOF in every region are
summarized on Table 1. The dashed horizontal gray lines enclose
the part of the atmosphere where lidar data have been considered.
The number of elements in the measurement and state vectors are
77 (66 for the dashed case) and 91, respectively.

ZOR), the results are very similar in regions where the RL
data are available (from 500 m to 2.5 km), with the theo-
retical error of the MWR+RL matching that of the only-
RL. However, in the lower region of the increased ZOR, the
MWR+RL error is smaller than the only-RL case: there is an
uncertainty reduction at the ground level of about 0.1 g m−3,
which is gradually reduced towards the region where RL data
are available. This result nicely shows the synergy benefit
of both instruments in the atmosphere below 500 m. Above
this point and up to 2.5 km, the error is almost equal for the
cases of initial ZOR and increased ZOR. From 2.5 to 10 km,
the increased ZOR shows a slight increase in theoretical er-
ror of ∼ 0.05 and ∼ 0.02 g m−3 for the RL+MWR and only-
RL cases, with respect to the initial ZOR. This is because
the MWR information content is redistributed and more effi-
ciently used in the lower layers of the atmosphere.
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Table 1. Degrees of freedom for signal comparison for absolute hu-
midity. Average over 636 profiles. The atmosphere is separated into
three regions according to lidar availability. The DOF are presented
for three cases: only RL, only MWR and the combination of both
instruments. In the upper part, no increment on the RL uncertainty
has been considered. In the bottom part, the RL uncertainty has been
multiplied by a factor of 4.

Region RL MWR Combination

(a) Ground to 180 m 0.00 0.07 0.03
(b) 180 m to 2.5 km 25.90 1.01 25.75
(c) 2.5 to 10 km 0.00 1.18 1.69

Total 25.90 2.26 27.47

(a) Ground to 180 m 0.00 0.07 0.06
(b) 180 m to 2.5 km 12.19 1.01 12.11
(c) 2.5 to 10 km 0.00 1.18 1.57

Total 12.19 2.26 13.74

5.6 Sensitivity study 2: increase of the RL error

In Sect. 3.3 the components of the covariance matrix Se have
been determined to our best knowledge. However, it might
be possible that additional uncertainty sources exist. In order
to better understand the impact of the lidar uncertainties, we
performed a sensitivity study increasing the lidar uncertainty.

The magnitude of the increase in RL measurement uncer-
tainty is chosen based on the discrepancy between the theo-
retical error (0.1 g m−3, Fig. 8) and the mean deviation to the
RS (0.4 g m−3, Fig. 6) at around 2 km, showing that the devi-
ation to the RS is 4 times larger than the originally assumed
error. Therefore, we have increased the RL uncertainty by
a factor of 4 to study the sensitivity of the retrieved profile
error with respect to the RL measurement uncertainty. Note
that also in this experiment the three regions (a), (b) and (c)
as defined in Sect. 6 are valid.

The results of this test are plotted in Fig. 10, together with
the initial values (without increment), for the only-RL and
MWR+RL cases. The new averaged errors are very similar
at the ground, but they have increased by a factor of 2 to 3 in
region (b). The uncertainty is less than a factor of 4 because
of the stabilization by the prior. In case of increased RL un-
certainties, the difference between the errors of the only-RL
and RL+MWR (dashed lines) is more noticeable than in the
original case (solid line), especially from 2 km upwards. Note
that already at 2.5 km, the error reduction for including the
MWR, reaches values close to 0.1 g m−3. Thus, as expected
the synergy benefit increases.

In addition, when an increment in the RL uncertainty is
considered, the amount of useful information provided by
this instrument is smaller, and thus the DOF are reduced.
This reduction can been seen in all regions where the RL
is involved (Fig. 9). In the case of an uncertainty increase of
a factor of 4, the total average DOF are reduced by a factor

Figure 10. Mean theoretical error over 636 clear sky cases during
the complete HOPE period. Red: only RL has been introduced in the
algorithm. Green: only-MWR. In blue, the combination of RL and
MWR. The dashed horizontal black lines define the region where
lidar data have been considered available. The dashed red and blue
lines represent the result when the lidar uncertainty has been in-
cremented by a factor of 4. The dotted-dashed red and blue lines
correspond to the case where lidar data have been suppressed from
ground until 500 m. Solid lines show the errors without increments,
as shown in Fig. 8.

of ∼ 2 (Table 1). Note that, naturally, the DOF values for the
MWR only retrieval remain the same.

The results presented so far confirm that the RL+MWR
water vapor synergy is meaningful and advantageous. In ad-
dition, they suggest that a careful specification of the instru-
ment uncertainties, especially for the RL, is required.

6 Conclusions

Atmospheric humidity is an essential variable for the descrip-
tion of any meteorological process. Highly resolved, accu-
rate and continuous measurements of this parameter are re-
quired for a deeper understanding of many atmospheric phe-
nomena. However, nowadays there is no single instrument
that can provide all of the following requirements simultane-
ously: complete vertical coverage, high vertical and temporal
resolution of the atmospheric humidity profiles and satisfac-
tory performance under all weather conditions. This is why
the synergy of different sensors has come more and more into
focus in the last years.
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In this paper, we present a new and robust method to com-
bine water vapor mixing ratio Raman lidar profiles and mul-
tifrequency brightness temperatures from a microwave ra-
diometer. The joint algorithm that combines the two sensors
is based on an optimal estimation method, and can be also
applied to measurements from one instrument alone. Results
for 53 h of clear sky measurements during the HOPE period
are presented for absolute humidity profile retrievals.

The improvements of merging both instrument systems
have been consistently analyzed in terms of both the reduc-
tion of the theoretical error and the increase of DOF. Sig-
nificant advantages of instrument synergy are clearly shown
above the highest valid lidar signal. For example, when ap-
plying the combined retrieval to the complete HOPE period,
the absolute humidity theoretical error above ∼ 3 km is re-
duced by a factor of 2 with respect to the case where only
lidar data are used. The addition of the MWR information to
the RL results in 1.6 additional degrees of freedom for sig-
nal, which are mainly distributed in the layers above the li-
dar noise threshold. The synergy presents its strongest advan-
tages in the regions where RL data are not available, whereas
in the regions where both instruments are available, RL dom-
inates the retrieval.

With the expansion of the ground-based network of at-
mospheric profiling stations, the application of the OEM
at several sites under different climate conditions will be-
come possible. In this respect, the definition of an appro-
priate background uncertainty covariance needs to be care-
fully addressed. Further studies will extend the algorithm to
cloudy cases and to temperature and relative humidity pro-
filing. In addition, the method will be applied, not only to
ground-based measurements, but also to airborne data (Mech
et al., 2014), which will allow the study of meteorological
phenomena to be completed from the airborne point of view.

7 Data availability

The data used in this study are available at the HD(CP)2 Data
Archive (Stamnas et al., 2016), which is freely accessible by
all users from the HD(CP)2 Web Portal (University of Ham-
burg, 2016). The details for the data structure and organiza-
tion are also found at Stamnas et al. (2016).
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