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A Regulatory Path Associated with X-Linked
Intellectual Disability and Epilepsy Links
KDM5C to the Polyalanine Expansions in ARX

Loredana Poeta,1,2 Francesca Fusco,1 Denise Drongitis,1 Cheryl Shoubridge,3,4 Genesia Manganelli,1,5

Stefania Filosa,1,5 Mariateresa Paciolla,1,2 Monica Courtney,6,7 Patrick Collombat,6,7 Maria Brigida Lioi,2

Jozef Gecz,3,4 Matilde Valeria Ursini,1 and Maria Giuseppina Miano1,*

Intellectual disability (ID) and epilepsy often occur together and have a dramatic impact on the development and quality of life of

the affected children. Polyalanine (polyA)-expansion-encoding mutations of aristaless-related homeobox (ARX) cause a spectrum

of X-linked ID (XLID) diseases and chronic epilepsy, including infantile spasms. We show that lysine-specific demethylase 5C

(KDM5C), a gene known to be mutated in XLID-affected children and involved in chromatin remodeling, is directly regulated by

ARX through the binding in a conserved noncoding element. We have studied altered ARX carrying various polyA elongations in

individuals with XLID and/or epilepsy. The changes in polyA repeats cause hypomorphic ARX alterations, which exhibit a decreased

trans-activity and reduced, but not abolished, binding to the KDM5C regulatory region. The altered functioning of the mutants tested

is likely to correlate with the severity of XLID and/or epilepsy. By quantitative RT-PCR, we observed a dramatic Kdm5c mRNA downre-

gulation in murine Arx-knockout embryonic and neural stem cells. Such Kdm5c mRNA diminution led to a severe decrease in the

KDM5C content during in vitro neuronal differentiation, which inversely correlatedwith an increase in H3K4me3 signal.We established

that ARX polyA alterations damage the regulation of KDM5C expression, and we propose a potential ARX-dependent path acting via

chromatin remodeling.
The most common causes of X-linked intellectual

disability (XLID [MIM 300419]), after FMR1 (MIM

309550) mutations, are polyalanine (polyA)-tract-expan-

sion-encoding mutations in aristaless-related homeobox

(ARX [MIM 300382]).1,2 Additionally, ARX polyA-tract-

expansion alterations have frequently been found to be

associated with either frequent tonic seizures or spasms

(West syndrome or epileptic encephalopathy early infan-

tile 1 [EIEE1 (MIM 308350)])1–4 or with dystonic move-

ments, ataxia, and seizures (Partington syndrome [MIM

309510])1,2,5 in children with pediatric epilepsy. The

majority of ARX polyA individuals with pediatric seizures

are resistant to traditional antiepileptic drugs; their cogni-

tive development is thus affected, causing ID with

different degrees of severity.1,2 These particular epileptic

phenotypes have been primarily associated with a deficit

in the forebrain cerebrocortical-interneuron function,

and this condition has thus been designated as an ‘‘inter-

neuronopathy.’’6 A striking and selective gamma-amino-

butyric acid (GABA)ergic interneuronopathy was observed

in the neocortex of Arx-knockin polyA disease models.7,8

Located at Xp22.13, ARX is a homeobox gene encoding

a paired-type-homeodomain (paired-HD) transcription

factor (TF) of crucial significance for brain ontogenesis.1

It has been implicated in numerous human congenital

brain disorders.1,9–15 In humans, in-frame duplications

affecting polyA I and polyA II, two out of the four polyA
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amino acid tracts (polyA I, polyA II, polyA III, and polyA

IV), represent disease hot spots and have a strong tendency

to add coding trinucleotide repeats (GCN)n.
2,16,17 These

result in polyA-tract-expansion alterations, frequently

present in male children with XLID alone,15,18–21 XLID

associated with seizures (XLID with epilepsy),2,9,10 or

XLID associated with dysarthria and dystonia (West

syndrome or Partington syndrome).3,5,22–26 In affected

families, these duplications are stable during intergenera-

tional transmission and display a rare postmitotic insta-

bility.27 Hitherto, no alterations have been reported in

polyA III or polyA IV. Despite the fact that the pathoge-

netic mechanisms have recently been revealed for some

ARX missense mutations,28 contradictory results have

been obtained on the pathogenic consequences of ARX

polyA alterations in cellular21,29,30 and animal7,8,31 model

systems. To date, the functional disturbance of these

particular ARX alleles on human target genes has not

been established. In this study, we address this issue

through the discovery that elongations in the polyA tracts

of ARX perturb the expression of lysine-specific demethy-

lase 5C (KDM5C/JARID1C/SMCX [MIM 314690]).32,33

Located at Xp11.22, KDM5C encodes a histone demethy-

lase specific to dimethylated and trimethylated histone 3

lysine 4 (H3K4me2 and H3K4me3, respectively), which

are involved in chromatin remodeling.34 Notably, muta-

tions in KDM5C are emerging as a frequent cause of
zionale delle Ricerche, Naples 80131, Italy; 2University of Basilicata, Potenza

South Australia 5006, Australia; 4Department of Genetics and Molecular

Cura a Carattere Scientifico, Neuromed, Pozzilli 86077, Italy; 6Université
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XLID (MIM 300534),32,33 whose disease outcomes share

overlapping epileptic symptoms with those of the ARX

polyA alterations.32–34

By in silico search, we first verified the presence of the

ARX binding motif 50-TAATTA-3035 and/or a similar

sequence36 in the 50 and 30 conserved noncoding elements

(CNEs) of human KDM5C. We thereby identified three

putative ARX-binding sites (BD1, BD2, and BD3) in

a stretch of 1,124 bp, termed CNE-50JD, with a high nucle-

otide conservation (>75%) across four closely related

mammals: H. sapiens, C. familiaris, M. musculus, and

B. taurus (Figure S1, available online). CNE-50JD is located

6.44 Kb downstream of IQ-motif- and sec7-domain-con-

taining 2 (IQSEC2 [MIM 300522]), recently found to be

mutated in families affected by XLID (MIM 309530).37

Both KDM5C and IQSEC2 are head to tail with the first

exon of KDM5C and are located 7.45 Kb downstream of

the last exon of IQSEC2. The CNE-50JD sequence was

compared to TF-binding sites in TRANSFAC libraries.

Because human ARX and its murine counterpart might

have subtle differences in binding preference and

strength,36 we chose for further analysis the 10 nt palin-

dromic DNA sequence composed of an inverted 50-TAAT-
30 motif separated by two nucleotides 50-TAAT(N)2ATTA-3

0

(BD1); the 4 nt single-module 50-ATTA-30 (BD2); and the 4

nt single-module 50-TAAT-30 (BD3). The sequences of the

predicted binding sites are highly conserved and extremely

similar to the 50-TAATTA-30 motif recognized in mice on

the promoters of ARX-regulated genes35,36 (Figures S1

and S2) and to the consensus sequences recognized by

paired-HD TFs.38

We then sought to verify whether ARX transcriptionally

activates KDM5C. A luciferase reporter construct with the

CNE-50JD region of KDM5C (�1,001/þ73, pJD-full-Luc)

was transiently transfected into four different mammalian

cellular contexts (HeLa, SH-SY5Y, PC12, and P19 cells). We

thus confirmed that the CNE-50JD construct has real tran-

scriptional activity (Figure 1A) and that in cotransfection

with the pCMV expressing the wild-type (WT) ARX, its

activity increased significantly in all cell lines: 84% in

HeLa cells, 42% in SH-SY5Y cells, 80% in PC12 cells, and

31% in P19 cells (Figure 1A). Next, we examined the tran-

scriptional relevance of each individual putative binding

site. Luciferase analyses of the deleted constructs

(Figure 1B) carrying both BD1 and BD2 (pJD/BD1-2) or

just a single module (pJD/BD1 or pJD/BD2) (Figure 1B) in

cotransfection with WT ARX revealed that each of them

is required for the ARX-mediated activation of pJD-full-

Luc. In addition, BD1 and BD2 could act cooperatively.

Indeed, the transcriptional activity driven by pJD/BD1-2,

carrying both the BD1 and BD2 sites, was higher than

that in the constructs carrying the individual BD1 or BD2

site. It is noteworthy that pJD/BD3 and pJD/BD2-3 (data

not shown) were not activated, suggesting the presence

of a negative regulatory region located within the proximal

region �401/þ73 bp (Figure 1B). We also explored the

specific role of each site by studying site-mutated (SI)
The Americ
constructs carrying selective point mutations of one

(pJD/BD1_1�mut, pJD/BD1_2�mut, pJD/BD2mut, or pJD/

BD3mut) or two modules (pJD/BD1mut) at a time (Fig-

ure 1C). We observed that mutations at the potential

ARX-binding sites nullify the responsiveness of the CNE-

50JD element both in basal and ARX-activated conditions,

suggesting that all three binding sites, BD1, BD2, and BD3,

are required for KDM5C transcriptional activity. More

interestingly, mutations in each of the two half-BD1motifs

appeared to impair, but not completely abolish, the tran-

scriptional activity of CNE-50JD, suggesting that each

half-BD1 motif could be necessary, but not sufficient, to

control reporter expression, as observed for the WT BD1.

We then concluded that all predicted BD motifs (BD1,

BD2, and BD3) are required for the ARX-dependent and

-independent KDM5C transactivation. To determine

whether ARX is able to bind directly to each putative

binding site in the CNE-50JD region, we performed electro-

phoretic mobility-shift assays (EMSAs) and chromatin-

immunoprecipitation (ChIP) experiments. We observed

that Myc-tagged ARX bound specifically to the 32P-labeled

BD1 and BD2 probes (31-mer) and that those interactions

were attenuated by competition with an unlabeled WT

template (Figure S3). On the contrary, no band shift was

observed with the use of BD3 31-mer, suggesting that

this is not a true ARX binding site (Figure S3). Furthermore,

usingMyc-tagged ARX-expressing SH-SY5Y cells, we found

that the BD1 and BD2 fragments were significantly

enriched in immunoprecipitation reactions when an Myc

antibody was used, but not when an IgG antibody

was used (Figure 2A). A weak signal was observed

for BD3, whereas no enrichment was observed at the glyc-

eraldehyde-3-phosphate dehidrogenase (GAPDH [MIM

138400]) promoter. Quantification of the fold enrichment

of the ChIP for each binding site revealed that the BD1 and

BD2 regions were enriched at relatively higher levels (3.5-

fold and 2.9-fold, respectively), whereas no enrichment

signal (1.1-fold) was detected in the BD3 region

(Figure 2B). Given that the BD2 and BD3 sites are relatively

close to each other and because the sonicated DNA frag-

ments average approximately 500 bp in length, it is

possible that the binding to BD2 and BD3 cannot be quan-

tified as an independent event in this assay. Taken

together, the luciferase data, bind shift, and ChIP assays

suggest that KDM5C is undoubtedly a target of ARX, which

directly binds to the KDM5C BD1 and KDM5C BD2 sites

with a different efficiency. Instead, it is doubtful that

ARX binds, even if only weakly, to the predicted KDM5C

BD3 site. However, in line with the SI-construct data, the

BD3 motif could represent an additional regulatory site

required for the recruitment of a specific unknown

cofactor that synergizes with ARX to direct KDM5C tran-

scription. Interestingly, KDM5C/Kdm5c has not been

included among the ARX direct-target lists already identi-

fied in mice.35,36 There are several possible explanations

for this discrepancy. First, ARX could activate different

genetic programs reflecting the functional differences
an Journal of Human Genetics 92, 114–125, January 10, 2013 115



Figure 1. Analysis of the KDM5C Regulatory Region, CNE-50JD, Containing the ARX-Binding Sites
(A) Activity of the WT CNE-50JD construct (pJD-full-Luc) cotransfected with the WTARX expression plasmid in human cell lines (HeLa
and SH-SY5Y) and rodent cell lines (PC12 and P19). The CNE-50JD insert is a KDM5C fragment (1,074 bp) containing the three predicted
ARX-binding sites (BD1, BD2, and BD3), and it was cloned into the pGL3 basic vector (pJD-full-Luc).
(B) Effects of binding-site deletion on the ARX-mediated KDM5C transactivation. On the left side is a schematic representation of theWT
CNE-50JD construct and the six luciferase deleted (DE) constructs (pJD/D, pJD/BD3, pJD/BD2-3, pJD/BD2, pJD/BD1-2, and pJD/BD1). On
the right side is the activity of deleted CNE-50JD constructs cotransfected with the ARX expression plasmid in SH-SY5Y cells. The DE
constructs were obtained by the selective elimination of one or more binding-site modules at a time or by the inclusion of different
combinations of a few of them: pJD/D was obtained by the digestion of the pJD-full-Luc construct with the restriction enzyme SmaI,
and the others were obtained with the use of the genomic clone pJD-full-Luc as a template in PCR reactions.
(C) Effects of binding-site mutagenesis on the ARX-mediated KDM5C transactivation: alterations in BD1, BD2, and BD3 nullify the basal
and ARX-transactivated CNE-50JD activity. On the left side is a schematic representation of theWTCNE-50JD construct and the five lucif-
erase site-directed altered constructs (pJD/BD1_1�mut, pJD/BD1_2�mut, pJD/BD1mut, pJD/BD2mut, and pJD/BD3mut). On the right
side is the activity of binding-site-directed CNE-50JD mutants cotransfected with the ARX expression plasmid in SH-SY5Yand P19 cells.
The BD1 palindromic motif 50-ATTACTTAAT-30 was mutated into 50-GCTACTTAAT-30 (pJD/BD1_1�mut), 50-ATTACTGCAT-30 (pJD/
BD1_2�mut), and 50-GCTACTGCAT-30 (pJD/BD1mut); the BD2 motif 50-ATTA-30 was mutated into 50-GCTA-30 (pJD/BD2mut); and the
BD3 motif 50-TAAT-30 was mutated into 50-GCAT-30 (pJD/BD3mut).
Cell transient transfections were performed according to standard methods. The primer pairs used for generating the constructs are
shown in Table S1. All constructs were verified by DNA sequencing. The reporter activities were measured with the Dual-Luciferase
Reporter Assay System (Promega). Each assay was performed in duplicate in three independent experiments, and the resulting firefly-
luciferase values were normalized with the renilla values. The activity of the CNE-50JD construct and each deleted and binding-site-
directed mutant transactivated by ARX is reported as a percentage of the expression of the basal JD-full-Luc activity. The error bars
express the mean 5 SEM.
between the human brain and the mouse brain. Another

obvious explanation might be that ARX could act differ-

ently depending on the developmental stage, the tissue,

and/or the cell-specific context.

Once we had revealed that ARX transactivates the 50

KDM5C regulatory element by binding to the two

‘‘TAAT/ATTA’’ boxes (BD1 and BD2), we found a range of

functional deficiencies associated with the ARX polyA

elongations, which significantly impair and/or exert
116 The American Journal of Human Genetics 92, 114–125, January 1
interfering effects on the ARX-KDM5C interaction.

The five mutants tested constitute a specific class of ARX

(RefSeq NM_139058.2; reference genome build 36) muta-

tions that are associated with a peculiar spectrum of

diseases related to XLID and/or epilepsy (Table 1). Of these,

the c.333_334ins(GCG)7 (p.Ala109_Ala115dup), c.298_

330dup33 (p.Ala105_Ala115dup), and c.430_456dup27

(p.Ala147_Ala155dup) mutations are associated with

the most severe forms of epilepsy, whereas the
0, 2013



Figure 2. In Vitro Interaction of ARX with the KDM5C Regula-
tory Region
(A) ChIP assay on chromatin from SH-SY5Y cells transfected with
Myc-tagged WTARX. A total of 13 107 cells were transfected, and
24 hr after transfection, chromatin was isolated as previously
described.35 The soluble chromatin fraction was incubated with
5 mg of c-Myc antibody (Sigma-Aldrich) or with the control IgG
antibody (Santa Cruz Biotechnology) at 4�C overnight. KDM5C
fragments were PCR amplified with the ChIP primers reported in
Table S2. An amplification of the highly conserved SHOX2/Shox2
binding site was used as a ChIP positive control.35

(B) Quantification of the fold enrichment of the ChIP for each
binding site located in the cis-regulatory region of KDM5C. Ampli-
cons were determined with the Power SYBRGreen PCRMasterMix
(Applied Biosystems) on the 7900HT Fast Real Time PCR System
(Applied Biosystems) with the use of a SHOX2/Shox2 promoter as
a positive control35 and a GAPDH promoter as a negative control.
The reactions were performed in triplicate in two independent
experiments, and a student’s t test was used for statistical analysis.
The amount of the product was determined relative to a standard
curve of input chromatin. The error bars express the mean5 SEM.
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c.429_452dup24 (p.Ala148_Ala155dup) and c.423_455

dup33 (p.Gly143_Ala153dup) mutations are present in

individuals with mild XLID or epileptic symptoms

(Table 1). In SH-SY5Y cotransfection assays, we found

a robust reduction of ARX-mediated CNE-50JD activa-

tion in the plasmid JD-full-Luc for three out of five

expanded polyA constructs (Figure 3A): c.333_

334ins(GCG)7 (p.Ala109_Ala115dup) (63% of the WT

ARX construct), c.298_330dup33 (p.Ala105_Ala115dup)

(39%), and c.430_456dup27 (p.Ala147_Ala155dup) (56%).

The remaining two mutants—those with c.429_452dup24

(p.Ala148_Ala155 dup) and c.423_455dup33 (p.Gly143_

Ala153dup)—showed slightly lower (84% and 74%, respec-

tively) luciferase activity than did the WT (Figure 3A).

Immunoblot analysis of the transfected cell lysates

confirmed that the protein level was equal in all ARX

mutants (data not shown).
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Figure 3. Impact of WT ARX and ARX PolyA Elongations on the cis-Regulating Element of KDM5C
(A) Cotransfection experiments of ARX polyA elongations with the KDM5C 50 region in SH-SY5Y cells (pJD-full-Luc). On the left side is
a schematic representation of the WT ARX and the five polyA elongations studied; two of them (p.Ala109_Ala115dup and p.Ala105_
Ala115dup) fall within the first polyA tract, and the remaining three (p.Ala148_Ala155dup, p.Gly143_Ala153dup, and p.Ala147_
Ala155dup) fall within the second polyA tract. Alanine insertions are shown for each mutant. On the right side is the activity of the
CNE-50JD element transactivated by the WT ARX and ARX polyA mutants. For each assay, four independent experiments were per-
formed in triplicate. The activity of eachmutated construct is reported as a percentage of the expression of the basal pJD-full-Luc activity.
The error bars express the mean 5 SEM.
(B) Phosphoimager analysis of the EMSA results. A Typhoon 9200 scanner (GE Healthcare) was used for analyzing the EMSA gels.39 The
bands corresponding to the bindings were analyzed with ImageQuant 5.0 software. The results are represented as a mean intensity rela-
tive to the free oligo band. Quantification of the data is presented as averages. SDs were established in two independent measurements.
The binding intensity of each mutated construct is reported as a percentage of the binding intensity of the WT ARX. The error bars
express the mean 5 SEM.
Given that we had established that alanine expansions

impair ARX stimulation of the KDM5C regulatory element

in SH-SY5Y cells, we hypothesized that those mutations

might also reduce the binding of ARX. Therefore, to test

this hypothesis, we carried out EMSA and ChIP experi-

ments by using the three predicted KDM5C sites as ARX

targets, as well as theMyc-tagged altered ARX proteins con-

taining either the WT sequence or the polyA I and polyA II

elongations. EMSAs revealed that, compared to WT ARX,

the polyA alterations produce reduced ARX DNA-binding

activity at both BD1 and BD2; however, no band shift

was observed with the BD3 31-mer, as expected (Figure S4).

In particular, the c.298_330dup33 (p.Ala105_Ala115dup)

mutation produced a more evident binding reduction at

both BD1 and BD2; the reductions caused by c.333_
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334ins(GCG)7 (p.Ala109_Ala115dup), c.423_455dup33

(p.Gly143_Ala153dup), and c.430_456dup27 (p.Ala147_

Ala155dup) were less evident (Figure S4). On the contrary,

compared to the WT ARX, c.429_452dup24 (p.Ala148_

Ala155dup) showed a higher DNA binding activity

than did the other mutations at both BD1 and BD2 sites,

as well as an unexpected increased affinity to BD2

(Figure S4). The shifted bands were quantified by phos-

phorimager analysis (Figure 3B), which showed an overall

binding defect that can be ranked as follows: c.298_

330dup33 > c.430_456dup27 > c.333_334ins(GCG)7 >

c.423_455dup33 > c.429_452dup24.

The altered recruitment of the ARX polyA mutants was

also verified by ChIP assay with chromatin from trans-

fected SH-SY5Y cells. We found that the polyA proteins,
0, 2013



Figure 4. Defects of ARX PolyA Elonga-
tions
(A) ChIP enrichments of the KDM5C
BD1, BD2, and BD3 regions with the use
of either the WT ARX or the polyA-
expanded immunoprecipitates. The DNA
was extracted, and fragments of the three
predicted ARX-binding sites were PCR
amplified with KDM5C ChIP primers. All
values were normalized to the correspond-
ing input control sample. The reactions
were performed in triplicate in two inde-
pendent experiments, and a student’s t
test was used for statistical analysis. The
error bars express the mean 5 SEM.
(B) ARX polyA alterations with different
in vitro functional consequences mirror
the spectrum of developmental defects
observed in XLID and epilepsy individ-
uals. KDM5C transactivation data as
a function of the degree of severity of
the ARX polyA subphenotypes (variable,
severe, and very severe) were fitted to an
S-shaped curve. The plot was generated
by a comparison of the c.333_334ins
(GCG)7 (p.Ala109_Ala115dup), c.298_330
dup33 (p.Ala105_Ala115dup), c.429_452
dup24 (p.Ala148_Ala155dup), c.423_455
dup33 (p.Gly143_Ala153dup), and c.430_
456dup27 (p.Ala147_Ala155dup) mutant
activity.
severely defective for EMSA binding, exhibited a decreased

chromatin binding to the KDM5C BD1 and BD2 sites

(Figure 4A). Low-background binding signals were de-

tected in the ChIP assays for IgG (data not shown). As

expected, the c.429_452dup24 (p.Ala148_Ala155dup)

mutation showed less severe chromatin-binding defects

with respect to BD1 and BD2 than did the other

elongation mutations. The c.298_330dup33 (p.Ala105_

Ala115dup), c.333_334ins(GCG)7 (p.Ala109_Ala115dup),

c.423_455dup33 (p.Gly143_Ala153dup), and c.430_456

dup27 (p.Ala147_Ala155dup) mutants were defective for

BD1 binding but showed a more detrimental defect for

BD2. Quite strikingly, we found that the ARX polyA alter-

ations slightly impair the binding to a well-known ARX

target, SHOX2/Shox228,31,35 (Figure 3B and 4A), which has

a crucial role in a different tissue-specific developmental

program.40 This points to the possibility that the polyA-

defect severity might depend on the ARX-target promoter

context used. Collectively, our in vitro studies imply a

differential impairment of the ARX-KDM5C interaction

mediated by the polyA elongations in ARX. We therefore

hypothesize that three out of the five mutations, c.298_

330dup33 (p.Ala105_Ala115dup), c.333_334ins(GCG)7
(p.Ala109_Ala115dup), and c.430_456dup27 (p.Ala147_

Ala155dup), which result in severe KDM5C defects

in vitro (Table 2), might cause a severe effect on KDM5C
The American Journal of Human Ge
in vivo. Interestingly, the indi-

viduals carrying the c.298_330dup33

(p.Ala105_Ala115dup), c.333_334ins
(GCG)7 (p.Ala109_Ala115dup), or c.430_456dup27

(p.Ala147_Ala155dup) mutations showed malignant

epilepsy, which is often associated with brain malforma-

tions (Table 1). The remaining two mutations, c.429_

452dup24 (p.Ala148_Ala155dup) and c.423_455dup33

(p.Gly143_Ala153dup), which are associated with less

severe phenotypes, result in a much less striking reduction

in the transactivation and binding to KDM5C BD1 and

BD2 (Table 2), as well as to the SHOX2/Shox2 binding

site. We therefore exclude a correlation between the

KDM5C defects and the length of the cotransfected polyA

tracts and instead propose a link between the spectrum of

the polyA-related defects and the severity of the outcomes

associated with XLID and/or epilepsy. Consequently, we

can classify the ARX polyA elongations as hypomorphic

alterations causing a partial loss of function of ARX,

a conclusion that fits well with the observation that the

human phenotypes resulting from c.429_452dup24

(p.Ala148_Ala155dup) or c.423_455dup33 (p.Gly143_

Ala153dup) lie at the milder end of the phenotypic spec-

trum of XLID and/or epilepsy than do those resulting

from other types of ARX polyA elongations.9,12,15 In

Figure 4B, we illustrate our understanding of how the inter-

action between the polyA alterations and KDM5C deter-

mines the phenotypic complexity in response to hypo-

morphic ARX activity. If we consider the molecular
netics 92, 114–125, January 10, 2013 119



Table 2. KDM5C Defects and ARX Cellular Localization Associated with ARX PolyA-Expansion Alterations

Elongated Protein

Functional Defect

KDM5C Transactivationa BD1 Bindinga BD2 Bindinga ARX Localization

p.Ala109_Ala115dup 63% 20% 9% nuclear and cytoplasmatic

p.Ala105_Ala115dup 39% 13% 9% nuclear with inclusions

p.Ala148_Ala155dup 84% 60% 87% nuclear

p.Gly143_Ala153dup 74% 43% 22% nuclear with inclusions

p.Ala147_Ala155dup 56% 7% 4% nuclear and cytoplasmatic with inclusions

aThe percentages in these columns are compared to the WT protein.
effects of each alteration, we can display their functional

defects along a spectrum of subphenotypes passed through

a sigmoid (S-shaped) curve: the lower the ARX polyA

activity, the more severe the phenotype of XLID and/or

epilepsy. Accordingly, we anticipate that XLID and/or

epilepsy hemizygous males with hypomorphic ARX polyA

alterations could have a partial or low level of residual ARX

activity, whereas carrier females are generally asymptom-

atic or present with very mild neurological symp-

toms,1,2,15 as expected in the case of disease alleles associ-

ated with random X-inactivation phenomena.

The molecular mechanisms responsible for the reduced

binding and transactivation are still enigmatic. A reduced

DNA binding and declined transactivation activity could

be the consequence of an abnormal folding and sponta-

neous aggregation of the altered proteins. Indeed, homo-

polymeric-expansion diseases, such as those associated

with polyA or polyglutammine expansions, can be classi-

fied as ‘‘protein-misfolding disorders’’ because the altered

proteins do not fold stably into their normal functional

shape and then aggregate.16

As expected, transient transfection of WT and altered

ARX in SH-SY5Y cells confirmed21,29,30 that, except for

the c.429_452dup24 (p.Ala148_Ala155 dup) mutant, the

other tested polyA mutants mislocalize and form apparent

insoluble cytoplasmatic and/or nuclear aggregates

(Figure S5); this might prevent ARX from entering the

nucleus and exerting its function on KDM5C. A similar

situation has been reported in the study of polyA expan-

sions in zinc-finger protein of cerebellum 2 (ZIC2 [MIM

603073]), associated with holoprosencephaly (MIM

609637),41 and in paired-like homeobox 2B (PHOX2B

[MIM 603851]), associated with central hypoventilation

syndrome (MIM 209880).42 Surprisingly, no specific ARX

aggregation was noted in the mouse model carrying either

c.333_334ins(GCG)7
7,8,31 or c.429_452 dup24,7 even if

a cytoplasmatic localization greater than that of the WT

protein was detected in the neurons expressing c.333_

334ins(GCG)7.
8 Another obvious explanation for the

reduced KDM5C activation is that the alanine-tract expan-

sions disturb the interaction between ARX and an essential

cofactor, as recently hypothesized in a study of the mouse

model carrying c.333_334ins(GCG)7.
31 On the other hand,
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apart from BD1 and BD2, which are both necessary for

driving the ARX-dependent transactivation of KDM5C,

BD3 seems to be related to basal KDM5C expression. There-

fore, ARX could synergize with another regulatory protein

in the activation of KDM5C transcription, as already de-

tected during murine myogenesis in the ARX-dependent

activation of MADS-box transcription-enhancer factor 2,

polypeptide C (Mef2C [MIM 600662]) expression.43 In

both hypotheses, the functional outcome could be an

abnormal ARX recruitment to the KDM5C regulatory

element and perhaps to other promoter targets. This

phenomenon could explain the partial loss of activity

shown by the polyA-elongated altered versions of ARX

on the KDM5C and SHOX2 regulatory elements.

Because we hypothesized that KDM5C is a direct positive

target of ARX, we sought to investigate whether murine

Kdm5c expression is affected by the absence of ARX. A large

body of evidence indicates that both ARX and KDM5C are

needed in the early phases of murine embryo development

and in the differentiated neuronal cells.33,34,44–48 Murine

embryonic in-situ-hybridization studies have revealed

that Arx is expressed at a very early stage and that a weak

signal is detectable at the 3-somite stage (when the neural

plate is defined) and that a strong signal is detectable at the

10-somite stage in the dorsal murine telencephalon

regions.45 It has been reported that KDM5C is essential

for notochord development33,44 and dendrite arboriza-

tion.49 Given that the XLID- and/or epilepsy-associated

mutations in ARX or KDM5C might affect the GABAergic

functions, we studied the temporal and quantitative

patterns of the emergence of Kdm5c mRNA in WT and

Arx-knockout (KO) embryonic stem (ES) cells during

in vitro neuronal differentiation. We applied a protocol

allowing primarily GABAergic neuron formation, an

in vitro method that recapitulates the expression patterns

and developmental processes of neurogenesis.50 The

mRNA expression of the murine counterparts of KDM5C

(Kdm5c [RefSeq NM_013668.3]) and ARX (Arx [RefSeq

NC_000086.6]) were measured by quantitative RT-PCR.

In the WT in vitro neuronal model, the coexpression of

Arx and Kdm5c became evident at the developmental tran-

sitions between day 8 and day 10 and reached higher levels

in the fully differentiated ES cells than in the
0, 2013



Figure 5. Downregulation of Kdm5c/KDM5C in Neuronal Cells Derived from Arx-KO ES Cells
(A) Real-time-PCR analysis of the Kdm5c transcript in Arx-KO mouse neural stem cells (NSCs) and Arx-KO mouse ES cells differentiated
in neuronal cells. The NSCs from the WTand Arx-KO mice51 were cultured in DMEM-F12.52 The ES cells derived from the WTmale and
Arx-KO mice51 were maintained in an undifferentiated state by culture on a monolayer of mitomycin-C-inactivated fibroblasts in the
presence of leukemia-inhibiting factor. The culture protocol for neuronal differentiation was carried out as described elsewhere.50 The
total RNA was extracted according to TRIzol protocol (Invitrogen) and was reverse transcribed with the SuperScript III First Strand
Synthesis System (Invitrogen). The steady-state mRNA abundance was determined as described elsewhere.53,54 The primers used for
the Kdm5c transcript analyses are reported in Table S3. The data were normalized withGapdh and 18S as control transcripts. The quantity
of each transcript compared to that expressing the WT cells is reported as a percentage. For each assay, four independent experiments
were performed in triplicate. The error bars express the mean 5 SEM.
(B) Immunoblot analysis of KDM5C in Arx-KO andWT ES cells at different time points during neuronal differentiation. The cell extracts
were prepared and separated as described previously.50,53 After blocking with 5% nonfat milk, the membranes were incubated with
human KDM5C antibody (1:1,000, Santacruz). The b-actin antibody (1:3,000, Santacruz) was used as a loading control. The signals
were detected with an enhanced chemiluminescence kit (Amersham Biosciences).
(C) Immunofluorescence analysis of KDM5C and H3K4me3 in ES-cell-derived neuronal cells. The differentiated ES cells were examined
for the level of KDM5C (1:50, Santacruz), H3K4me3 (1:3,000, Abcam), and NeuN (1:100, Millipore/Chemicon). Mouse AlexaFluor-488
(1:200, Invitrogen) and Texas Red (1:200, Molecular Probes) were used. The images were superimposed with nuclear DAPI (1:5,000,
Roche) staining and taken randomly under a ZEISS confocal microscope. Both the immunopositive cells (KDM5C- or H3K4me3-stained
nuclei) and total DAPI-stained nuclei were counted. The fluorescence percentage of immunopositive neuronal cells was calculated as
a proportion of the immunopositive NeuN cells. Five fields from three replicates for each marker were analyzed. The activity of the
marked protein localized in the WT ES cells compared to that present in the Arx-KO ES cells is reported as a percentage decrease (�)
or percentage increase (þ). Scale bars represent 20 mm, and error bars represent the mean 5 SEM.
undifferentiated ES cells (Figure S6A). The coexistence of

both transcripts was also proved in embryonic and post-

natal human and murine brain tissues (Figure S6B). It is

noteworthy that when we tested the Kdm5c transcript in

Arx-KO ES cells at day 8, we observed that its expression
The Americ
was much lower than in WT cells (Figure 5A). A compa-

rable reduction was observed in the free-floating cultures

of neural stem cells (NSCs) isolated from the Arx-KO brain

embryo (Figure 5A). The decrease in Kdm5c expression

correlates with the decrease in protein levels shown by
an Journal of Human Genetics 92, 114–125, January 10, 2013 121



immunoblot analysis of cultured GABAergic neurons from

Arx-KO and WT ES cells (Figure 5B). By immunofluores-

cence analysis, we also detected the reduced presence of

KDM5C in intermediate (data not shown) and fully differ-

entiated cells (Figure 5C). We hypothesize that both genes

could be required in a specific time frame of neuronal

development and, that, in the absence of ARX, the

Kdm5c expression might be altered at neural induction

and in the following stages until the final terminal differ-

entiation. Furthermore, we have also established that

a decrease in KDM5C inversely correlates with an increase

in H3K4me3 signaling, potentially as a result of compro-

mised KDM5C activity. Indeed, a detectable alteration in

the level of H3K4me3 was observed in NeuN-positive

neurons (Figure 5C) and in b-III-tubulin-positive neurons

(Figure S7). H3K4me3 is the main KDM5C nucleosomal

substrate and the hallmark of themajority of ES promoters.

As the ES cells are induced to differentiate along a neuronal

cell lineage, specific chromatin-remodeling complexes

recognize H3K4me3 and open the chromatin structure to

facilitate the transcription of specific promoters.55 As

a result of an abnormality in the KDM5C-H3K4me3

pathway, target genes would be transcribed more abun-

dantly in the Arx-KO cells than in the WT cells. Our data

are consistent with the H3K4me3 defects observed in asso-

ciation with XLID KDM5C-altered proteins.34 Noteworthy,

it has been proved that XLID KDM5C mutants alter the

promoter activity of a subset of REST targets; two such

examples are those encoded by genes mutated in children

with epilepsy: sodium-channel type 2A (SCN2A [MIM

182390]),49,55 associated with early infantile epileptic

encephalopathy-11 (MIM 613721), and synapsin I (SYN1

[MIM 313440]),49,55 associated with X-linked epilepsy

with variable learning disabilities and behavioral disorders

(MIM 300491). These considerations have led to the inter-

esting suggestion that a decrease in KDM5C activity could

abrogate or impair REST-mediated neuronal gene regula-

tion, thus contributing to the pathogenesis of ARX-

KDM5C-associated XLID and/or epilepsy. One essential

question that remains to be answered is the impact of an

abnormal ARX-KDM5C-H3K4me3 pathway on neuronal

differentiation and how this might contribute to ARX

diseases. In the Arx-KO cells, we observed abnormalities

in the rosette-like formation and neuronal precursor

markers, suggesting a delay in achieving full neuronal

maturation in vitro (L.P., unpublished data). In summary,

we provide here a snapshot of the function of ARX by link-

ing polyA expansions to KDM5C, mutations of which

cause XLID and/or epilepsy. In this exciting scenario, we

propose that the XLID- and/or epilepsy-related diseases

in children with ARX polyA alterations might in part be

caused by aberrant histone demethylation resulting from

a KDM5C defect. Various mechanisms by which ARX

mutations might cause the dysfunction of GABAergic

interneurons and might thus result in XLID and epilepsy

phenotypes have recently been discussed.56,57 Our work

describes a mechanism that not only expands on the exist-
122 The American Journal of Human Genetics 92, 114–125, January 1
ing hypotheses but implicates another known gene associ-

ated with the XLID and/or epilepsy phenotype in ARX

pathologies, a class of diseases with extremely limited ther-

apeutic options. Because chromatin modifications are

reversible, it is possible that epigenetic drugs could

compensate for the ARX-dependent KDM5C-H3K4me3

deregulation. Even though many other ARX targets could

have important roles in the expansionphenotype, a further

development of our research could open up the possibility

of additional studies aimed at mitigating the symptom

severity associated with the ARX polyA neurophenotypes

and with many other XLID- and/or epilepsy-related

pathologies.
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(2002). Infantile spasms, dystonia, and other X-linked pheno-

types caused by mutations in Aristaless related homeobox

gene, ARX. Brain Dev. 24, 266–268.

10. Bienvenu, T., Poirier, K., Friocourt, G., Bahi, N., Beaumont, D.,

Fauchereau, F., Ben Jeema, L., Zemni, R., Vinet, M.C., Francis,

F., et al. (2002). ARX, a novel Prd-class-homeobox gene highly

expressed in the telencephalon, is mutated in X-linkedmental

retardation. Hum. Mol. Genet. 11, 981–991.

11. Kitamura, K., Yanazawa, M., Sugiyama, N., Miura, H., Iizuka-

Kogo, A., Kusaka, M., Omichi, K., Suzuki, R., Kato-Fukui, Y.,

Kamiirisa, K., et al. (2002). Mutation of ARX causes abnormal

development of forebrain and testes in mice and X-linked lis-

sencephaly with abnormal genitalia in humans. Nat. Genet.

32, 359–369.

12. Strømme, P., Mangelsdorf, M.E., Shaw, M.A., Lower, K.M.,

Lewis, S.M., Bruyere, H., Lütcherath, V., Gedeon, A.K., Wal-

lace, R.H., Scheffer, I.E., et al. (2002). Mutations in the human

ortholog of Aristaless cause X-linked mental retardation and

epilepsy. Nat. Genet. 30, 441–445.

13. Kato, M., and Dobyns, W.B. (2005). X-linked lissencephaly

with abnormal genitalia as a tangential migration disorder

causing intractable epilepsy: Proposal for a new term, ‘‘inter-

neuronopathy’’. J. Child Neurol. 20, 392–397.

14. Miano, M.G., Laperuta, C., and Ursini, M.V. (2007). From

Nonsyndromic X-linked Mental Retardation (MRX) diseases

to discovery genes for cognitive circuitry in humans. In Focus

onMedical Genetics and Down’s Syndrome Research, R.A. Fir-
The Americ
thel, ed. (Hauppauge, New York: Nova Science Publishers),

pp. 1–49.

15. Laperuta, C., Spizzichino, L., D’Adamo, P., Monfregola, J.,

Maiorino, A., D’Eustacchio, A., Ventruto, V., Neri, G.,

D’Urso, M., Chiurazzi, P., et al. (2007). MRX87 family with

Aristaless X dup24bp mutation and implication for polyala-

nine expansions. BMC Med. Genet. 8, 25.
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ARX homeodomain mutations abolish DNA binding and

lead to a loss of transcriptional repression. Hum. Mol. Genet.

21, 1639–1647.

29. Nasrallah, I.M., Minarcik, J.C., and Golden, J.A. (2004). A pol-

yalanine tract expansion in Arx forms intranuclear inclusions

and results in increased cell death. J. Cell Biol. 167, 411–416.

30. Shoubridge, C., Cloosterman, D., Parkinson-Lawerence, E.,
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