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Abstract

The spatio-temporal variability of integrated water vapour (IWV) on small-scales of less
than 10 km and hours is assessed with data from the two months of the High Definition
Clouds and Precipitation for advancing Climate Prediction (HD(CP)2) Observational
Prototype Experiment (HOPE). The statistical intercomparison of the unique set of ob-5

servations during HOPE (microwave radiometer (MWR), Global Positioning System
(GPS), sunphotometer, radiosondes, Raman Lidar, infrared and near infrared Moder-
ate Resolution Imaging Spectroradiometer (MODIS) on the satellites Aqua and Terra)
measuring close together reveals a good agreement in terms of standard deviation
(≤ 1 kg m−2) and correlation coefficient (≥ 0.98). The exception is MODIS, which ap-10

pears to suffer from insufficient cloud filtering.
For a case study during HOPE featuring a typical boundary layer development, the

IWV variability in time and space on scales of less than 10 km and less than 1 h is
investigated in detail. For this purpose, the measurements are complemented by simu-
lations with the novel ICOsahedral Non-hydrostatic modelling framework (ICON) which15

for this study has a horizontal resolution of 156 m. These runs show that differences in
space of 3–4 km or time of 10–15 min induce IWV variabilities in the order of 4 kg m−2.
This model finding is confirmed by observed time series from two MWRs approximately
3 km apart with a comparable temporal resolution of a few seconds.

Standard deviations of IWV derived from MWR measurements reveal a high vari-20

ability (> 1 kg m−2) even at very short time scales of a few minutes. These cannot be
captured by the temporally lower resolved instruments and by operational numerical
weather prediction models such as COSMO-DE (an application of the Consortium for
Small-scale Modelling covering Germany) of Deutscher Wetterdienst, which is included
in the comparison. However, for time scales larger than 1 h, a sampling resolution of25

15 min is sufficient to capture the mean standard deviation of IWV. The present study
shows that instrument sampling plays a major role when climatological information, in
particular the mean diurnal cycle of IWV, is determined.
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1 Introduction

Water vapour is not only the most effective greenhouse gas (Kiehl and Trenberth, 1997)
but also an important part of the hydrological cycle, so that the exact knowledge on
atmospheric moisture is absolutely essential for both numerical weather prediction
(NWP; e. g., Weckwerth et al., 1999) and climate modelling (e. g. Bony et al., 2006).5

However, the interaction between atmospheric humidity and convection is still poorly
understood (Sherwood et al., 2010).

The amount of atmospheric water vapour is influenced by processes on various
scales, which results in a high variability in both space and time. A prominent example
is the convective atmospheric boundary layer where evaporation from the heteroge-10

neous land surface and turbulate mixing create strong water vapour variability (Shao
et al., 2013, cf. Fig. 10). Knowledge on water vapour variability is valuable for improv-
ing subgrid-scale model parametrizations, for model evaluation, and for instrument in-
tercomparisons. Kahn et al. (2011) compare the IWV variability in NWP and climate
models with those directly observed by Atmospheric InfraRed Sounder (AIRS) obser-15

vations and airborne measurements with focus on stratocumulus regions over ocean.
They find large differences in the magnitude of integrated water vapour (IWV) vari-
ance, leading to the conclusion that in the future satellite observations are needed with
a higher resolution than currently planned (10–30 km).

By moving to very high-resolution simulations, atmospheric models become less20

prone to uncertainties induced by parameterizations at the cost of computationally ex-
pensive simulations. The High Definition Clouds and Precipitation for advancing Cli-
mate Prediction (HD(CP)2) initiative aims to build and use such a model with horizontal
grid spacings of down to 100 m based on the ICOsahedral Non-hydrostatic (ICON,
Zängl et al., 2014) model. In order to provide the critical observations to evaluate this25

model at small-scales, the HD(CP)2 Observational Prototype Experiment (HOPE) took
place from 1 April to 31 May 2013 at the Forschungszentrum Jülich (FZJ), Germany
(cf. Fig. 1). During this two-month period, standard instrumentation for observing water
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vapour at the Jülich ObservatorY for Cloud Evolution (JOYCE; Löhnert et al., 2014),
including the Global Positioning System (GPS) antenna of the GeoForschungsZen-
trum Potsdam (GFZ), a scanning microwave radiometer (MWR), and a sunphotometer
from the AErosol RObotic NETwork (AERONET), was complemented by frequent ra-
diosoundings, four additional MWRs, and the BASILicata Raman lidar system (BASIL)5

all within less than 4 km distance of each other. In addition to the ground-based mea-
surements, IWV estimates from two Moderate Resolution Imaging Spectroradiometer
(MODIS) retrievals, near infrared (NIR) and infrared (IR), that provide information with
spatial resolution of 1 and 3 km, respectively, are available from satellite overpasses. In
contrast to other space-based instruments capable of detecting IWV, MODIS provides10

horizontally high resolved IWV fields enabling to look at the horizontal gradients of IWV
on smaller scales.

Different instruments sample different atmospheric conditions due to different inte-
gration times, beam widths, geometries, sampling strategies, locations, etc. For IWV,
the measurement height is of particular importance as the water vapour column over15

the same altitude range needs to be considered and therefore corrections are neces-
sary (cf. Böhme et al., 2011; Buehler et al., 2012). Many studies compare various IWV
measurements in different geographical regions and for different time periods using dif-
ferent criteria for temporal and spatial matching and elevation corrections (cf. Bennouna
et al., 2013; Martin et al., 2006; Morland et al., 2009; Palm et al., 2010; Schneider et al.,20

2010; Torres et al., 2010). Frequently, these comparisons involve data sets with more
than 1 h temporal and more than 20 km spatial difference as well as with different hori-
zontal resolutions. Buehler et al. (2012) investigate the representativeness error result-
ing from insufficient collocation and resolution mismatch for a high latitude region using
the Nonhydrostatic Icosahedral Atmospheric Model (NICAM; Satoh et al., 2008) with25

3.5 km horizontal resolution. GPS data are used as reference and the representative-
ness error is calculated for ground-based slant column and satellite measurements as
well as for the European Centre for Medium-Range Weather Forecasts (ECMWF) Re-
analysis ERA-Interim. They derive values of approximately 0.6–1.4 kg m−2 for spatial
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scales of several 10 km. It has to be noted that GPS does not provide true column mea-
surements as one observation over a 15 min interval includes the atmospheric delay
measured along several links between the GPS ground station and multiple satellites.

The goal of the present study is three-fold: firstly, we aim to characterize the vari-
ability of IWV for spatial scales smaller than 10 km and temporal scales smaller than5

1 h and to estimate the ability of different measurements to represent this variability. In
doing so, we extend previous studies to even smaller scales, by using zenith-pointing
MWR measurements which are available at a temporal resolution of approximately 2 s.
To this end, a case study at the continental mid-latitude site JOYCE is presented and
the unique set of instruments from HOPE is complemented by very high-resolution10

(156 m) simulations from the novel atmospheric model ICON. Secondly, with the goal
of providing a realistic error estimate for the individual instruments observing IWV, we
perform a statistical, multi-instrument comparison covering the HOPE period. This in-
cludes the investigation of the variability of IWV on a wide range of temporal scales
from a few minutes, over a couple of hours to its mean diurnal cycle. Thirdly, the ability15

of the novel ICON model to capture the daily IWV cycle of a realistic case is assessed.
The study is structured as follows: an overview of all instruments and the respective

retrievals used in this study is given in Sect. 2.1. A first version of the ICON model is in-
troduced together with the operational regional NWP model of Deutscher Wetterdienst
(DWD) at 2.8 km horizontal resolution in Sect. 2.2. Details on how to match the vari-20

ous data sets are given in Sect. 2.3. Observations and model runs are analysed within
a case study for a day with typical boundary layer development in order to estimate
scale dependent IWV variability (Sect. 3). The analysis is extended over the full dura-
tion of HOPE, providing statistics on the agreement between the different instruments,
the relative merits of the different instruments to capture the temporal IWV variability,25

and the diurnal cycle (Sect. 4). A summary and conclusions are given in Sect. 5.
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2 Data

2.1 Observations

In the following, the instruments used in the present study, their measurement principle,
and their retrieval methods are introduced. Table 1 gives an overview of the accuracy,
spatial and temporal resolution, and limitations in terms of weather conditions of the5

individual instruments.

2.1.1 Microwave radiometer

Two microwave radiometers (MWR), one located at JOYCE and one 3.3 km south of
JOYCE (cf. Fig. 1) are used in the present study. Both MWR are Humidity and Tem-
perature PROfilers (HATPRO; Rose et al., 2005). Here only zenith pointing HATPRO10

measurements with a temporal resolution of up to 2 s are used. The antenna has a half
power beam width of 3.5◦ for the water vapour sensitive channels. Thus, the MWR
measures a comparatively narrow part of the atmosphere. From this volume, it receives
brightness temperatures at seven frequencies along the water vapour absorption line
(22.24, 23.04, 23.84, 25.44, 26.24, 27.84 GHz) and one frequency in an atmospheric15

window (31.40 GHz). With a low noise level of approximately 0.05 K in the measured
brightness temperatures HATPRO is able to detect small variations in atmospheric
water vapour but also cloud water whose emission increases with frequency in the
microwave spectral range. The absolute accuracy of the observed brightness temper-
atures determined by the calibration procedure (Maschwitz et al., 2013) is 0.5 K.20

IWV is derived following a statistical approach based on a least squares linear re-
gression model (Löhnert and Crewell, 2003) from the multi-frequency brightness tem-
peratures assuming the error characteristics mentioned above. To derive the coefficient
vectors, a training data sets of more than 13 000 non-precipitating radiosoundings at
De Bilt, Netherlands, is used. With this algorithm, IWV can be derived with a random25

error of approximately 0.5–0.8 kg m−2 from zenith measurements. The systematic error
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is assumed to be 0.5 kg m−2 and the noise level is 0.05 kg m−2. Note that the MWR is
able to measure automatically under all weather conditions with the exception of when
the radome is wet. In these cases, no IWV values are provided.

2.1.2 GPS ground station

Although the main aim of GPS, is precise positioning for navigation, remarkable5

progress in using GPS for retrieval of IWV has been achieved during the last decades
(Bevis et al., 1992; Rocken et al., 1997; Fang et al., 1998).

The basic quantity estimated by any GPS receiver is the signal travel time from the
GPS satellite to the receiver. From the travel times of up to 12 GPS satellites with an
elevation angle larger than 7◦ and the satellite positions, the receiver position is esti-10

mated. The GPS signal consists of electromagnetic waves propagating through the at-
mosphere with frequencies of 1575.42 and 1227.60 MHz. The travel time also provides
information on the atmosphere along the signal path. The signal is slightly delayed by
the atmosphere and this delay, as compared to an undisturbed signal propagation in
vacuum, depends on the atmospheric state. There are two major contributions to the15

signal delay: the ionosphere and the neutral atmosphere. The ionospheric delay can
be estimated by comparing two GPS signals at different frequencies (dispersion). The
remaining part of the delay is due to the neutral, moist atmosphere.

The neutral atmosphere is non-dispersive and GPS cannot provide any information
to separate the impact of water vapour from the impact of the dry atmosphere. There-20

fore additional meteorological observations are required. Usually, the pressure and
temperature at the GPS receiver are observed. The signal delay due to the dry gases,
that is all atmospheric gases without water vapour, can be estimated reliably using the
pressure observation and certain empirical models. The remaining wet delay can be
converted to the slant integrated water vapour by using the temperature observation.25

In general, 40–50 observations along single paths within 15 min, are combined and
mapped to a representative estimate of IWV above the station.
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The GeoForschungsZentrum Potsdam (GFZ) processes the data of approximately
300 German GPS stations operationally in near-real time and provides IWV estimates
with a temporal resolution of 15 min and an accuracy of 1–2 kg m−2 (Dick et al., 2001;
Gendt et al., 2004).

2.1.3 Sunphotometer5

The sunphotometer (CE 318 N-EBS9, Cimel Eletronique) measures the extinction of
direct solar irradiance and sky radiance at 9 wavelengths (340, 380, 440, 500, 675,
870, 937, 1020, and 1640 nm) fully automatically. Allowing for the extinction due to
aerosols, the extinction due to the amount of water vapour in the line of sight to the sun
Tw can be derived from the extinction at 937 nm. The extinction can be described with10

the following equation

Tw = exp[−a(m · IWV)b] (1)

where a, and b are constants, and m is the relative optical air mass (Schmid et al.,
2001). From this relationship, IWV can be derived with an accuracy of 10 % (Alexandrov15

et al., 2009)
The sunphotometer at JOYCE is part of AERONET, meaning that data processing

is performed by the National Aeronautics and Space Administration (NASA) (Dubovik
et al., 2006). The data used within the present study is of quality level 1.5 (cloud-
screened) and has a temporal resolution of 10 min.20

Since the sunphotometer measures the direct sunlight, its IWV retrieval is limited to
daytime and clear-sky conditions. Additionally, since the instrument tracks the sun, the
retrieved IWV is not zenith viewing, but along a slant path through the atmosphere.
This implies that it samples a different atmospheric volume than the zenith-pointing
instruments.25
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2.1.4 Raman lidar

The BASILicata Raman lidar system (BASIL) from Scuola di Ingegneria, Univer-
sità della Basilicata, is a Raman Lidar operating in the ultraviolet band (Di Girolamo
et al., 2009) deployed at JOYCE during HOPE. BASIL emits pulses at 355 nm, 532 nm,
and 1064 nm simultaneously along zenith. The determination of the water vapour mix-5

ing ratio is based on the detection of the Raman backscatter signals from N2 and H2O
molecules at 386 nm and 407 nm, respectively. Considering the power ratio of the H2O
signal to the N2 signal, all system dependent parameters can be eliminated. The power
ratio of the two signals has to be calibrated.

During HOPE the calibration was based on the use of clear-sky radiosoundings10

launched 3.9 km to the south-east (cf. Fig. 1). The comparison between the lidar power
ratio and the radiosonde mixing ratio profiles for the purposes of the calibration is typi-
cally carried out in the vertical region 2.5–3.5 km. Considering this altitude region above
the boundary layer minimize the air mass differences related to the distance between
the lidar and the radiosonde station and allows to minimize effects associated with the15

lidar overlap function.
Due to missing overlap near the instrument, the lowest usable signal from BASIL is

from a height of 150–180 m above ground. Above this height, water vapour profiles with
a vertical resolution of 30 m are provided every 5 min up to a height of approximately
3–8 km depending on day or night operation (max. time resolution 10 s). Additionally,20

the Raman Lidar is not able to measure in and above clouds because its signal is
rapidly extinguished. Due to incomplete profile information, IWV cannot be derived by
BASIL measurements without the use of complementing measurements from other
instruments.

2.1.5 Radiosondes25

During HOPE, 226 radiosoundings were performed with Graw DFM-09 sondes. These
feature a thin film capacitance sensor in order to measure relative humidity. Together
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with the temperature measurements and the pressure profile derived from GPS mea-
surements, the absolute humidity is computed. Afterwards, the absolute humidity is
integrated to derive IWV from the radiosoundings.

Many studies asses the error of radiosonde measurements. They show that the error
strongly depends on the type of radiosonde (Nash et al., 2010). Furthermore, the sys-5

tematic and random error of the relative humidity sensor depend on temperature and
differ between day- and nighttime. A comparison to IWV derived from GPS showed
that the difference Graw DFM-09 – GPS is 2 kg m−2 higher during daytime than during
nighttime. Other radiosonde types showed the opposite behaviour. The reason for this
could be that the correction algorithm applied by the Graw software probably overcor-10

rects the original dry bias. In general, IWV comparisons of radiosondes with capaci-
tance sensors to GPS measurements show a dry bias for the radiosondes of approx-
imately 1.2 kg m−2 during daytime due to sensor exposition to solar radiation (Wang
and Zhang, 2008).

Note that the drift of radiosondes during ascent is not negligible: at 850 hPa the15

HOPE radiosondes drift on average 5 km and 8 km at their maximums, and at 200 hPa
the distance is on average 39 km and 106 km at their maximums. Therefore, it has to be
kept in mind that a radiosonde may well be in a different air mass than the zenith point-
ing ground-based instruments are sampling. However, IWV variability is low above the
boundary layer because the flow is determined by large-scale advection and therefore20

homogeneity is high (Shao et al., 2013). Therefore, IWV from radiosondes is neverthe-
less included in our multi-instrument comparison.

2.1.6 MODIS

The Moderate Resolution Imaging Spectroradiometer (MODIS) is a space-borne, pas-
sive, whisk-broom scanning radiometer which measures the radiation backscattered25

and emitted from Earth, clouds, and atmosphere at 36 spectral bands between 0.4 and
14.4 µm wavelength. Two MODIS instruments are currently operational in space: on
board of NASA’s sun-synchronous near-polar-orbiting Earth Observing System (EOS)
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Terra and Aqua platforms (http://modis.gsfc.nasa.gov/). This enables a full global cov-
erage every one to two days. With an orbit height of approximately 705 km and a scan-
ning pattern of ±55◦, the swath dimension of MODIS amounts to 2330 km across-track
and 10 km along-track (at nadir).

Two standard IWV retrievals exist for MODIS: the infrared retrieval (MODIS-IR) and5

the near-infrared retrieval (MODIS-NIR). Within the present study, MODIS Level 2
MODIS-IR and MODIS-NIR products from Collection 5.1 are used, which have a grid
resolution of 3 and 1 km, respectively (http://modis.gsfc.nasa.gov/data/).

MODIS-NIR utilizes three channels located within the water vapour absorption wave-
lengths, namely 0.905, 0.936 and 0.94 µm, and two non-absorbing channels, namely10

0.865 and 1.24 µm. The ratios in reflected NIR radiation from water vapour absorption
channels to window channels give the atmospheric water vapour transmittances. From
these, IWV is obtained from look-up tables based on line-by-line calculations. Note that
single and multiple scattering effects are assumed to be negligible. The estimated er-
rors in retrieved IWV are typically 5–10 % and are mostly assigned to uncertainties in15

the spectral reflectance of the surface targets and in uncertainties in the amount of
haze over dark surfaces. For details on the MODIS-NIR retrieval see Gao and Kauf-
mann (2003).

MODIS-IR utilizes two water vapour absorption bands which deliver information on
the moisture distribution and three window bands which also have weak water vapour20

absorption. From the radiances measured at these bands, water vapour profiles are
retrieved via a statistical regression algorithm based on previously determined relation-
ships between radiances and water vapour profiles. Though computationally efficient,
this algorithm is sometimes unphysical. Therefore, a nonlinear iterative physical algo-
rithm is applied to the retrieved profiles, aiming to improve the solution, that is reduce25

the known overestimation of IWV. For details on the MODIS-IR retrieval see Seemann
et al. (2003).

Being based on thermal radiation, MODIS-IR is available for both day- and nighttime
over ocean and land. However, it is limited to clear-sky situations. The same goes for
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MODIS-NIR, which is additionally restricted to daytime and highly reflective surfaces
that means land and no ocean. Both MODIS retrievals, if applied to overcast scenes,
miss information from within and below clouds.

2.2 Models

2.2.1 ICON high-resolution simulation5

The ICOsahedral Non-hydrostatic (ICON, Zängl et al., 2014) modelling framework is
currently being developed jointly by DWD and the Max Planck Institute for Meteorology
(MPI-M) as the next generation NWP and climate model. The dynamical core is formu-
lated on an icosahedral-triangular Arakawa-C grid (Arakawa and Lamb, 1977). Within
the HD(CP)2 project, ICON is extended to perform high-resolution regional simulations.10

For the presented case study in Sect. 3, ICON is run in limited area mode with a hor-
izontal resolution of 156 m on a circular domain with a diameter of 265 km centred
in Cologne (50◦56′33′′ N, 6◦57′32′′ E). 50 generalized height-based levels are used in
the vertical with a model top at 21 km and reduced level spacings in the lower tropo-
sphere. Distances between layer midpoints range from 30 m between the lowest levels15

to 1170 m between the top levels. The simulation is initialized and nudged hourly on
the lateral boundaries with COSMO-DE analysis. In contrast to COSMO-DE, a higher
resolution topography dataset is used when generating the lower boundary conditions.
High frequency output is stored at 40 grid points arranged radially around JOYCE with
1 km spacing (cf. Fig. 1) every 135 s.20

2.2.2 COSMO-DE

COSMO-DE (Baldauf et al., 2011), an application of the Consortium for Small-scale
Modelling (COSMO) covering Germany and its neighbouring countries, is the opera-
tional regional NWP model of Germany’s National Meteorological Service, the DWD.
It is a non-hydrostatic, fully compressible model of the atmosphere. The thermo-25
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hydrodynamical equations describing compressible flow in a moist atmosphere are
solved using a finite-difference method on an Arakawa-C grid (Arakawa and Lamb,
1977). As for the coordinates, the model uses rotated latitude/longitude coordinates in
the horizontal and time-independent terrain-following coordinates in the vertical. The
horizontal resolution is 2.8 km and the vertical spacing of the 50 hybrid levels ranges5

from approximately 20 m at the Earth’s surface to 1000 m in 22 km height.
Operationally, 21 h forecasts with COSMO-DE are initialized every 3 h from new anal-

ysis and are nudged hourly on the domain boundaries with 3 h old COSMO-EU fore-
casts, which is a coarser resolved application of the same model covering Europe.
Latent heat nudging towards radar data is applied during the first 30 min of each fore-10

cast. COSMO-DE output is available every 15 min.

2.3 Matching the data

In the following, the spatial matching of all data sets is addressed first, before the
temporal matching is addressed in the final section. All JOYCE instruments are located
within a distance of 110 m to each other. GPS receiver and sunphotometer are situated15

on the same roof of a building at a height of 111 m above mean sea level (AMSL)
while the MWR and BASIL are located on the ground. The height difference to the
instruments on the roof is 21 m and therefore the MWR IWV needs to be corrected. For
this, the 120 m meteorological tower nearby is used to adjust the IWV of the MWR to the
level of GPS and sunphotometer from the water vapour density measured in heights of20

2, 10 and 20 m above ground. The amount of water vapour substracted from the MWR
measurements is 0.3 kg m−2 at its maximum. BASIL data are not height corrected since
only the profiles and not IWV is used.

The location of the radiosonde launches is at exactly the same height as JOYCE at
a distance of 3.9 km to the south-east. The second MWR used in Sect. 3 is at a dis-25

tance of 3.3 km south of JOYCE (cf. Fig. 1). For MODIS, the horizontal and height dis-
tance to JOYCE varies with flight track. The topography of the MODIS measurements is
taken from the Consultative Group on International Agricultural Research-Consortium
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for Spatial Information Shuttle Radar Topography Mission (CGIAR-CSI SRTM) 90 m
database (http://srtm.csi.cgiar.org). The topography of the nine nearest CGIAR-CSI
SRTM pixels is averaged to retrieve the height of the MODIS pixel. The nearest MODIS
pixel within a distance of less than 7 km and a height difference of less than 100 m is
used. To correct for the height difference, again the water vapour density of the meteo-5

rological tower is used resulting in a maximum correction of 1.5 kg m−2.
The grid point of COSMO-DE used in the present study is with a distance of 1.9 km

the second nearest grid point to JOYCE (cf. Fig. 1). This grid point is selected because
it is only 1 m lower than the JOYCE site, whereas the nearest grid point in a distance
of 1.8 km has a height difference of 10 m. Due to the small height difference, no height10

correction is applied to the IWV from COSMO-DE.
For ICON no height correction is applied. The height difference between the ICON

grid point used for Fig. 2 is only 4 m, so the bias introduced by this height difference is
very small.

Apart from the spatial differences, the temporal differences need to be considered.15

If not stated otherwise, the resolution of compared IWV values is 15 min. GPS mea-
surements are originally available in this resolution. The output of COSMO-DE, too, is
available with a resolution of 15 min. MWR and sunphotometer measurements are av-
eraged over 15 min. IWV from the other measurements is available only with a coarser
temporal resolution. MODIS measurements are matched to the corresponding 15 min20

period. The ascent of a radiosonde takes approximately 1 h. Since the largest amount
of water vapour is in the lower atmosphere, the radiosoundings are matched to the
15 min interval, during which they are started. This results in a maximum time differ-
ence of less than 15 min between two individual measurements of different instruments.

3 Case study25

The capabilities and limitations of the different techniques to measure IWV are demon-
strated exemplarily for a case study with fair weather conditions on 5 May 2013, when
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a high pressure system dominated the synoptic situation over western Germany. The
day was characterized by a classical development of the atmospheric boundary layer.
Approximately 2 h after sunrise the convective mixing layer (ML) started to form and
completely replaced the residual layer of the last day around 08:00 UTC (cf. top panel
in Fig. 2) as indicated by the ML height (MLH) derived from JOYCE wind lidar mea-5

surements (Schween et al., 2014). After 08:00 UTC, when the ML is fully developed,
the vertically resolved BASIL measurements reveal the strong water vapour gradient
between the moist ML and the dry free troposphere above. Even though the ML does
not extend higher than approximately 1.5 km on this day, it contains roughly 50 % of
the total IWV (estimated from radiosondes). Furthermore, the ML is characterized by10

a strong temporal water vapour variability as clearly seen from BASIL measurements.
Clear-sky conditions prevailed until 09:00 UTC. Later, occasional cumulus evolved

which did not significantly limit the BASIL lidar observations (cf. top panel in Fig. 2). The
MODIS overflight at 10:25 UTC (cf. middle panel in Fig. 3) shows the high spatial IWV
variability with values between 13 and 16 kg m−2 around JOYCE. In general, the north-15

and southwest of the domain is drier by up to 3 kg m−2 than the rest of the domain.
Note that this MODIS map, in contrast to the MODIS data included in the statistics
and the time series, is not height-corrected. For this reason, the open pit lignite mining
site, which is up to 400 m lower than JOYCE (cf. Fig. 1) is recognizable on the MODIS
map by the larger IWV values next to the radiosonde station (approximately 2 kg m−2

20

higher than the rest of the domain). Note also that those areas identified as cloudy
by the MODIS cloud mask are displayed in white, since the IWV would only include
water vapour up to cloud top. Still, some pixels stand out for their low IWV values in
comparison to the surrounding IWV values, which might indicate that some clouds may
not have been detected by the MODIS cloud mask.25

The time series of IWV from all instruments and the two models (cf. top panel in
Fig. 2) shows that during this day, IWV varies between 12.5 and 18 kg m−2. The lowest
value can be observed around 07:00 UTC when the residual layer collapses. After-
wards IWV gradually increases during the course of the day, corresponding in part to
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the increase in MLH as seen from BASIL (cf. top panel in Fig. 2). Clearly, the ML de-
velopment is also associated with both high fluctuations in the water vapour mixing
ratio visible in BASIL measurements and high IWV fluctuations visible in the temporally
highly resolved MWR observations (5 s) and to a similar degree in the ICON simula-
tions (135 s). The amplitude of these fluctuations exceeds the noise level of the MWR5

(0.05 kg m−2), indicating that these fluctuations are due to true atmospheric variations.
The diurnal development of the standard deviation of IWV over 1 h further confirms this
feature (cf. bottom panel in Fig. 2). Due to the lower temporal and/or spatial resolution
the other observations and the COSMO-DE simulation cannot reproduce these fluctu-
ations. However, as mentioned above they are identified by BASIL to be caused by ML10

dynamics (cf. top panel in Fig. 2).

3.1 IWV intercomparison

Several features can be identified in the comparison of the time series of the different
IWV data sets (cf. middle panel in Fig. 2). They are described in this section.

Only GPS and MWR provide continuous observations over the full day. Though they15

overlap within their uncertainty estimates, GPS measurements tend to lie below the
MWR measurements. The GPS measurements exhibit two distinct features: firstly, they
show a jump at the beginning of most full hours, which can be up to nearly 1 kg m−2.
These jumps are caused by the near-real time processing routine of the GPS retrieval
at GFZ (Gendt et al., 2004). Secondly, an even larger difference (ca. 5 kg m−2) is seen20

at the end of the day, from 23:45 to 24:00 UTC. These two issues occur in nearly
all cases investigated so far and are not limited to the case selected for the present
study. First attempts in reprocessing the data resulted in a smoothing of the hourly
jumps and a reduction of the differences at the beginning of the day. However, the
bias of the reprocessed data is increased. Therefore, the reprocessing is under further25

investigations.
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During daytime, when IWV is available from the sunphotometer, its 15 min IWV av-
erages agree very well with the MWR. However, the agreement is reduced during the
early and late hours of daytime when the sun is at low elevation (cf. Sect. 4.3).

The MODIS-NIR estimates availabe for the two overpasses are perfectly within the
uncertainty range of MWR and sunphotometer while MODIS-IR measurements which5

are also available during nighttime are up to 4 kg m−2 too dry. The larger pixels of
MODIS-IR (3 km) could partly be covered by clouds which are not detected. The
smaller pixels of MODIS-NIR (1 km) are less likely to be partly cloudy, which could
lead to a more precise cloud detection.

The seven radiosondes which were launched during this day give IWV within the10

uncertainty range of the MWR, sunphotometer, and/or GPS. The daytime soundings
show that roughly 50 % (maximum 64 %) of the IWV is contained in the convective ML.
Since the radiosonde provides point measurements along its trajectory, deviations from
true zenith measurements can occur due to sampling issues. For this case study, the
horizontal drift within the ML is relatively short with approximately 4 km for the sonde15

launched closest to the MODIS overpass at 11:00 UTC (cf. Fig. 3). However, on this
day which does not feature a larger synoptic IWV gradient in the vicinity of JOYCE, it
can be expected that differences to true zenith estimates arise when the radiosonde is
moving within dry/moist eddies in the convective ML.

The IWV simulations by the dynamic models COSMO-DE and ICON agree well with20

the observations until 06:00 UTC when the increase in IWV can not be reproduced as
strong as in the observations. This might be due to problems in the forcing at the model
boundaries – in particular for the ICON model which is forced by COSMO-DE. Never-
theless, it is encouraging to see that the novel high-resolution ICON depicts a similar
temporal IWV variability during the development of the convective ML as MWR and25

BASIL. This gives us the confidence that the model is suitable to further investigate the
spatial and the temporal variability of IWV.
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3.2 Assessment of representativeness

While all measurements have sampling issues, the use of a dynamic atmospheric
model allows to sample IWV nearly continuously in both time and space. Here we
selected 40 ICON grid points (cf. Fig. 1) in an area of approximately 10 km around
JOYCE for which IWV output was stored at high temporal resolution (2.25 min). The5

height above mean sea level of the sampled grid points (dx = 625 m) does not vary by
more than 150 m.

From the time series at the 40 grid points, the average IWV correlations and stan-
dard deviations for distances smaller than 10 km and shorter than 1 h can be assessed
(cf. Fig. 4). The correlation decreases distinctly with both temporal and spatial mis-10

match. For a fixed time a distance of 10 km reduces the correlation to 0.9. A similar
decrease in correlation occurs when the location is fixed but a time mismatch of 30 min
occurs. A mismatch of 10 km and 1 h leads to a correlation of 0.8.

A similar behaviour as for the correlation is evident in the standard deviation. Ob-
servations with a distance of 8–10 km can induce the same error as a time shift of 30–15

45 min (0.6 kg m−2) that is around the specified uncertainty of the different observations
(cf. Table 1). The combination of temporal and spatial mismatch, which is the case for
radiosondes, can lead to even higher errors amounting to more than (0.8 kg m−2) for
10 km and 1 h difference.

In order to investigate whether the model behaviour is consistent with the obser-20

vations, we use time series of 2.25 min IWV averages from two zenith pointing MWRs
located 3.3 km apart from each other. Both correlation and standard deviation decrease
similarly as depicted by ICON (cf. Fig. 4). Interestingly, there are slight differences in
the absolute values. Nevertheless, the comparison indicates that ICON simulations can
be used to assess the small-scale variability of water vapour and help to answer the25

question to which degree instrument intercomparisons may be affected by atmospheric
effects. However, it is important to note that this is a case study and the results might
be rather different for different synoptic situations or geographic regions.
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4 Statistical assessment

The two months of HOPE provide the opportunity to investigate IWV characteristics
over a wide range of atmospheric conditions for a typical continental, mid-latitude site.
The period was characterized by dry polar air masses at the beginning of April that
transitioned into a strong synoptically forced regime in mid April with frequent passages5

of frontal systems over JOYCE during May. There were only a few rain events in April
but more in May, which accumulate to 77 mm of total precipitation over the two months
(cf. bottom panel in Fig. 5).

In this period, IWV varies by 25 kg m−2, namely between 5 and 30 kg m−2 (cf. main
panel in Fig. 5). IWV can increase or decrease by 10–20 kg m−2 within one to two10

days. The different IWV data sets reveal a broad frequency distribution with a maximum
around 15 kg m−2 (cf. right panel in Fig. 5). This distribution reveals the influence of the
instrument sampling: GPS, MWR, radiosondes, and COSMO-DE show rather similar
characteristics. In contrast, the distribution for the sunphotometer is shifted to lower
IWV values as it is restricted to daytime clear-sky measurements.15

In the following, we first investigate the instrument performance during the whole
period of HOPE before we analyse whether the small-scale temporal IWV variability
(< 1 h) revealed in the case study is typical for the complete HOPE period.

4.1 Instrument intercomparison

Since none of the instruments can be considered as “the truth”, every instrument is20

compared to all other instruments (cf. Fig. 6). All measurements are considered at
15 min resolution (see Sect. 2.3). For the following comparison, it has to be acknowl-
edged that the maximum distance between instruments is approximately 4 km.

For the MODIS–radiosondes comparison, too few coincident measurements are
available due to the infrequent satellite overflights. Excluding MODIS, the overall agree-25

ment between the instrument pairs is good. The standard deviation is not higher than
1 kg m−2 and the correlation coefficient is never lower than 0.98. The absolute bias
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varies from 0 for GPS–sunphotometer to 1 kg m−2 for radiosondes–MWR. In the follow-
ing, the individual instrument comparisons are examined in more detail.

With more than 3800 measurements, the GPS–MWR comparison includes the
most cases as both instruments also measure during cloudy conditions. The bias
(0.2 kg m−2) is very low and the standard deviation (0.9 kg m−2) is within the expected5

measurement uncertainty (cf. Table 1). However, there are some IWV values which are
up to 5 kg m−2 lower than observed by the MWR (cf. Fig. 6). These differences occur
due to problems in the processing of the GPS data at the beginning of the day, as
mentioned above. Excluding the first hour of the day leads to a reduction of the bias to
0.1 kg m−2 and of the standard deviation to 0.8 kg m−2. This problem is further investi-10

gated in Sect. 4.3. Furthermore, a small dependency of the error on the IWV is found.
For large IWV values the difference GPS–MWR tends to be smaller than for small IWV
values. Other dependencies, such as the influence of wind direction, spatial IWV gra-
dient, temporal IWV variability, liquid water path, and distribution of GPS slants, which
are used to retrieve the IWV, are tested but no significant dependency is found (not15

shown).
On average, the radiosondes are 0.8 kg m−2 (1.0 kg m−2) drier than GPS (MWR).

However, only a small difference of 0.2 kg m−2 between day and nighttime sound-
ings could be identified probably due to the correction within the Graw software
(cf. Sect. 2.1.5).20

The comparisons MODIS–GPS and MODIS–MWR show that IWV measurements
from both MODIS-IR and MODIS-NIR are frequently too low. However, these MODIS
measurements are not included in the MODIS–sunphotometer comparisons, since
there are no sunphotometer measurements at these times. The reason for this is prob-
ably that cloudy cases are not reliably detected by the MODIS cloud identifying algo-25

rithm. Clouds lead to a lower IWV because the amount of IWV below and inside the
cloud is not detected by MODIS. A clear difference can be seen in the standard devia-
tion in the comparisons involving MODIS-NIR and MODIS-IR, the latter has more than
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double the standard deviation of the first, which could be due to the coarser resolution
but also due to poorer physical constraints in the algorithm.

Since each instrument intercomparison is carried out during different atmospheric
conditions (a consequence of the varying instrument limitations), the mean IWV of the
measurements included in each comparison differs by approximately 3 kg m−2. To allow5

for a better comparison of the errors of different instrument combinations, 57 simultane-
ous measurements of all instruments with the exception of MODIS are also investigated
seperately. The mean of these comparison then only differs by 0.4 kg m−2 (cf. Fig. 6)
and the standard deviation is reduced for all instrument combinations to be lower than
1 kg m−2. This results likely from sampling more homogeneous conditions. By including10

only measurements when the sunphotometer is measuring, nighttime measurements
and most importantly all rainy cases and cases with clouds in the direction of the sun
are excluded.

In summary, the agreement of the IWV measurements on the 15 min basis is very
good with standard deviations of around 1 kg m−2 with the exception of MODIS. How-15

ever, it has to be kept in mind that the representative error of IWV at 4 km spatial
distance is only 0.4 kg m−2. The representativeness analysis for 5 May 2013 estimated
the effect of atmospheric variation to be approximately 0.4 kg m−2 (cf. Sect. 3.2). As
expected, a reduction of the compared data sets by only including coincident mea-
surements simultaneously excluding all nighttime, rainy and cloudy cases, leads to20

an improvement in the overall agreement. However, the mean values over the HOPE
period range from around 16 kg m−2 (GPS, MWR) to lower than 14 kg m−2 (sunpho-
tometer, MODIS). This difference, which is distinctly higher than the bias of most of the
instrument comparisons, implies significant errors when climatologies are constructed
from data sets with a poor sampling.25

4.2 Temporal variability

Having assured the good general agreement between the different instruments during
HOPE, the temporal variability of IWV is investigated in more detail in the following.
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For this, the auto-correlation of the continuous data sets, namely MWR, GPS, and
COSMO-DE, is computed (cf. Fig. 7). All three data sets with a temporal resolution of
15 min show a similar behaviour: their auto-correlation function decreases monotoni-
cally with increasing lag time and they have a similar e-folding time of roughly 13 h. This
result is not surprising considering the large IWV changes associated with the synop-5

tic variability (cf. Fig. 5), but it gives important limitations on the influence of temporal
matching in IWV comparisons and on generation of climate data records. Interestingly,
the e-folding time decreases to 12 h when MWR measurements with higher resolution,
that is 5 s, are used, indicating the importance of small scale processes.

For a closer look at the variations due to small scale processes, the IWV standard10

deviation during HOPE is computed over varying time intervals from 5 min to 3 h (cf. top
panel in Fig. 8). Note that only coincident measurements and simulations are used and
only the MWR can provide estimates below 1 h. Generally, the mean standard deviation
increases from 0.1 kg m−2 at 5 min to 0.4 kg m−2 at 1.5 h showing some saturation with
0.6 kg m−2 at 3 h intervals.15

For time intervals of 1.5 h and longer, MWR, GPS and COSMO-DE again show a sim-
ilar behaviour as seen in the auto-correlation. In fact, they lie within their 25 and 75 %-
percentiles. However extreme values reach standard deviation of 2.0 kg m−2 and higher
at time intervals > 1 h. Interestingly, none of these points is evident during the day of the
case study (cf. Sect. 3) as the highest standard deviations stem from cloudy situations20

(see discussion below).
The GPS measurements show an offset for the 1 h interval. This is caused by the

processing method. As seen in the middle panel of Fig. 2 GPS measurements within
1 h are relatively smooth. However, the mean standard deviation of the 15 min MWR
averages are overall only slightly smaller than the mean standard deviation of the 5 s25

averages. This indicates firstly, that for time scales of a few hours, the coarser resolution
of 15 min is sufficient enough for resolving the mean IWV variability. Secondly, that for
these time intervals, GPS is well-suited as a reference instrument for model evaluation
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since it captures the same variability as the MWR. And thirdly, that the operational NWP
model COSMO-DE is capable of reproducing the observed mean variability of IWV.

For time intervals shorter than 1 h, only the 5 s MWR data can partially resolve
the short-scale, turbulence-induced variability of IWV. The minimum detected aver-
age standard deviation at 5 min averaging time of 0.1 kg m−2 is twice as high as the5

MWR noise level and thus represents a lower boundary for the evaluation MWR mea-
surement. As for the variability on intervals greater than 1 h, the standard deviation
increases with increasing time interval, however the slope is steeper on the shorter
time scales. At the shortest time scales, the variability is dominated by a cascade of
turbulence elements in the inertial subrange, whereas at increasing time scales the10

variability is probably dominated by the variability of subsequent updraught and down-
draught regions. Noteworthy are also standard deviation values larger than 1 kg m−2

even at the shortest time scales, which are predominantly caused by clouds.
Focusing on clear-sky, daytime cases allows to include the sunphotometer (cf. bot-

tom panel in Fig. 8). When only coincident data from MWR, GPS, sunphotometer15

and COSMO-DE are used, the mean standard deviations are lower by approximately
0.25 kg m−2 compared to the full time series (cf. bottom panel in Fig. 8). This is caused
by the exclusion of cloudy cases that lead to the disappearance of high standard de-
viations, that means hardly any standard deviations higher than 1 kg m−2 occur once
(partially) cloudy scences are filtered out. The IWV standard deviation observed dur-20

ing the case study seems to be representative for the whole HOPE campaign on time
scales shorter than 1 h.

In summary, the change of the mean standard deviation with different time intervals,
over which it is computed, shows that the variability of IWV is high, even for time peri-
ods shorter than 1 h, which is mostly due to clouds, and that this variability cannot be25

resolved by more coarsely resolved data. High-resolution time series from MWR are
therefore well suited to high-resolution atmospheric models like ICON aiming to derive
better sub-grid parametrizations for climate models. However, for more synoptic scale
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comparisons, a resolution of 15 min is sufficient to resolve the mean standard deviation
and therewith variability of IWV.

4.3 Diurnal cycle

The previous sections show the importance of the IWV variabilty associated with at-
mospheric turbulence. In this section we focus on the mean diurnal cycle of IWV over5

the HOPE campaign as this is strongly influenced by combined effects of land-surface
processes and boundary layer dynamics. It represents an aggregated quantity that
provides a test to which degree different instruments and/or models can provide a con-
sistent answer. Only those measurements, which are available on a near-continuous
basis, that is MWR, GPS, and sunphotometer, and COSMO-DE output, are included in10

this comparison with 1 h means. Note that it is ensured (by manual checking) that this
daily cycle is not due to a few singular synoptic-induced events, but rather a true mean
behaviour of IWV.

Figure 9 reveals a clear mean daily IWV cycle over the HOPE period with lowest
values in the morning and maximum in the afternoon/evening hours. The daily IWV15

range varies from 1 to 2 kg m−2 depending on the data set. This is significantly higher
than the daily IWV range reported by Morland et al. (2009) for a five year data set from
Bern, Switzerland (0.6 kg m−2) and can be attributed to the comparably high surface
fluxes during springtime.

As mentioned before, the mean IWV is instrument-dependent because of sampling20

issues, which leads to differences in the absolute values in the mean diurnal cycle
and also to differences in the amplitude of the mean diurnal IWV cycle. The amplitude
is smallest for the COSMO-DE forecasts (0.7 kg m−2) that are here represented by
the ensemble of differently aged forecasts (cf. Sect. 2.2.2). Interestingly, the spread
between the different ensemble members is highest around the time of maximum IWV25

(∼ 17:00 UTC) and might therefore be associated with difficulties of the forecast model
with convective precipitation. The GPS is the only instrument that provides data under
all weather conditions and can directly be compared to the COSMO-DE output. With
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2.2 kg m−2 GPS shows a stronger diurnal cycle than COSMO-DE with the maximum
IWV occurring also 4 h later around 21:00 UTC. The later maximum of IWV in the GPS
might be due to the use of surface temperatures in the GPS retrievals as these are not
representative for the atmospheric temperature as found by Morland et al. (2009). They
apply a dampened mean atmospheric temperature, to compansate for this surface5

effect, which leads to a better agreement of the diurnal cycle with coincident MWR
measurements. The high IWV range of GPS measurements might partly be caused by
a dry offset of approximately 1 kg m−2 in the beginning of the day compared to the end
of day. This is a known characteristic of the near-real time processing of GPS data,
which is also seen in the investigation of the daily cycle at stations in North America10

by Dai (2002). The exact reason for this feature is not finally clarified yet and subject of
ongoing investigation.

The MWR IWV exhibits a similar shape of the diurnal cycle as GPS and COSMO-DE
though the time of the maximum IWV is earliest in the MWR around 15:00 UTC and
its IWV range (1.9 kg m−2) is between COSMO-DE and GPS. However, it needs to be15

considered that the outdoor MWR HATPRO cannot measure during rain and therefore
a fair comparison can only be guaranteed if GPS data are filtered accordingly. While
such a filtering gives a similar bias as the analysis in Fig. 6 with 0.2 kg m−2, the GPS
mean diurnal variation is clearly 1 kg m−2 larger than from the MWR.

Due to its measurement principle, the sunphotometer (cf. Sect. 2.1.3) is limited to20

clear-sky conditions from 05:00 to 17:00 UTC, resulting in the lowest IWV values of all
data sets. Nevertheless, an increase in IWV during daytime with an even stronger slope
as for the other data sets can be seen. These measurements show the same trend of
smaller IWV values in the morning than in the afternoon. The diurnal cycle of coincident
GPS measurements shows a good agreement with the sunphotometer measurements.25

For the difference between the sunphotometer and MWR, a dependency on the posi-
tion of the sun is found (not shown). In the morning and in the afternoon, IWV from
the sunphotometer is smaller than from the MWR because here the sunphotometer
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measures under lower elevation angles. At noon it is the other way around. This could
be due to an inaccurate relative air mass (Eq. 1) used by the retrieval.

In summary, the accurate description of the mean diurnal cycle is strongly limited
by instrumental and sampling effects requiring an accurate matching when different
data sets are compared. Longer time series are desirable. Nevertheless, the results5

indicate that the operational COSMO-DE model underestimates the amplitude of the
diurnal cycle.

5 Summary and conclusions

The present study uses multi-instrument observations and model simulations of IWV
at the mid-latitude site JOYCE (Löhnert et al., 2014) to investigate its spatial-temporal10

variability. The – to our knowledge – unprecedented set of instruments (MWR, GPS,
sunphotometer, radiosondes, Raman Lidar, MODIS-IR, MODIS-NIR) located in close
proximity during the two months of the HOPE campaign (http://hdcp2.zmaw.de/HOPE.
2306.0.html) is complemented by a well-established operational NWP model (COSMO-
DE) and – in the frame of a case study – the novel high-resolution atmospheric model15

ICON.
The different instruments have different sampling characteristics, uncertainties and

limitations (cf. Table 1) that are important to consider when assessing IWV variability.
Most importantly a height correction is necessary as an elevation difference of only
20 (100) m can introduce errors of 0.3 (1.5) kg m−2. Pairwise comparison of the instru-20

ments with 15 min temporal resolution shows a generally good agreement over the
whole HOPE period with a small standard deviation (≤1 kg m−2) and a high correlation
coefficient (≥ 0.98), with the exception of MODIS. The absolute bias varies from 0 to
0.97 kg m−2. IWV from MODIS is often lower than from the other instruments because
cloud pixels are most probably not always identified by the MODIS cloud detection al-25

gorithm. Nevertheless, MODIS is the only instrument capable of assessing the small
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scale spatial structure of IWV – once corrected for elevation and filtered for clouds –
over the whole globe.

The multi-instrument intercomparison reveals a number of pecularities of the indi-
vidual instruments. Sunphotometer measurements show a good agreement with the
other measurements but can only be conducted during clear-sky at daytime and seem5

to suffer from problems when the sun is low. IWV from MWR and GPS slightly varies
(bias: 0.2 kg m−2 (1 %), standard deviation: 0.9 kg m−2 (6 %), cf. Fig. 6) taking the speci-
fied instrument uncertainties into account. However, the near-real time processed GPS
data exhibit inconsistencies at the beginning of each day and each hour due to the pro-
cessing procedure that might also lead to a shift in the diurnal cycle of IWV. Further10

work on the processing might increase the performance of the GPS measurements.
In contrast to MWR, a comprehensive GPS networks exist, thus making GPS better
suited to evaluate models over their whole domain.

The analysis of the temporal variability of IWV reveals three distinct forcings. First
synoptic influence is mainly responsible for the fact that IWV auto-correlation is lost15

after approximately half a day. Secondly, clouds and broken cloud fields can cause
standard deviations of IWV of over 1.5 kg m−2 within time intervals of a few hours.
When only daytime clear-sky IWV estimates are considered, the high end tail of the
distribution of IWV standard deviation disappears. Therefore, instrument intercompar-
isons under cloud free conditions are advantageous to assure more homogeneous20

conditions (cf. Fig. 8). Thirdly, atmospheric turbulence determines IWV variability also
in cloud free conditions on scales below 1 h, which can be assessed using MWR data
available in second resolution. Standard deviations of higher than 0.5 kg m−2 can be
observed even for time intervals less than 30 min. This information is interesting for the
development of sub-grid parameterizations for atmospheric models but also implies25

that instrument intercomparisons should make use of suitable measures to identify at-
mospheric conditions with low variability in order to isolate instrument errors.

The standard deviation derived from high-resolution MWR time series is able to iden-
tify turbulent mixing within the growing ML, as demonstrated for a case study with the
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help of vertically resolved water vapour and wind lidar data. For the same day, simu-
lations at 156 m grid resolution with the novel ICON model were used to assess the
spatio-temporal IWV correlation and standard deviation for time differences smaller
than 1 h and shorter than 10 km. It is shown that a temporal mismatch of 30–45 min
or a spatial mismatch of 8–10 km can already lead to a random error of 0.6 kg m−2.5

A combination of temporal and spatial mismatch introduces even higher errors. The
results are confirmed from observations of two MWR operated 3.3 km apart.

An important aspect for climatological studies is that mean IWV over HOPE, as de-
rived from the different sources, differs by up to 3 kg m−2 since different time periods
are included in the measurements. These differences occur due to limitations of the10

measurement principles and measurement gaps of instruments. These differences in-
troduce deviations in the statistics of the different instruments or models. Therefore, as
done in this study, only coincident data should be compared. This is particularly true
for the mean diurnal cycle over the whole campaign where our study reveals an under-
estimation of the amplitude by the operational COSMO-DE model. In the future, longer15

simulations with the novel ICON model, which are yet not possible due to limited com-
puting power, will be performed to investigate whether the encouraging results from the
case study presented here can be confirmed in more general terms.
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Table 1. Temporal resolution, spatial resolution or representativeness, limitations, systematic
(s), random (r) or combined error of measurements as found in literature for the instruments
used in the present study.

instrument temporal spatial limitations uncertainty reference
resolution resolution/ kg m−2 or %

representativeness

MWR HATPRO ≈ 2 s 3.5◦ beam width; no measurements 0.5 (s) Rose et al. (2005)
122 m beam width during rain 0.5–0.8 (r)
at 2 km height

GPS 15 min ca. 32 km∗ no zenith measurement 1–2 Gendt et al. (2004)
sunphotometer 10 min 1.2◦ beam width daytime/clear-sky only, 10 % Alexandrov et al. (2009)

direction towards sun
Graw DFM-09 at least 1 h drift up to 100 km drift, measurement 1.2 (s) Wang and Zhang (2008)
radiosonde takes ca. 1 h 1.7 (r)
MODIS-NIR ≤ 6 times per day 1 km daytime/clear-sky only 5–10 % Gao and Kaufmann (2003)
MODIS-IR ≤ 6 times per day 3 km clear-sky only 5–10 % Seemann et al. (2003)
BASIL 10 s–5 min vertical resolution no measurements 15 % (5 %) ≤ 3 km, Di Girolamo et al. (2009)

of 30 m during rain 40 % (20 %)
3–5 km (3–10 km)
daytime (nighttime)

∗ The planetary boundary layer with an assumed height of 2 km contributes most to IWV. The GPS slants with the lowest angles (7◦) leave the boundary layer in
a distance of approximately 16 km from the GPS station and the slants are on average azimuthly, equally distributed. This leads to a spatial representativeness
of 32 km.
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Figure 1. Map of measurement area. The measurement sites of GPS, MWR, sunphotometer,
BASIL (all JOYCE), radiosondes (RS), and the MWR only used in Sect. 3 (MWR 2) are marked
with a black triangle. The ellipses in the lower right corner illustrate the maximum and minimum
size of MODIS footprints. Black and green crosses indicate COSMO-DE and ICON grid points
used in Sect. 3.
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Figure 2. Time series for 5 May 2013 at JOYCE. Triangles indicate sunrise and sunset. The
vertical black line indicates a MODIS overflight (cf. Fig. 3). Top panel: vertically resolved water
vapour from Raman Lidar BASIL for 5 May 2013 at JOYCE (colours) with ML height derived
from wind lidar (black line). Middle panel: all IWV measurements and their corresponding un-
certainties (cf. Table 1) together with the model simulations. Grey shading represents MWR
uncertainty. Bottom panel: trend reduced standard deviation within 1 h intervals. Line colours
correspond to those in the middle panel.
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Figure 3. MODIS-NIR IWV for 5 May 2013 at 10:25 UTC. Cloudy pixels are displayed in white.
The black line indicates the track of the radiosonde launched at 11:00 UTC with a cross at the
location where it leaves the planetary boundary layer.
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Figure 4. Correlation coefficients (left) and standard deviations (right) of IWV from ICON grid
points (simulation for 5 May 2013) as a function of temporal and spatial distance. The cir-
cles represent the correlation coefficients and standard deviations from two MWRs positioned
3.3 km apart (cf. Fig. 1).
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Figure 5. Timeseries of IWV during HOPE. Displayed are: MWR (black), GPS (blue), sun-
photometer (purple), radiosoundings (red), MODIS-IR (orange), MODIS-NIR (yellow), and
COSMO-DE (light green). The frequency of occurrence of IWV are displayed in the right panel
with corresponding colours. Accumulated precipitation is shaded in grey in the lower panel;
dark grey bars indicate the time when precipitation fell.
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Figure 6. Scatterplots of IWV for all instruments against each other. Included are the num-
ber of measurements (N), bias (row–column in kg m−2), root mean square error (RMSE in
kg m−2), mean (in kg m−2), standard deviation (STD in kg m−2), Pearson correlation coefficient
(R), and slope and y intercept (const in kg m−2) of linear regression. The lower left half of the
figure shows comparisons when the two instruments measure. The upper right half shows com-
parisons when all instruments measure. MODIS is not included in the upper half due to less
measurements. The GPS measurements between 00:00 and 01:00 UTC are highlighted in red.
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Figure 7. Autocorrelation of IWV during HOPE measured with MWR with 5 s resolution (solid
black), with 15 min resolution (dotted black), GPS (solid blue), and simulated with COSMO-DE
(green). The horizontal line represents e−1.
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Figure 8. Lines: mean standard deviation of IWV during HOPE computed for varying in-
tervals. Displayed are: MWR with 15 min resolution (dotted black), MWR with 5 s resolution
(solid black), GPS (blue), and COSMO-DE (green). For the 5 s MWR measurements, the GPS
measurements, and the COSMO-DE simulation the vertical bars indicate the 10, 25, 75, and
90 % percentiles of the standard deviation. The single dots indicate the outliers. The data points
from the case study (cf. Fig. 2) are given in yellow. The bottom panel additionally includes sun-
photometer data (purple) and is limited to coincident measurements during daytime clear-sky
conditions. The red dot on the y axis represents the noise level of the MWR.
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Figure 9. Mean daily cycle of IWV during HOPE measured with MWR with 15 min resolution
(black), GPS (solid blue), GPS for coincident measurements with MWR (dashed blue), GPS
for coincident measurements with sunphotometer (dash-dotted blue), sunphotometer (purple),
and simulated with COSMO-DE (green). The shaded green area represents the spread of
differently aged forecasts of COSMO-DE. The ticks on the y axis represent the respective two
month mean.
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