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Abstract

We are interested in providing new results on the following prescribed mean
curvature equation in Lorentz-Minkowski space

∇ ·

[
∇u√

1− |∇u|2

]
+ up = 0,

set in the whole RN , with N > 3.
We study both existence and multiplicity of radial ground state solutions

(namely positive and vanishing at infinity) for p > 1, emphasizing the funda-
mental difference between the subcritical and the supercritical case.

We also study speed decay at infinity of ground states, and give some decay
estimates.

Finally we provide a multiplicity result on the existence of sign-changing
bound state solutions for any p > 1.

Keywords: Quasilinear Elliptic Equations, Mean curvature
operator, ODEs techniques
2010 MSC: 35J62

Introduction

In this paper we are mainly interested in finding radial solutions for the
problem 

∇ ·
[

∇u√
1−|∇u|2

]
+ up = 0,

u(x) > 0, in RN ,
u(x)→ 0, as |x| → ∞,

(P+)
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where N > 3 and 1 < p.
The equation at the first line is quasilinear and involves the so called mean
curvature operator in the Lorentz-Minkowski space which has been object of
investigation in some recent papers.
The Euclidean version of the problem, where our equation is replaced by

∇ ·

[
∇u√

1 + |∇u|2

]
+ up = 0,

has been studied for example by Ni and Serrin [19] and del Pino and Guerra
[15] (see also the references therein). In those papers multiplicity and non exis-
tence results have been proved, depending on the choice of p.
At present, the literature concerning our equation is quite poor and mainly fo-
cused on the problem of finding positive solutions satisfying Dirichlet bound-
ary conditions in bounded domains (see [3, 4, 5, 11, 12, 13]). In unbounded
domains, and in particular in the whole RN , equations involving mean curva-
ture operator in Lorentz-Minkowski space are almost unexplored even if they
have a considerable appeal from both physical and mathematical point of view
(we refer to [14] and the references therein).
In particular, we recall the strict relation between the equation we treat and the
Born-Infeld (B-I for short) model in the theory of nonlinear electrodynamics.
Assuming, in a static setting, that the magnetic field H = ∇×A is everywhere
null and expressing the electric field as E = −∇u, the B-I Lagrangian displays

L = b2

(
1−

√
1− |∇u|

2

b2

)
,

and the corresponding Euler-Lagrange equation is ∇ ·
[

∇u√
b2−|∇u|2

]
= 0. In the

same spirit of [9], Benci and Fortunato [2] proposed to describe the charged
particles electrodynamics replacing B-I Lagrangian with the Maxwell one, and
preserving the nonlinear structure by adding a perturbation W (σ), where σ =
|A|2−|u|2 is a Poincaré invariant which makes the theory they developed con-
sistent with general relativity.
Even if our equation is, in some sense, the effect of a sort of combination of the
two theories, since it arises perturbing the electrostatic B-I Lagrangian with a
pure power nonlinearity (we just assume b = 1 for convenience), we remark
that our study does not pursue the same physical purpose as [2] and [9]. In-
deed, as observed in [2], solutions of problem (P+) have negative energy and
then they are not suitable to represent charged particles (in general relativity
energy corresponds to mass and then it must be positive).
Our study aims to add some new results to the work by Bonheure, De Coster
and Derlet [8], where problem (P+) was firstly studied. There they proved that
if p > N+2

N−2 := 2∗ − 1 (the so called supercritical case), than there exists at least
one solution for (P+) and there are infinitely many solutions to the equation,
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vanishing at infinity, but with no information on the sign. The authors ex-
ploited a very nice trick, consisting in truncating suitably the volume integral∫
RN (1 −

√
1− |∇u|2) and then connecting problem (P+) with that of finding

minimizers for a constrained C1 functional.
In this paper we wish to answer some questions left as open problems in [8],
such as those concerning the existence of solution to (P+) in the subcritical case
(namely 1 < p < 2∗ − 1) and the uniqueness of solution to (P+) in the super-
critical case.
The main results we provide are the following

Theorem 0.1. Assume that 1 < p < 2∗ − 1. Then problem (P+) has no radial
solution.

Denote by D1,2(RN ) the space obtained as the closure of C∞0 (RN ) with re-
spect to the L2-norm of the gradient.

Theorem 0.2. Assume that p > 2∗ − 1. Then problem (P+) has infinitely many
(radial) solutions not belonging to D1,2(RN ).

Differently from [8], our approach to the equation is not variational. We
reduce the PDE to an ODE by looking only for radial solutions of (P+), then
we study the related Cauchy problem analyzing the behaviour of the solution
in relation with the choice of the initial datum in R+. To be more explicit, for
any ξ > 0 we will consider in R+ the problem

(
u′√

1−(u′)2

)′
+ N−1

r
u′√

1−(u′)2
+ |u|p−1u = 0

u′(0) = 0,
u(0) = ξ

(C)

and we will look for global positive solutions. Some not so hard computations
show that this type of solutions vanishes at infinity, so they are connected by a
one-to-one correspondence to radial solutions of (P+).

According to a classical definition (see for example [6, 15, 20] ), in the sequel
we will call ground states the solutions to (P+). For completeness we recall that,
up to our knowledge, besides [8] the problem of existence of ground state so-
lutions for equations involving our operator has been treated only in [1], when
nonlinearity up is replaced by something behaving, for instance, like −λu+ up

and in [7], where equation

−∇ ·

(
∇φ√

1− |∇φ|2

)
= ρ

is considered for ρ corresponding to an assigned extended charge density or a
superposition of deltas.

For both our results we take advantage of a very useful identity found by
Erbe and Tang [16] and generalized in [21] by Pucci and Serrin and of a “in-
tersection point theorem” modeled on a similar one due to Franchi, Lanconelli
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and Serrin [17].
As we will explain better later, the Erbe-Tang identity makes clear the crucial
role played by the critical value 2∗ when we study our problem in RN . On the
other hand, it is known from [4, Example 5] that, assuming Dirichlet conditions
on boundary for the same problem set in a ball, existence of positive radial so-
lution holds independently from the value of p > 1, just requiring that the ball
has a sufficiently large radius.
We emphasize the fact that the results we are going to prove agree with what
we expect comparing with the analogous results concerning existence and mul-
tiplicity of ground states for the Lane-Emden equation

−∆u = up. (1)

However some remarks are in order.
We point out that our study is restricted to radial functions, so that the

nonexistence result we get for p < 2∗ − 1 is not so strong as that obtained
for Lane-Emden equation in [18, Theorem 1.1]. Precisely, we are not able to
exclude the existence of nonradial ground states, since at this time no radial
symmetry result is available for solutions of (P+).
In the proof of Theorem 0.1 we take advantage of the study made in [21] on the
number of points where the graphs of two radial ground states related with an
ordinary quasilinear equation intersect. The arguments we apply are similar
to those usually used to prove uniqueness of positive solution theorems. As
a byproduct of Theorem 0.1 we deduce that every global solution of (C) with
p < 2∗ − 1, changes sign.

When we deal with Lane-Emden equation, it is easy to verify that, exploit-
ing the invariance with respect to suitably rescaled solutions, if we assume a
radial ground state u1 verifying u1(0) = 1 exists, then we obtain ground states
such that u(0) = ξ for arbitrary ξ ∈ R+ simply setting u(|x|) = ξu1(ξ(p−1)/2|x|).
Thus we deduce that uniqueness of radial ground state never holds since either
there isn’t any (this is the case when p < 2∗ − 1), or they are infinitely many
(case occurring for 2∗ − 1 6 p).
On the contrary, in our situation it is soon seen that the structure of the equation
destroys the invariance with respect to any type of inside/outside rescaling, so
that we can not deduce multiplicity for p > 2∗−1 just from the existence proved
in [8]. Moreover, sign-changing solutions of (C) are present also in the case
p > 2∗ − 1 (Example 5 in [4]) and this is a significant difference with respect to
the Cauchy problem related with the ODE radial formulation of Lane-Emden.
In order to prove Theorem 0.2, we will develop a different argument based
on the comparison between the behaviour of solutions of (C) and that of the
solutions of the Cauchy problem related with the ODE radial formulation of
Lane-Emden.
We will show in a more detailed way in the sequel that, roughly speaking, the
smaller initial datum ξ in (C) is, the more similar the behaviour of the solution
of (C) is with respect to that coming from the same Cauchy problem with the
Lane-Emden equation. For this reason we understand why, when p > 2∗ − 1,
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we observe the presence of ground states just for small values of ξ whereas
from a ξ̄ on, all global solutions of (C) are sign-changing.
We complete the study on radial ground state solutions comparing them with
the one found by Bonheure, De Coster and Derelet in [8]. We underline that,
as stated in the final part in Theorem 0.2, none of ground states we are finding
corresponds to that found in [8], being this latter inD1,2(RN ). From a more pre-
cise analysis of the asymptotic behaviour at infinity we deduce the following
result

Theorem 0.3. Let p > 2∗ − 1 and u be a radial solution to (P+). Then one of the
following possibilities holds

1. u ∈ D1,2(RN ) and u(x) = O(1/|x|N−2) for |x| → +∞;

2. u /∈ D1,2(RN ) and there exist c1, c2 > 0 such that c1/|x|
2N

(N−1)(p+1)−2N 6

u(x) 6 c2/|x|
2
p−1 definitely for |x| → +∞.

Moreover there exists no α > 2/(p − 1) such that, definitely, u(r) 6 c/rα for
some c > 0.

In previous theorem and in the following, the word definitely is refered to
those properties which hold for any x ∈ RN satisfying |x| > M , with M > 0
choosen sufficiently large.

Finally, our focus shifts to global sign-changing solutions of (C). The pres-
ence both in the subcritical and in the supercritical case of this type of solutions
of (C) justifies a deeper study on their asymptotic behaviour at infinity. In par-
ticular, we are interested in looking for the existence of the so called bound state
solutions, namely those solutions of a partial differential equation which vanish
at infinity. Since we do not know anything about the sign of solutions found in
the multiplicity theorem proved in [8] and, on the other hand, we do not know
if the solutions derived from [4] and extended in the whole R+ go to zero as r
goes to infinity, the following result on the existence of sign-changing bound
state solutions is completely new

Theorem 0.4. Every sign-changing solution of (C) is global and vanishes at infinity.
In particular the problem

∇ ·
[

∇u√
1−|∇u|2

]
+ |u|p−1u = 0,

u±(x) 6= 0, in RN ,
u(x)→ 0, as |x| → ∞,

(P±)

has infinitely many (radial) solutions for any p > 1.

After discussing in section 1 some interesting properties of our solutions by
studying the Cauchy problem they solve, in the succeeding sections we will
prove our results, following this scheme: in section 2 we look for solutions to
(P+) showing nonexistence and multiplicity theorems; in section 3 we prove
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Theorem 0.3 after a preliminary analysis on the differences arising when we
compare our solutions to that in [8]; in section 4, finally, we perform an ana-
lytic study of the sign-changing radial solutions asymptotic behaviour to prove
Theorem 0.4.

In the sequel we shall use the standard notations and definitions for the
Lebesgue and Sobolev spaces endowed with their usual norms.
Moreover we will call c a positive constant suitably changing from line to line.
We finally point out that, since we are considering only functions with radial
symmetry, we will use equivalently the notations u(x) and u(r) respectively
for x ∈ RN and r > 0 such that |x| = r.

1. The Cauchy problem

It is well known that, radial solutions of the equation in problem (P±) can
be found looking for solutions of (C) and replacing the variable r with |x|.
Thanks to the local lipschitzianity of the pure power function, we classically
determine local solutions uξ for any ξ > 0, namely solutions defined in a max-
imal interval [0, Rξ[.
In order to simplify the writing, we will introduce the following notations in-
herited from [21].
We set ρ(r) = |u′(r)| and define the following functions in C1([0, 1[,R)

A(ρ(r)) = 1/
√

1− ρ2(r),

Ω(ρ(r)) = ρ(r)/
√

1− ρ2(r),

G(ρ(r)) =

∫ ρ(r)

0

t√
1− t2

dt = 1−
√

1− ρ2(r)

and

f(t) = |t|p−1t F (t) =

∫ t

0

f(s) ds =
1

p+ 1
|t|p+1

in R.
Multiplying (

u′√
1− (u′)2

)′
+
N − 1

r

u′√
1− (u′)2

+ |u|p−1u = 0 (2)

by u′ and integrating on [0, r] with r < Rξ, we have

H(ρ(r)) + (N − 1)

∫ r

0

ρ(s)Ω(ρ(s))

s
ds = F (ξ)− F (u(r)), (3)

where we have set

H(ρ) =
1−

√
1− ρ2√

1− ρ2
∈ C1[0, 1[.
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From identity (3) we deduce various properties on the solution of (C). First
of all, since the right hand side of the equation must be positive, certainly we
have |u(r)| < ξ in ]0, Rξ[. Moreover we clearly observe that for all r ∈ [0, Rξ[,
we have

0 6 max

(
H(ρ(r)), (N − 1)

∫ r

0

ρ(s)Ω(ρ(s))

s
ds

)
6 F (ξ). (4)

Proposition 1.1. For any ξ > 0, denote by uξ the solution of (C) corresponding to
ξ > 0 and by ρξ the absolute value of its derivative. Then

1. there exists aξ ∈]0, 1[ such that

ρξ(r) 6 aξ, in [0, Rξ[; (5)

2. Rξ = +∞ and then uξ is a global solution;

3. there exists C > 0 such that supr>0 ρξ(r) 6 Cξ
p+1
2 ;

4. the integral
∫ +∞

0
ρξ(s)Ω(ρξ(s))

s ds converges.

Proof. 1. and 4. come trivially from (4), the definition ofH and the positiveness
of Ω. 2. is deduced by 1. To prove 3. we again use (4) and the definition of F .
�

As usual, an alternative formulation of equation (2) is obtained multiplying
it by rN−1 so that we have(

rN−1 u′√
1− (u′)2

)′
= −rN−1|u|p−1u

and then, integrating and using initial condition on u′, we have

u′(r)√
1− (u′(r))2

= − 1

rN−1

∫ r

0

sN−1|u(s)|p−1u(s) ds, (6)

reading the previous equality in the sense of the limit when r = 0.
Observe that, since ξ > 0, certainly there exists a right neighborhood of 0

where u(r) > 0. Moreover, by (6), we have that u decreases as far as u remains
positive. This fact contributes to arrive to the following result

Proposition 1.2. A solution of (C) either is a ground state, or is sign-changing.

Proof. From 2. in Proposition 1.1, we already know that every solution of (C)
is global. Now, if u is a positive solution, by (6) certainly it converges to some
nonnegative value as r goes to infinity. Calling l this value and assuming l > 0,
from equation (2) and by (5) we would deduce that, definitely, u′′(r) 6 −δ for
some δ > 0. This fact would contradict boundedness of u′. �
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So for any u solution of (C), it is a useful to define by R0(u) the point where
u vanishes the first time, namely

R0(u) := inf{r > 0 | u(r) 6 0} ∈]0,+∞].

2. Radial ground states: subcritical and supercritical case

This section is devoted to the proofs of Theorems 0.1 and 0.2. Before we
proceed, we need to underline the fact that the mean curvature operator sat-
isfies the conditions (1), (2) and (3) in [21], where ρ is meant as an element in
[0, 1[ instead of [0,+∞[. The different domain of A does not affect any way the
results we will take from [21], since, as already observed, the derivative of any
solution of our equation has its absolute value away from 1.
The characterizing feature in our equation is the presence of a nonlinear term
f(u) violating condition (c) in [21] where it was required the existence of a
number a > 0 such that f is negative in ]0, a[ and positive in ]a,+∞.[

In the following subsections we first present the already cited Erbe-Tang
identity in the general formulation as it appears in [21], then we treat separately
the subcritical and the supercritical case to prove, respectively, nonexistence
and multiplicity results.

2.1. A fundamental identity
Let us introduce the function P :]0,+∞[2×[0, 1[→ R

P (r, u, ρ) = rN [H(ρ) + F (u)]−NrN−1Ω(ρ)K(u), (7)

where K(u) = F (u)/f(u).
The following identity, displayed in [21, Proposition 1] (see also [16]), plays a
key role in the proof of Theorems 0.1 and 0.2.

Lemma 2.1. If u is a solution of (C), then, for any r ∈]0, R0(u)[,

d

dr
P (r, u(r), ρ(r)) = NrN−1ρ(r)Ω(ρ(r))

{
K ′(u(r))− G(ρ(r))

ρ(r)Ω(ρ(r))
+

1

N

}
.

The previous identity was proved for positive, nonincreasing solutions re-
lated to a class of quasilinear equations including ours.
Taking into account our specific situation, the identity can be written

d

dr
P (r, u(r), ρ(r)) = NrN−1ρ(r)Ω(ρ(r))

{
1

p+ 1
−

√
1− ρ2(r)

1 +
√

1− ρ2(r)
+

1

N

}
,

(8)
for any r ∈]0, R0(u)[.
In particular, we observe that, since√

1− ρ2

1 +
√

1− ρ2
6

1

2
, for any ρ ∈ [0, 1[ (9)
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and for any ε > 0 there exists δ > 0 such that

1

2
− ε 6

√
1− ρ2

1 +
√

1− ρ2
, for any ρ ∈ [0, δ], (10)

if we define

L(u, ρ) = K ′(u)− G(ρ)

ρΩ(ρ)
+

1

N

=
1

p+ 1
−

√
1− ρ2

1 +
√

1− ρ2
+

1

N
, (11)

then we have the following result

Lemma 2.2. The derivative dP
dr and the function L do not depend on u. Moreover, if

ρ 6= 0 on ]0, R0(u)[, they have the same sign and, according to the value of p > 1,
p 6= 2∗ − 1, one or the other of the following possibilities holds:

• either p 6 2∗ − 1, and then d
drP (r, u(r), ρ(r)) > 0 for any r ∈]0, R0(u)[,

• or p > 2∗ − 1, and then there exists δ > 0 such that d
drP (r, u(r), ρ(r)) < 0 in

{r ∈]0, R0(u)[| ρ(r) ∈]0, δ]}.

Proof. Taking into account (8) and (11), we get our conclusions by (9) and (10).
�

2.2. Case 1 < p < 2∗ − 1: nonexistence result
The scheme we will follow for proving Theorem 0.1 starts assuming by con-

tradiction the existence of a radial ground state ū such that ū(0) = ξ̄. Then we
will show that, at the same time, all solutions of (C) corresponding to an initial
datum ξ ∈]0, ξ̄[ are ground states and there exists ξ̃ > 0 such that all solutions
of (C) corresponding to an initial datum ξ ∈]0, ξ̃[ are sign-changing: obviously
a contradiction.
The following Lemma derives from simple computations

Lemma 2.3. If u is a solution of (2), then for any λ > 0 the function uλ(r) =

λ−
1
2pu(λ−

p−1
4p r) solves(

w′√
1− ε(w′)2

)′
+
N − 1

r

w′√
1− ε(w′)2

+ |w|p−1w = 0, (12)

with ε = λ
p+1
2p .

Conversely, if w is a solution of (12), uε(r) = ε
1
p+1w(ε

p−1
2(p+1) r) solves (2).

9



Remark 2.4. The relation between solutions of (2) and (12) was firstly exploited by
Peletier and Serrin [20] to study the problem concerning the existence of a ground state
solution for the prescribed mean curvature equation. We wish just to emphasize that
the smaller ε is, the better equation (12) approximates the ODE radial formulation of
(1).

Lemma 2.5. If 1 < p < 2∗ − 1, there exists ξp > 0 such that for any ξ ∈]0, ξp] the
solution of (C) is sign-changing.

Proof. Consider v1, the solution of the Cauchy problem v′′ + N−1
r v′ + |v|p−1v = 0

v′(0) = 0,
v(0) = 1.

(13)

It is well known that v1 vanishes at a certain R̄ and v′1(R̄) < 0. Let R be close
to R̄ such that v1(R) < 0. We set δ = −v1(R)/2. Since (12) is a regular pertur-
bation of the Lane-Emden equation (for ε = 0 the equations coincide), we can
find ε̄ > 0 sufficiently small such that for any ε ∈]0, ε̄], the solution wε of the
Cauchy problem

(
w′√

1−ε(w′)2

)′
+ N−1

r
w′√

1−ε(w′)2
+ |w|p−1w = 0,

w′(0) = 0,
w(0) = 1,

(14)

is such that |v1(r)− wε(r)| < δ in [0, R].
Of course we deduce that every wε is a sign-changing solution of (12) which
means, by Lemma 2.3, that uε(r) = ε

1
p+1wε(ε

p−1
2(p+1) r) is a sign-changing solution

of (C) with ξ = ε
1
p+1 ∈]0, ε̄

1
p+1 ]. �

We remark that the following result holds independently from the value of
p > 1, and this fact will be fundamental as we later prove Theorem 0.4 in
section 4.

Lemma 2.6. Assume ū is a ground state solution of (C). Then, if u is a sign-changing
solution of (C) such that u(0) < ū(0), the graphs of u and ū intersect somewhere in
[0, R0(u)]×]0,+∞[.

Proof. Assume by contradiction that u is a solution as in the statement and
the set of points in [0, R0(u)]×]0,+∞[ where the graphs of u and ū intersect is
empty.
Set ξ̄ = ū(0) and ξ = u(0). Since ū and u are decreasing respectively in R+ and
in [0, R0(u)], we can define the functions r̄(u) and r(u) inverse respectively of
ū and u, the first defined into ]0, ξ̄], the second into [0, ξ]. Observe that, since
u′(R0(u)) < 0 and limr→+∞ ū′(r) = 0− (the proof of this latter is the same as in
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[6, pg. 146]), then

lim
u→0+

r′(u) = lim
u→0+

1

u′(r(u))
=

1

u′(R0(u))
> −∞,

lim
u→0+

r̄′(u) = lim
u→0+

1

ū′(r̄(u))
= −∞.

Then there exists η > 0 such that, if u ∈]0, η], we have (r̄ − r)′(u) < 0.
Moreover, since ū′(r̄(ξ)) < 0 and limu→ξ u

′(r(u)) = 0− we have

lim
u→ξ−

r̄′(u) = lim
u→ξ−

1

ū′(r̄(u))
=

1

ū′(r̄(ξ))
> −∞,

lim
u→ξ−

r′(u) = lim
u→ξ−

1

u′(r(u))
= −∞,

and then, if η > 0 is sufficiently small, we have (r̄− r)′(u) > 0 for u ∈ [ξ− η, ξ[.
We deduce that, necessarily, the function r̄ − r has a local minimum in the
interval ]0, ξ[.
On the other hand, arguing exactly as in [17, Lemma 3.3.1], we have that both
r̄ = r̄(u) and r = r(u) statisfy in the interval ]0, ξ[ the equation

E

(∣∣∣∣ 1

su

∣∣∣∣) suu − N − 1

s
A

(∣∣∣∣ 1

su

∣∣∣∣) s2
u − ups3

u = 0,

where we have set E(ρ) = Ω′(ρ).
Then, if ũ ∈]0, ξ[ was a critical point of r̄− r, computing the equations in ũ and
subtracting one to the other, we should obtain the following relation (observe
that r̄u(ũ) = ru(ũ))

(r̄ − r)uu(ũ) = (N − 1)Q

(∣∣∣∣ 1

r̄u(ũ)

∣∣∣∣)( 1

r̄(ũ)
− 1

r(ũ)

)
r̄2
u(ũ), (15)

where we have assumed the notation Q = A/E.
From (15) we deduce that, since our contradiction assumption implies that
r̄ > r, the critical point must be a maximum. �

Lemma 2.7. Let 1 < p 6 2∗−1 and assume ū is a ground state solution of (C). Then,
if u is a sign-changing solution of (C), the graphs of u and ū can intersect in at most
one point in [0, R0(u)]×]0,+∞[.

Proof. We deduce the conclusion applying exactly the same arguments used
in [21, Proof of Theorem 1. Part II]. We just make the reader note that, even if
in [21] the authors prove the statement for two ground states (and then both
everywhere positive), their proof works fine alike if we assume that the solu-
tions graphs intersect twice before the sign-changing solution graph touches
the axis. �
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Now we are ready for the following

Proof of Theorem 0.1. Suppose by contradiction that there exists a radial so-
lution ū to (P+) and set, with abuse of notation, ū(r) = ū(x) for |x| = r.
By Lemma 2.6 and Lemma 2.7, all solutions of (C) corresponding to ξ ∈]0, ū(0)[
are ground states since, otherwise, we would find a sign-changing solution vi-
olating one of the two previous lemmas.
On the other hand we can find infinitely many sign-changing solutions of (C)
corresponding to ξ ∈]0, ū(0)[ by Lemma 2.5.

Of course this is a contradiction deriving from having supposed the exis-
tence of a radial ground state solution. �

2.3. Case p > 2∗ − 1: multiplicity result
Since for p supercritical we know that all radial solutions of (1) are ground

states, the idea that multiple ground state solutions could exist for (P+) arises
from the fact already noted in the proof of Lemma 2.5 that, for small values of
ξ > 0, solutions of (C) correspond to rescaled solutions of good approximations
of problem (13). Of course this observation alone is not sufficient to guarantee
what claimed in Theorem 0.2 since, no matter how small ε > 0 is, the solution
coming from (14) could, sooner or later, vanish at some R > 0. Our proof will
be based on a contradiction argument.

Proof of Theorem 0.2. Since p > 2∗ − 1, by Lemma 2.2 there exists δ > 0 such
that, taken any u solution of (C),

d

dr
P (r, u(r), ρ(r)) < 0 in {r ∈]0, R0(u)[| ρ(r) ∈ [0, δ]}. (16)

Choose ξ̄ > 0 such that, taking into account 3. of Proposition 1.1, it is small
enough to have

sup
ξ∈]0,ξ̄]

sup
r>0

ρξ(r) < δ. (17)

We claim that (uξ)ξ∈]0,ξ̄] is a family of ground states. Suppose by contradic-
tion that ξ̃ ∈]0, ξ̄] is such that uξ̃ is a sign-changing solution. Then, assuming
the notation R̃ = R0(uξ̃), from (7) we have

P
(
0, uξ̃(0), ρξ̃(0)

)
= 0 (18)

and, since uξ̃(R̃) = 0,

P
(
R̃, uξ̃(R̃), ρξ̃(R̃)

)
= R̃N [H(ρξ̃(R̃)) + F (uξ̃(R̃))]−NR̃N−1Ω(ρξ̃(R̃))K(uξ̃(R̃))

= R̃NH(ρξ̃(R̃)) > 0. (19)

12



Then, by (16) , (17), (18) and (19) we achieve the following contradiction

0 6 P
(
R̃, uξ̃(R̃), ρξ̃(R̃)

)
− P

(
0, uξ̃(0), ρξ̃(0)

)
=

∫ R̃

0

d

dr
P
(
r, uξ̃(r), ρξ̃(r)

)
dr < 0.

Finally, we deduce that all these solutions do not belong to D1,2(RN ) by what
is stated in Lemma 3.2 in the following section 3. Indeed, since the function
L(ρ(r)) is negative for all our solutions, the integral in b) in not null and we
conclude by c) (see next section for more details). �

3. Asymptotic behaviour of radial ground states solutions

In this section we want to analyze the decaying law at infinity of radial so-
lutions of (P+). Of course, by Theorems 0.1 and 0.2, all the contents are related
with the supercritical case p > 2∗ − 1, so we do not repeat anymore this fact in
the sequel.
It is our specific aim to compare solutions whose existence is proved by Theo-
rem 0.2 with that in [8, Theorem 1.1].

In what follows we characterize the solutions in terms of the integrability
of the function rN−1ρ(r)Ω(ρ(r))L(ρ(r)).

Lemma 3.1. If u is a radial solution of (P+) and u ∈ Lp+1(RN ) then∫ +∞

0

rN−1ρ(r)Ω(ρ(r))L(ρ(r)) dr = 0.

Proof. By (6),

ρ(r) 6
1

rN−1

∫ r

0

sN−1up(s) ds

6
1

rN−1

(∫ r

0

sN−1up+1(s) ds

) p
p+1
(∫ r

0

sN−1 ds

) 1
p+1

6 c
r
N
p+1

rN−1
=

c

rN−1− N
p+1

, (20)

where the constant c > 0 depends on ‖u‖Lp+1 .
Since limr→+∞ u(r) = 0, we have

u(r) 6
∫ +∞

r

ρ(r) ds 6
c

rN−2− N
p+1

. (21)

Then, by 1. of Proposition 1.1, (20) and (21),

rNH(ρ(r)) 6 crNρ2(r) 6 cr−N+2+ 2N
p+1 → 0,

rNF (u(r)) 6 crNup+1(r) 6 cr2N−(N−2)(p+1) → 0,

rN−1Ω(ρ(r))K(u(r)) 6 crN−1ρ(r)u(r) 6 cr
2N
p+1−N+2 → 0,

13



as r goes to +∞.At this point we refer to (7), (8) and (11) to conclude as follows∫ +∞

0

NrN−1ρ(r)Ω(ρ(r))L(ρ(r)) dr

= lim
r→+∞

rN [H(ρ(r)) + F (u(r))]−NrN−1Ω(ρ(r))K(u(r)) = 0.

�

Lemma 3.2. Let u be a radial solution of (P+). Then the following statements are
equivalent:

a)
∫ +∞

0
rN−1ρ(r)Ω(ρ(r))L(ρ(r)) dr ∈ R,

b)
∫ +∞

0
rN−1ρ(r)Ω(ρ(r))L(ρ(r)) dr = 0,

c) u ∈ D1,2(RN ).

Proof. b)⇒ a) is obvious.
Let us prove a) ⇒ c). Since rN−1ρ(r)Ω(ρ(r)) ∈ L1[0,+∞], in view of (5) we
deduce∇u ∈ L2(RN ). Now, since we also know that u ∈ L1

loc(RN ) (indeed u is
continuous) and meas(|u| > α) < +∞ for any α > 0 (since limr→+∞ u(r) = 0),
by [10, Remark 3] we have u ∈ D1,2(RN ).
c) ⇒ b) comes from the embedding D1,2(RN ) ↪→ L2∗(RN ) and the bounded-
ness of u. Indeed we infer that u ∈ Lp+1(RN ) and then we conclude by Lemma
3.1. �

Remark 3.3. Since we have that limr→+∞ u′(r) = 0 (the proof is the same as in
[6, pg. 146]), we deduce that definitely L(ρ(r)) < 0. As a consequence, we have
that if any among a, b or c in the previous lemma does not hold, then, necessarily∫ +∞

0
rN−1ρ(r)Ω(ρ(r))L(ρ(r)) dr = −∞.

Theorem 3.4. Let u be a radial solution to (P+). Then

u ∈ Lp+1(RN ) ⇐⇒
∫ +∞

0

rN−1ρ(r)Ω(ρ(r))L(ρ(r)) dr = 0.

Proof. The conclusion comes from Lemma 3.1 and Lemma 3.2. �

Previous theorem allows us to conclude that solution found in [8], which we
know is in Lp+1(RN ), is different from any radial ground state solution found
in this paper. Indeed, as showed in the proof of Theorem 0.2, our ground states
are characterized by the fact that L(ρ(r)) < 0 for any r > 0 and then, of course,∫ +∞

0
rN−1ρ(r)Ω(ρ(r))L(ρ(r)) dr < 0.

In particular by Remark 3.3,
∫ +∞

0
rN−1ρ(r)Ω(ρ(r))L(ρ(r)) dr = −∞.

14



An interesting question deserving some more investigation is concerned
with uniqueness of radial ground state solution belonging toLp+1(RN ). At this
time we are not able to say anything about, remaining this an open problem.

Now we proceed studying the asymptotic behaviour at infinity of radial
ground state solutions.

Theorem 3.5. If u is a radial solution to (P+) such that u ∈ Lp+1(RN ), then u(r) =
O
(

1
rN−2

)
.

Proof. First of all, observe that by (6) and 1. of Proposition 1.1, we have for a
suitable c > 0

ρ(r) >
c

rN−1

∫ r

0

sN−1up(s) ds >
c

rN−1

∫ 1

0

sN−1up(s) ds, for any r > 1.

We deduce the following estimate, holding for r > 1

u(r) =

∫ +∞

r

ρ(s) ds >
c

rN−2
,

being c a positive constant depending on ‖u‖Lp(B1) and on the positive con-
stant a in 1. of Proposition 1.1.

Now, by Lemma 3.2 and Theorem 3.4, we deduce that if u is a radial ground
state solution belonging to Lp+1(RN ), then certainly u ∈ D1,2(RN ). Thus u ∈
L2∗(RN ) and, since u ∈ L∞(RN ), we conclude that u ∈ Lq(RN ) for any q > 2∗.
At this point there are two possibilities.

If p > 2∗, then, starting from (6), we get the following inequality

ρ(r) 6
1

rN−1

∫ r

0

sN−1up(s) ds,

which trivially implies that, for a suitable positive constant c depending on
‖u‖Lp(RN ) and for any r > 0 we have

u(r) 6
c

rN−2
.

If 2∗ − 1 < p < 2∗, then Holder inequality yields

ρ(r) 6
1

rN−1

∫ r

0

sN−1up(s) ds

6
1

rN−1

(∫ r

0

sN−1 ds

) 2∗−p
2∗
(∫ r

0

sN−1u2∗(s) ds

) p
2∗

6
c

rN−1
r
N(2∗−p)

2∗ =
c

r
Np
2∗ −1

, for any r > 0,

from which we deduce that

u(r) 6
c

r
Np
2∗ −2

, for any r > 0, (22)
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being c > 0 a constant depending on ‖u‖L2∗(RN ).
Observe that

Np

2∗
− 2 >

N − 2

2
=
N

2∗
>

2

p− 1
,

and then, by (22), there exists α > 2
p−1 such that u(r) 6 c/rα for any r > 0. By

(6) we deduce that, for r > 1,

ρ(r) 6
c

rN−1

(
K +

∫ r

1

1

sαp−N+1
ds

)
(23)

where we have set K =
∫ 1

0
sN−1up(s) ds.

If αp > N, we easily conclude as in the case p > 2∗. So we suppose αp 6 N
and computing the integral in (23), we get

ρ(r) 6
c

rαp−1
, for any r > 0.

We deduce that for any r > 0

u(r) 6
c

rαp−2
.

Observe that, since α > N/2∗, the decay estimate we have obtained improves
(22).
Now, repeating the computations made above with αp−2 in the place of α, we
again achieve easily our conclusion if (αp − 2)p > N, otherwise, as before, we
get a new improved decay estimate as follows

u(r) 6
c

r(αp−2)p−2
=

c

rαp2−2p−2
, for any r > 0.

Iterating, at the n-th step we have

u(r) 6
c

rαpn−2pn−1−...−2
, for any r > 0.

We compute

αpn − 2pn−1 − . . .− 2 = αpn − 2

n−1∑
k=0

pk = αpn +
2

p− 1
(1− pn)

and then, since α > 2/(p− 1) and p > 1, the sum diverges positively and must
achieve a value β exceeding N

p in a finite number of steps. When this happens,
we will deduce our conclusion using inequality (23) with β in the place of α. �

Theorem 3.6. Suppose u is a radial solution of (P+) such that u /∈ Lp+1(RN ). Then
there exist c1 > 0 and c2 > 0 such that c1/r

2N
(N−1)(p+1)−2N 6 u(r) 6 c2/r

2
p−1 , for any

r > 1.
Moreover there exists no α > 2/(p − 1) such that, definitely, u(r) 6 c/rα for some
c > 0.
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Proof. By Theorem 3.4, Remark 3.3 and Lemma 2.1, we have

lim
r→+∞

{
rN [H(ρ(r)) + F (u(r))]−NrN−1Ω(ρ(r))K(u(r))

}
= −∞.

In particular, definitely, we have

H(ρ(r)) + F (u(r)) 6
N

r
Ω(ρ(r))K(u(r)), (24)

and then, by the definitions ofH,F,Ω andK, we deduce (coming estimates are
to be understood definitely for r large)

1−
√

1− ρ2(r) 6
N

p+ 1

ρ(r)u(r)

r

up(r) 6
N

r

ρ(r)√
1− ρ2(r)

.

Now, since 1
2ρ

2(r) 6 1 −
√

1− ρ2(r), by the first of the previous inequalities
we have

1

2
ρ(r) 6

N

p+ 1

u(r)

r
,

and, comparing with the second one,

up(r) 6
2N2

p+ 1

u(r)

r2
√

1− ρ2(r)
.

By 1. of Proposition 1.1, we conclude that for some c2 > 0, we have u(r) 6

c2/r
2
p−1 .

Now we proceed with the below estimate, again assuming that the inequal-
ities we obtain hold definitely for large r. Deriving in (3), we have

[H(ρ(r)) + F (u(r))]′ = −(N − 1)
ρ(r)Ω(ρ(r))

r
,

which, integrated in (r,+∞), gives

[H(ρ(r)) + F (u(r))] = (N − 1)

∫ +∞

r

ρ(s)Ω(ρ(s))

s
ds,

where we have used also the fact that limr→+∞H(ρ(r)) + F (u(r)) = 0.
Comparing with (24), and taking into account the definition of K, we have

(N − 1)

∫ +∞

r

ρ(s)Ω(ρ(s))

s
ds 6

N

p+ 1

Ω(ρ(r))u(r)

r
. (25)

Now, if we set h(r) =
∫ +∞
r

ρ(s)Ω(ρ(s))
s ds, we transform (25) in the following

differential inequality which holds in [R,+∞[ for R > 0 sufficiently large:

ρ(r)

u(r)
6 − N

(N − 1)(p+ 1)

h′(r)

h(r)
.
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Then, integrating in [R, r], we have the following inequalities, holding for a
suitable c > 0

u(r) > c[h(r)]
N

(N−1)(p+1) = c

[
H(ρ(r)) + F (u(r))

N − 1

] N
(N−1)(p+1)

> c[H(ρ(r))]
N

(N−1)(p+1)

> cρ
2N

(N−1)(p+1)

that is, for a suitable c > 0 and r > R,

− u′

u
(N−1)(p+1)

2N

6 c.

Integrating in [R, r], we have that there exists c > 0 such that

(
2N

(N − 1)(p+ 1)− 2N

)(
1

u(r)

) (N−1)(p+1)
2N −1

6 cr.

Therefore we have that, for r > R,

(u(r))
(N−1)(p+1)−2N

2N >
c

r

which leads to our conclusion.
The final sentence derives directly from the arguments developed in the

proof of Theorem 3.5, assuming by contradiction the existence of α > 2
p−1 such

that, definitely, u(r) 6 c/rα, and repeating the proof starting from (22) where
one sets α in the place of Np2∗ − 2. �

Proof of Theorem 0.3. It is a consequence of Theorems 3.5 and 3.6.

4. Radial sign-changing bound states

We recall that, with bound states, we mean solutions going to zero as r goes
to +∞. This section is devoted to showing that, all radial sign-changing solu-
tions are bound state. Now, since all radial solutions of our mean curvature
equation are sign-changing when p is taken subcritical, we would provide a
multiplicity result characterizing any solution for p < 2∗ − 1. As regards su-
percritical case, a first important result, actually holding for any p > 1, is the
following

Theorem 4.1. If p > 1, then there exists ξ̃ > 0 such that any solution of (C) corre-
sponding to ξ > ξ̃ is sign-changing.
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Proof. By [4, Example 5], we know that there exists a sufficiently large R̃ > 0
such that problem

(
u′√

1−(u′)2

)′
+ N−1

r
u′√

1−(u′)2
+ up = 0,

u′(0) = 0,

u(R̃) = 0,

possesses a positive solution v.
Now, we set ξ̃ = R̃ and pick any ξ > ξ̃. By 1. of Proposition 1.1, we easily
deduce that the graph of uξ never intersects that of v in [0, R̃]×]0,+∞[. Then,
since Lemma 2.6 states that uξ can not be a ground state, by Proposition 1.2 it
is sign-changing. �

Now we study the behaviour at infinity of sign-changing solutions.

Theorem 4.2. If u = uξ is solution of (C), then it is global and lim
r→+∞

u(r) = 0.

Proof. By 2. of Proposition 1.1, certainly all solutions are global. By Proposition
1.2, we only have to prove the following claim: every sign-changing solution
of (C) originates a solution to (P±).
So, let u be a sign-changing solution and A := {r > 0 | u(r) = 0}. We distin-
guish the two possibilities and show that, in any case, limr→+∞ u(r) = 0.

1st case: The set A has a maximum denoted by R̂.

Suppose, to fix ideas, that u(r) < 0 in ]R̂,+∞[ and, consequently, u′(R̂) <
0.

If the sign of u′ does not change anymore, we have

u(r)↘ k ∈ [−∞, 0[.

Actually k 6= −∞ since u is bounded (otherwise in (3) the difference
F (ξ) − F (u(r)) becomes somewhere negative) and then, using (2) and
recalling (5), we have limr→+∞ u′′(r) > 0, and then limr→+∞ u′(r) = +∞,
obviously a contradiction.

If u′(R) = 0 at some R > R̂, then for any r > R we have u′(r) > 0 since
no more critical point can be present at the right of R (otherwise, since u
is definitely negative, by (2) at this point we should have minimum and
this is impossible).
We again deduce that there exists k = limr→+∞ u(r) 6 0 and, supposing
k < 0, we achieve a contradiction as before.

2nd case: The set A does not have a maximum.

Set M = (N − 1)
∫ +∞

0
ρ2(s)

s
√

1−ρ2(s)
ds which is in R by 4. of Proposition 1.1.

By (4), certainly M 6 ξp+1

p+1 . Observed that if M = ξp+1

p+1 then we conclude
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by (3), we suppose by contradiction M < ξp+1

p+1 . Set ε = k
(
ξp+1

p+1 −M
)

where k > 0 is such that, taking into account (5) and the fact that H(ρ) =
O(ρ2) for ρ→ 0+, for any r > 0 we have

ρ(r) > kH(ρ(r)). (26)

Now, if r̄ ∈ A, since ρ(r) is bounded, there exists η > 0 not depending on
the choice of r̄ such that

1

p+ 1
|u(r)|p+1 <

ε

2k
in
[
r̄ − η

2
, r̄ +

η

2

]
.

Then, by (3), for any r ∈
[
r̄ − η

2 , r̄ + η
2

]
we have

ρ(r) > k

(
1

p+ 1
ξp+1 −M − ε

2k

)
=
ε

2
. (27)

Observe that, by (27), A can be organized as an increasing divergent se-
quence (rn)n>1.

Now we would obtain a uniform superior estimate for the distance be-
tween two consecutive points in A, say R1 and R2, with R1 sufficiently
large. To fix ideas, we suppose u(r) > 0 in ]R1, R2[.
Set α > 0 such that 1

p+1 (ξp+1 − αp+1)−M > 0, γ ∈]0, α[ and R̃ > 0 such
that for any r > R̃ we have

N − 1

r

ρ(r)√
1− ρ2(r)

< γ.

For any r > R̃ such that up(r) > α, by (2) we have

u′′(r)√
(1− ρ2(r))3

6 −α+ γ < 0;

moreover for any r > 0 such that up(r) < α, by (3) we have

H(ρ(r)) >
1

p+ 1
(ξp+1 − αp+1)−M > 0.

By these computations, taking into account (5) and (26), we conclude that
there exists δ > 0 such that, for any r > R̃, we have

• u′′(r) 6 −δ whenever up(r) > α,

• ρ(r) > δ whenever up(r) < α.

Starting from R1 which we assume larger than R̃, by the second estimate
we deduce that the largest possible interval before u passes the level p

√
α

is [R1, R1 + p
√
α/δ[.
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By the second estimate, considering the parabola Γ having second deriva-
tive −δ and passing through the point (R1 + p

√
α/δ, p

√
α) with velocity

1, we can claim that certainly the graph of u touches a second time the
line u = p

√
α before the parabola Γ does. Then the width of the interval

{r ∈]R1, R2[| u(r) > p
√
α} is less than 2/δ.

Finally, using again the second estimate in the same way as before, we de-
duce that the width of the second connected component of {r ∈]R1, R2[|
u(r) < p

√
α} is less than p

√
α/δ.

So, if we set σ = 2
δ (1 + p

√
α), we have that, for any n > n0 with n0 large

enough such that rn0 > R̃,

rn+1 − rn 6 σ. (28)

By (27) and (28),

M

N − 1
=

∫ +∞

0

ρ2(s)

s
√

1− ρ2(s)
ds

> lim
n

∑
n>n0

∫ rn+ η
2

rn− η2

ρ2(s)

s
√

1− ρ2(s)
ds

> lim
n

ηε2

2
√

4− ε2

∑
n>n0

1

rn + η/2

> lim
n

ηε2

2
√

4− ε2

∑
n>0

1

rn0 + nσ + η/2
= +∞.

This is obviously a contradiction by which we conclude.

�

Proof of Theorem 0.4. It is a consequence of Theorems 4.1 and 4.2.
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