A note on the elliptic Kirchhoff equation in \mathbb{R}^{N} perturbed by a local nonlinearity

A. Azzollini
Dipartimento di Matematica, Informatica ed Economia Università degli Studi della Basilicata Via dell'Ateneo Lucano 10, I-85100 Potenza, Italy antonio.azzollini@unibas.it

Received 2 April 2014
Accepted 7 May 2014
Published 8 July 2014

Abstract

In this note, we complete the study made in [The elliptic Kirchhoff equation in \mathbb{R}^{N} perturbed by a local nonlinearity, Differential Integral Equations 25 (2012) 543-554] on a Kirchhoff type equation with a Berestycki-Lions nonlinearity. We also correct Theorem 0.6 inside.

Keywords: Kirchhoff equation; ground state.
Mathematics Subject Classification 2010: 35J20, 35J60

0. Introduction

In this note, we consider the nonlinear Kirchhoff equation

$$
\begin{equation*}
-\left(a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2}\right) \Delta u=g(u) \quad \text { in } \mathbb{R}^{N}, \quad N \geq 3 \tag{1}
\end{equation*}
$$

where we assume general hypotheses on g. We will investigate the existence of a solution depending on the value of the positive parameters a and b. We will fix an incorrect sentence contained in [1] and complete that paper with additional results.

We refer to [1] and the references within for a justification of our study and a bibliography on the problem.

1. Existence and Characterization of the Solutions

Assume that
(g1) $g \in C(\mathbb{R}, \mathbb{R}), g(0)=0$;
(g2) $-\infty<\liminf _{s \rightarrow 0^{+}} g(s) / s \leq \lim \sup _{s \rightarrow 0^{+}} g(s) / s=-m<0$;
(g3) $-\infty \leq \limsup \sin _{s \rightarrow+\infty} g(s) / s^{2^{*}-1} \leq 0$;
(g4) there exists $\zeta>0$ such that $G(\zeta):=\int_{0}^{\zeta} g(s) d s>0$.

It is well-known that the previous assumptions coincide with those in [2], where the problem

$$
\begin{equation*}
-\Delta v=g(v) \quad \text { in } \mathbb{R}^{N}, \quad N \geq 3 \tag{2}
\end{equation*}
$$

was studied and solved.
First of all, we present the following general result which provides a characterization of the solutions of (1).

Theorem 1.1. $u \in C^{2}\left(\mathbb{R}^{N}\right) \cap \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$ is a solution to (1) if and only if there exists $v \in C^{2}\left(\mathbb{R}^{N}\right) \cap \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$ solution to (2) and $t>0$ such that $t^{2} a+t^{4-N} b \times$ $\int_{\mathbb{R}^{N}}|\nabla v|^{2}=1$ and $u(\cdot)=v(t \cdot)$.

Proof. We first prove the "if" part. Suppose $v \in C^{2}\left(\mathbb{R}^{N}\right) \cap \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$ and $t>0$ are as in the statement of the theorem and set $u(\cdot)=v(t \cdot)=v_{t}(\cdot) \in C^{2}\left(\mathbb{R}^{N}\right) \cap$ $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$. We compute

$$
\begin{aligned}
-\Delta u(x) & =-\Delta v_{t}(x)=-t^{2} \Delta v(t x) \\
& =t^{2} g(v(t x))=t^{2} g(u(x))=\frac{g(u(x))}{a+b t^{2-N} \int_{\mathbb{R}^{N}}|\nabla v|^{2}} \\
& =\frac{g(u(x))}{a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2}} .
\end{aligned}
$$

Now we prove the "only if" part. Suppose $u \in C^{2}\left(\mathbb{R}^{N}\right) \cap \mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$ is a solution of (1) and set $h=\sqrt{a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2}}, v(\cdot)=u(h \cdot)=u_{h}(\cdot)$. Of course $v \in C^{2}\left(\mathbb{R}^{N}\right) \cap$ $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$ and $u(\cdot)=v\left(\frac{1}{h} \cdot\right)$. Moreover,

$$
-\Delta v(x)=-h^{2} \Delta u(h x)=h^{2} \frac{g(u(h x))}{a+b \int_{R^{N}}|\nabla u|^{2}}=g\left(u_{h}(x)\right)=g(v(x))
$$

and, if we set $t=\frac{1}{h}$,

$$
t^{2}=\frac{1}{a+b \int_{\mathbb{R}^{N}}|\nabla u|^{2}}=\frac{1}{a+b t^{2-N} \int_{\mathbb{R}^{N}}|\nabla v|^{2}}
$$

Remark 1.2. Assume (g1)-(g4). By the existence result contained in [2], it is obvious that for $N=3$ there exists a solution of (1) for any a and b positive numbers.

For $N=4$, we should have a solution if and only if there exists v solution of (2) such that $b \int_{\mathbb{R}^{N}}|\nabla v|^{2}<1$. Taking into account the computations in [2, Sec. 4.3], we know that the ground state solution of Eq. (2) has the minimal value of the $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$ norm among all the solutions of the equation. Then, for $N=4$ we conclude that Eq. (1) has a solution if and only if the ground state solution \bar{v} of (2) is such that $b \int_{\mathbb{R}^{N}}|\nabla \bar{v}|^{2}<1$.

Consider the functional of the action related with Eq. (1)

$$
I(u)=\frac{1}{2}\left(a+\frac{b}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}\right) \int_{\mathbb{R}^{N}}|\nabla u|^{2}-\int_{\mathbb{R}^{N}} G(u),
$$

where $G(s)=\int_{0}^{s} g(z) d z$, being g possibly modified as in [2] in order to make I a C^{1} functional on $H^{1}\left(\mathbb{R}^{N}\right)$. We observe that, for small dimensions, the value of the action computed in the solutions increases as the $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$ norm increases according to the following.

Proposition 1.3. Assume $N=3$ or $N=4$. If v_{1} and v_{2} are solutions of (2) and $\int_{\mathbb{R}^{N}}\left|\nabla v_{1}\right|^{2}<\int_{\mathbb{R}^{N}}\left|\nabla v_{2}\right|^{2}$ and, for $N=4$, we also have $b \int_{\mathbb{R}^{N}}\left|\nabla v_{2}\right|^{2}<1$, then, calling t_{1} and t_{2} the positive numbers such that respectively $v_{1}\left(t_{1} \cdot\right)$ and $v_{2}\left(t_{2} \cdot\right)$ are solutions of (1), we have $t_{2}<t_{1}$ and $I\left(v_{1}\left(t_{1} \cdot\right)\right)<I\left(v_{2}\left(t_{2} \cdot\right)\right)$.

Proof. By Theorem 1.1, it is immediate to see that $t_{2}<t_{1}$. Now observe that any solution of (1) satisfies the Pohozaev identity

$$
\begin{equation*}
a \frac{N-2}{2 N} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+b \frac{N-2}{2 N}\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}\right)^{2}-\int_{\mathbb{R}^{N}} G(u)=0 . \tag{3}
\end{equation*}
$$

As a consequence the action computed in any solution of (1) is

$$
I(u)=a \frac{1}{N} \int_{\mathbb{R}^{N}}|\nabla u|^{2}+b \frac{4-N}{4 N}\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}\right)^{2}
$$

and then, if v and $t>0$ are related with u as in Theorem 1.1, we have that

$$
I(u)=a \frac{t^{2-N}}{N} \int_{\mathbb{R}^{N}}|\nabla v|^{2}+b \frac{4-N}{4 N} t^{4-2 N}\left(\int_{\mathbb{R}^{N}}|\nabla v|^{2}\right)^{2}
$$

Since $t^{2} a+t^{4-N} b \int_{\mathbb{R}^{N}}|\nabla v|^{2}=1$, we can cancel the dependence of I from b

$$
\begin{align*}
I(u) & =\frac{\int_{\mathbb{R}^{N}}|\nabla v|^{2}}{N t^{N}}\left(a t^{2}+\frac{4-N}{4}\left(1-a t^{2}\right)\right) \\
& =\frac{a}{4} \frac{\int_{\mathbb{R}^{N}}|\nabla v|^{2}}{t^{N-2}}+\frac{4-N}{4 N} \frac{\int_{\mathbb{R}^{N}}|\nabla v|^{2}}{t^{N}} . \tag{4}
\end{align*}
$$

The conclusion easily follows from (4).
In the following corollary, we establish the conditions which guarantee the existence of a ground state solution for $N \geq 3$. In particular, we correct [1 , Theorem 0.6] for what concerns the dimension $N=4$.

Corollary 1.4. Assume (g1)-(g4).
If $N=3$ then Eq. (1) has a ground state solution.
If $N=4$ then Eq. (1) has a ground state solution if and only if b $\int_{\mathbb{R}^{N}}|\nabla \bar{v}|^{2}<1$, being \bar{v} a ground state solution of (2).

If $N \geq 5$ then Eq. (1) has a solution if and only if

$$
\begin{equation*}
a \leq\left(\frac{N-4}{N-2}\right)^{\frac{N-2}{N-4}}\left(\frac{2}{(N-4) b \int_{\mathbb{R}^{N}}|\nabla \bar{v}|^{2}}\right)^{\frac{2}{N-4}} \tag{5}
\end{equation*}
$$

being \bar{v} a ground state solution of (2). Moreover, the functional attains the infimum.
Proof. Since the functional of the action related with Eq. (2), when computed in the solutions of the equation, is directly proportional to the $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right)$ norm of the solutions (see Remark 1.2), the conclusion for cases $N=3$ and $N=4$ follows immediately from Proposition 1.3 and [2].

If $N \geq 5$, by Theorem 1.1 we have to show that there exists a solution v of Eq. (2) and $t>0$ such that $t^{2} a+t^{4-N} b \int_{\mathbb{R}^{N}}|\nabla v|^{2}=1$. Of course such a couple (v, t) exists if only if there exists $t_{0}>0$ such that

$$
\begin{equation*}
t_{0}^{2} a+t_{0}^{4-N} b \int_{\mathbb{R}^{N}}|\nabla \bar{v}|^{2}=1 \tag{6}
\end{equation*}
$$

for \bar{v} a ground state solution of (2). By studying the function $f(t)=a t^{2}+b_{0} t^{4-N}$ for $t>0$, being $b_{0}=b \int_{\mathbb{R}^{N}}|\nabla \bar{v}|^{2}$, we observe that (6) holds for some t_{0} if and only if

$$
\begin{equation*}
\min _{t>0} f(t) \leq 1 \tag{7}
\end{equation*}
$$

An easy computation leads to (5). As a remark we point out that if (7) holds with the strict inequality, then we can find two values $t_{1}<t_{2}$ which solve (6) and two corresponding distinct solutions $\bar{v}_{t_{1}}$ and $\bar{v}_{t_{2}}$ to Eq. (1).

Now we prove that the functional I attains the minimum. For $i=1,2$, define g_{i} and G_{i} as in [2]. Observe that, by [2, (3.4) and (3.5)],

$$
\begin{aligned}
I(u) & =\frac{1}{2}\left(a+\frac{b}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}\right) \int_{\mathbb{R}^{N}}|\nabla u|^{2}+\int_{\mathbb{R}^{N}} G_{2}(u)-\int_{\mathbb{R}^{N}} G_{1}(u) \\
& \geq \frac{1}{2}\left(a+\frac{b}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}\right) \int_{\mathbb{R}^{N}}|\nabla u|^{2}+(1-\varepsilon) \int_{\mathbb{R}^{N}} G_{2}(u)-C_{\varepsilon} \int_{\mathbb{R}^{N}}|u|^{\frac{2 N}{N-2}} \\
& \geq \frac{1}{2}\left(a+\frac{b}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}\right) \int_{\mathbb{R}^{N}}|\nabla u|^{2}+\frac{1-\varepsilon}{2} m \int_{\mathbb{R}^{N}}|u|^{2}-C_{\varepsilon} \int_{\mathbb{R}^{N}}|u|^{\frac{2 N}{N-2}},
\end{aligned}
$$

where $\varepsilon<1$ and $C_{\varepsilon}>0$ are suitable constants.
Since $\mathcal{D}^{1,2}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{\frac{2 N}{N-2}}\left(\mathbb{R}^{N}\right)$, for a suitable positive constant C we have

$$
\begin{aligned}
I(u) \geq & \frac{1}{2}\left(a+\frac{b}{2} \int_{\mathbb{R}^{N}}|\nabla u|^{2}\right) \int_{\mathbb{R}^{N}}|\nabla u|^{2} \\
& +\frac{1-\varepsilon}{2} m \int_{\mathbb{R}^{N}}|u|^{2}-C\left(\int_{\mathbb{R}^{N}}|\nabla u|^{2}\right)^{\frac{N}{N-2}}
\end{aligned}
$$

and, since for $N \geq 5$ we have $1<\frac{N}{N-2}<2$, we deduce that the functional is bounded below and coercive with respect to $H^{1}\left(\mathbb{R}^{N}\right)$ norm.

Now, since for every $u \in H^{1}\left(\mathbb{R}^{N}\right)$ and its corresponding Schwarz symmetrization u^{*} we have

$$
\int_{\mathbb{R}^{N}}\left|\nabla u^{*}\right|^{2} \leq \int_{\mathbb{R}^{N}}|\nabla u|^{2}, \quad \int_{\mathbb{R}^{N}} G\left(u^{*}\right)=\int_{\mathbb{R}^{N}} G(u),
$$

we can look for a minimizer of I in $H_{r}^{1}\left(\mathbb{R}^{N}\right)$, the set of radial functions in $H^{1}\left(\mathbb{R}^{N}\right)$. As in [2], we can prove that the functional

$$
u \in H_{r}^{1}\left(\mathbb{R}^{N}\right) \mapsto \int_{\mathbb{R}^{N}} G_{1}(u) \in \mathbb{R}
$$

is compact, so, by standard arguments based on Weierstrass Theorem, I attains the infimum.

Remark 1.5. Suppose $N \geq 5$. By previous corollary we have that if (5) does not hold, then I is nonnegative in $H^{1}\left(\mathbb{R}^{N}\right)$.

Acknowledgments

The author is supported by M.I.U.R.-P.R.I.N. "Metodi variazionali e topologici nello studio di fenomeni non lineari" and by GNAMPA Project "Metodi Variazionali e Problemi Ellittici Non Lineari".

References

[1] A. Azzollini, The elliptic Kirchhoff equation in \mathbb{R}^{N} perturbed by a local nonlinearity, Differential Integral Equations 25 (2012) 543-554.
[2] H. Berestycki and P. L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983) 313-345.

