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Abstract A thermodynamic model of Korteweg fluids undergoing phase transition and/or phase separation7

is developed within the framework of weakly nonlocal thermodynamics. Compatibility with second law of8

thermodynamics is investigated by applying a generalized Liu procedure recently introduced in the literature.9

Possible forms of the free energy and of the stress tensor, which generalize some earlier ones proposed by10

several authors in the last decades, are carried out. Owing to the new procedure applied for exploiting the11

entropy principle, the thermodynamic potentials are allowed to depend on the whole set of variables spanning12

the state space, including the gradients of the unknown fields, without postulating neither the presence of an13

energy or entropy extra-flux, nor an additional balance law for microforce.14

Keywords Extended Liu procedure · Weakly nonlocal thermodynamics · Continua with scalar internal15

variable · Phase field · Ginzburg–Landau equation16

1 Introduction17

Models of phase segregation and phase diffusion have received increasing attention in the last three decades [1–18

8], due to their growing importance in modern technology. In general, these models involve an order parameter19

ϕ ∈ [0, 1], such that if ϕ = 0 or ϕ = 1, only one phase occurs, while if ϕ ∈ (0, 1), two coexisting phases are20

allowed. For this reason, ϕ is often referred to as phase field. The main advantage of this approach is that ϕ21

is given by a smooth function with respect to the space and time variables, avoiding so the modeling of jump22

discontinuities that arise in the sharp interface approach [9]. There are two celebrated evolution equations for23

ϕ: the Ginzburg–Landau (GL) equation [10] (also named Allen-Chan equation [11]) and the Cahn–Hilliard24

(CH) equation [12]. Both are parabolic but of different order. In this paper, we are content to the GL equation,25

which, in its simplest formulation, may be written as26
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ϕ̇ = µϕ,i i − β f ′(ϕ), (1)27

where β and µ are positive constants, ϕ̇ denotes the material time derivative of ϕ, ϕ,i (i = 1, 2, 3) denotes the28

partial derivative of ϕ with respect to the coordinate xi (the Einstein convention of sum over repeated indices is29

used), and a prime denotes the derivative with respect to the argument. Function f is a double-well potential,30

accounting for the two-phase constitution of the system, and coincides with the local part of the free energy31

ψ(ϕ) = f (ϕ) +
1

2
µϕ2

,i . (2)32

Later on, the constitutive equation (2) has been extended to two-phase Ginzburg–Landau fluids as follows33

[2–7]:34

ψ(ρ, θ, ϕ, ϕ,i ) = ψ0(ρ, θ, ϕ) +
1

2
µ(ρ, θ, ϕ)ϕ2

,i . (3)35

Equation (3) leads to the constitutive equation for the Cauchy stress [2,3,6,7]36

Ti j = −p(ρ, θ, ϕ)δi j + 2µ(ρ, θ, ϕ)
∂ψ

∂ϕ,i

∂ψ

∂ϕ, j

, (4)37

where p = ρ2 ∂ψ
∂ρ

is the pressure, and µ a material function that generalizes the constant in Eq. (1).38

It is worth observing that both the equations above contain the gradient of the phase field only, but not39

the gradient of mass density and temperature, and this is the consequence of a certain privileged physical40

assumption and/or mathematical procedure, which regards only the phase field and not the other variables too.41

Ginzburg–Landau equation (1) was so named by Gurtin [1], because of its capability to model the ordering42

of the atoms within unit cells on a lattice in superconductivity [10]. Moreover, Gurtin first embodied Eq. (1)43

within the general framework of continuum thermodynamics [1]. His derivation relies on the belief that the44

fundamental physical laws, which involve energy, should account for the expenditure of power associated45

with the microscopic kinematical process. Therefore, the balance of the microforce driving the ordering of the46

atoms is postulated, [1,2,8]. The constitutive equations are weakly nonlocal in space and time, since they are47

allowed to depend on ϕ, grad ϕ, and ϕ̇. Systematic derivations of Eq. (1) from a different point of view have been48

obtained by Fabrizio, Giorgi and Morro [3], and by Morro [6,7]. These authors regard the phase field as a scalar49

internal variable, ruled by an evolution equation that is determined by second law of thermodynamics. The50

constitutive equations are weakly nonlocal in space, while a generalized local form of the entropy inequality,51

allowing for an entropy extra-flux, is postulated. We consider the above derivations illuminating. However,52

both rely on new physical postulates, the first one being based on the existence of a microforce, which drives53

the ordering of the atoms, and the second one based on the existence of an entropy extra-flux, first introduced54

by Müller in exploiting the entropy principle in continuum physics [13], which influences the evolution of ϕ.55

From the point of view of the basic physical laws, one theory excludes the other one, so that their capability56

of obtaining the GL equation does not constitute, “per se,” a proof of the existence of the microforce or of the57

entropy extra-flux. GL equation may also be obtained by a more general evolution relation for thermoelastic58

materials with additional scalar-valued degrees of freedom [14].59

In recent papers [15–20], we approached the problem of the thermodynamic compatibility of gradient60

continuum theories from a purely mathematical point of view. We proved that if all the equations ruling the61

evolution of the independent thermodynamic variables are substituted into the entropy inequality, no additional62

physical hypothesis is necessary, and the thermodynamic compatibility may be achieved whatever the form of63

the entropy inequality is. Within this framework, we have studied in-depth the thermodynamics of Korteweg64

fluids with scalar [17,18] and vectorial [20] internal variable.65

This method has meaningful similarities with that applied in [21–24] for deriving the classical Ginzburg–66

Landau equation and its generalizations. In fact, also in this case, the phase field is regarded as an internal67

variable and the entropy inequality is exploited through a generalization of the classical Liu procedure. However,68

the following important differences are worth mentioning:69

• only the first-order gradient of the evolution equation for the internal variable is considered as additional70

constraint for the entropy inequality, although the state space contains the gradient of the internal variable71

up to the order three [21];72

• the Ginzburg–Landau equation is obtained by applying the force–current decomposition [25] of the reduced73

entropy inequality [21];74
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• in [23] the Nyíri form of the entropy current [26] is postulated, while in [21,22] the Nyíri form is assumed75

for a part of the entropy current, in order to obtain further generalizations beyond the classical form of76

Ginzburg–Landau equation.77

Our aim here is to apply the mathematical procedure illustrated above in order to derive explicit consti-78

tutive equations for the free energy, the stress, and the heat flux, in the presence of the coexisting phases of79

Korteweg-type fluids, in which the capillary forces manifest themselves at a macroscopic level, for instance by80

determining the form of the interface between the phases [27]. Thus, the model can be validated by classical81

experiments, such as the static and dynamic methods to measure the surface tension (see [27], Ch. 1, for a82

detailed description).83

The role of capillary forces in the equilibrium between phases has been well understood since 1805 by84

Young [28], who was interested in determining the nature of the surface between different liquids (see also85

[29] for an extensive survey on the development of capillarity theory). Later on, in 1893, van der Waals [30]86

studied the interface between a liquid and its vapor, and represented it by a thin intermediate region in which87

the properties of the material deviate appreciably from those of the materials on either side [29,30]. However,88

the idea that capillarity effects in fluids can be modeled through the presence of density gradients in the stress89

tensor is due to the Dutch physicist Korteweg, who in 1901 proposed the following constitutive equation for90

the elastic part of the Cauchy stress91

Ti j =
(

−p + α ρ,kk + β ρ2
,k

)

δi j + γ ρ,i ρ, j + δ ρ,i j , (5)92

where p is the pressure of the fluid, while α, β, γ , and δ are suitable material functions of ρ and the temperature93

θ , [31].94

In modern terminology, Eq. (5) represents a special example of constitutive equation of differential material95

of grade 3, since the constitutive equations are permitted to depend on the derivatives of the local displace-96

ment of order less than or equal to 3 [32–34]. The thermodynamics of Korteweg fluids of grade 3 has been97

studied extensively in [19]. Second-grade Korteweg fluids, instead, are characterized by constitutive equations98

depending on the derivatives of the local displacement of order less than or equal to 2 [16–18]. Heida and99

Málek [35] studied these materials from a different perspective with respect to [16–18], which will be specified100

below. Models for phase transitions of Korteweg fluids of grade 2 have been developed by Heida et al. [29],101

and by Lowengrub and Truskinowski [36].102

The latter authors proposed a new procedure for modeling the interface in a binary mixture, supposed to be103

not very sharp and of comparable size to its radius of curvature. The constitutive equations depend nonlocally104

on a scalar variable related to the concentration of the constituents. As a result, they essentially derive an105

equation that couples the Euler (or Navier–Stokes) equation with the Cahn–Hilliard equation. In building106

up their model, Lowengrub and Truskinowski take into account also computational and mathematical issues107

concerning the properties that the resulting system of governing equations should have.108

A different analysis is made by Heida et al. [29], who developed their model in the framework of a more109

general procedure for deriving the restrictions imposed by second law of thermodynamics on the constitu-110

tive equations. To this end, they appeal to the requirement that among all admissible constitutive relations,111

the appropriate ones maximize the rate of entropy production [37]. The procedure requires to prescribe the112

constitutive equations for only two scalars: the entropy and the entropy production. Then, the thermodynamic113

restrictions are obtained by regarding the rate of entropy production as a bilinear product of thermodynamic114

forces and conjugated thermodynamic fluxes [25]. The same method has been applied in [35] to study the115

thermodynamics of second-grade Korteweg fluids in the absence of phase transition.116

The approach that we present here, on one side, follows the same philosophy of the one by Heida et al.117

[29], since we try to develop our model within a very general framework, which can be applied to any class of118

materials, without any hypothesis “ad hoc.” On the other side, it differs from that of these authors, because it is119

based on a mathematical procedure only and does not require any specific physical assumption. On the contrary,120

to apply their method, Heida, Málek and Rajagopal need to assume a suitable constitutive equation for the rate121

of entropy production and also to postulate that the appropriate constitutive equations maximize such a rate.122

As the same authors say, “this assumption is not a principle or a law with a status such as the balance of energy123

or the second law of thermodynamics. However, it seems to lead to sensible models within the context of a124

diverse class of material response such as viscoelasticity, classical plasticity, twinning, phase transformations,125

and chemically reacting mixtures.” Although we share this point of view, we prefer to build up our model on126

the basis of universal physical principles only, such as second law of thermodynamics. On the other hand, we127

also agree with Heida, Málek and Rajagopal when they claim that “if the current mathematics is incapable of128
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dealing with the model, then one would perforce have to invent the mathematics necessary to deal with the129

problem on hand.” According to this philosophy, in the present paper, we apply the method of exploitation of130

the entropy inequality developed in [15,18], together with the theory of second-grade Korteweg fluids with131

a scalar internal variable [20], in order to generalize the constitutive equations (3) and (4) modeling phase132

transitions of Korteweg fluids with first-order gradients in the state space. Thus, after deriving the GL equation,133

we investigate the thermodynamic restrictions ensuring its compatibility with second law of thermodynamics.134

From them, we infer suitable constitutive equations for entropy, free energy, Cauchy stress, and heat flux, which135

are compatible with GL equation. Finally, we consider some earlier GL models, developed within different136

frameworks, and prove that all of them may be recovered as particular cases of the present one. In our opinion,137

this is enough to prove the generality of the present approach, which does not require any special physical138

assumption but is based only on a new mathematical procedure.139

2 Two-phase Ginzburg–Landau–Korteweg fluid140

Let us consider the material class with state space141

Z = {ρ, ρ,k, ǫ, ǫ,k, ϕ, ϕ,k}, (6)142

with ρ as the mass density, ǫ as the internal energy per unit mass, and ϕ as the internal variable. We suppose143

that the evolution of these systems is governed by the following local balances of mass, linear momentum,144

energy, and internal variable [2,6,20]145

ρ,t + ρ, jv j + ρv j, j = 0, (7)146

ρvi,t + ρvi, jv j − Ti j, j = 0, (8)147

ρǫ,t + ρǫ, jv j − Ti jvi, j + q j, j = 0, (9)148

ρϕ,t + ρϕ, jv j + � j, j = r, (10)149

where vi , Ti j , q j , and � j are the components of velocity, Cauchy stress, heat flux, and flux of internal variable,150

respectively. Moreover, r means the production of internal variable, while the symbol f,t denotes the partial151

derivative of f with respect to time. For the sake of simplicity, we have assumed that body forces and heat152

sources vanish.153

Second law of thermodynamics, which determines the direction of the real-world thermodynamic processes,154

locally reads [39–42]155

ρs,t + ρs, jv j +
(q j

θ

)

, j
≥ 0, (11)156

where s is the entropy per unit mass and θ the temperature. It is worth observing that we assumed the entropy157

flux in the classical form (q/θ) [39,42]. Our model will be developed in the framework of weakly nonlocal158

irreversible thermodynamics [40–42], so that a particular material will be characterized by suitable constitutive159

equations for T, q, �, r , and s, which are allowed to depend on the gradients of the unknown fields too.160

We notice that an order parameter is not necessarily extensive, so that, in several cases, the balance law for161

the order parameter should be substituted by the evolution equation162

ρϕ,t + ρϕ, jv j = f (Z), (12)163

with f a regular function defined on the state space. Nonetheless, often the balance form is necessary as, for164

instance, when the phase transition is described by letting the body occur in N phases but regarding these165

phases as a single body to which additional scalar variables, the phase fields ϕ1 . . . ϕN , are ascribed [4–7].166

In such a case, the fields ϕ1 . . . ϕN are identified with the concentrations c1 = ρ1/ρ, . . . cN = ρN /ρ, of the167

different phases, each of which is governed by the balance equation168

ρcα
,t + ρcα

, jv j + Jα
j, j = rα, α = 1 . . . N , (13)169

where Jα
j are the components of the diffusion flux of the α-th phase, and rα is the mass supply of the α-th170

phase due to the phase transition.171

On the other hand, once constitutive equations have been assigned for the flux and for the production of172

internal variable, Eq. (10) takes the form (12) whenever the flux is divergence-free or vanishes. Thus, the173

balance form encompasses the evolutionary one.174
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We investigate the compatibility of the approach above with second law of thermodynamics by applying175

the generalized Liu procedure [43], developed in a series of papers by Cimmelli et al. [15,16,18]. It consists176

in subtracting to Eq. (11) a linear combination of Eq. (7) and Eqs. (9)–(10), and of their gradient extensions,177

governing the evolution of grad ρ, grad ǫ, and grad ϕ, respectively. The coefficients entering this linear com-178

bination for including the constraints imposed by the balance equations of mass, internal energy, and internal179

variable are λ(m), λ(e), and λ(iv), respectively. Beside them, we introduce in the entropy inequality the coef-180

ficients �
(m)
i , �

(e)
i , and �

(iv)
i , which account for the constraints imposed by the first-order gradients of the181

balance equations of mass, internal energy, and internal variable, respectively. All of them play the role of182

Lagrange multipliers [43].183

In this way, some lengthy calculations yield the following thermodynamic restrictions as necessary and184

sufficient conditions to fulfill the entropy inequality (11) along arbitrary thermodynamic processes185

λ(m) = ρ
∂s

∂ρ
, (14)186

�
(m)
i = ρ

∂s

∂ρ,i

, (15)187

λ(e) =
∂s

∂ǫ
−

ρ, j

ρ
�

(e)
j , (16)188

�
(e)
i =

∂s

∂ǫ,i

, (17)189

λ(iv) =
∂s

∂ϕ
−

ρ, j

ρ
�

(iv)
j , (18)190

�
(iv)
i =

∂s

∂ϕ,i

, (19)191

〈

�
(e)
j

∂qk

∂ρ,m

+ �
(iv)
j

∂�k

∂ρ,m

〉

= 0, (20)192

〈

�
(e)
j

∂qk

∂ǫ,m

+ �
(iv)
j

∂�k

∂ǫ,m

〉

= 0, (21)193

〈

�
(e)
j

∂qk

∂ϕ,m

+ �
(iv)
j

∂�k

∂ϕ,m

〉

= 0, (22)194

h(ρ, ρ,i , ρ,ik, ǫ, ǫ,i , ǫ,ik, ϕ, ϕ,i , ϕ,ik) ≥ 0. (23)195

In the equations above, the symbol 〈Fabc···〉 denotes the symmetric part of the tensor function F with respect196

to all its indices.197

The reduced entropy inequality (23), which is too long to be reported here in detail, takes a nonclassical198

form, since it depends not only on the elements of the state space but on the higher derivatives ρ,i j , ǫ,i j , and ϕ,i j199

too. It can be easily verified that (23) involves the higher derivatives through both quadratic and linear terms.200

By denoting with Xα the generic element of the set of the independent higher derivatives, a direct inspection201

shows that it may be rewritten in the form202

Aαβ Xα Xβ + Bα Xα + C ≥ 0, (24)203

where the functions Aαβ , Bα , and C depend only on the state functions. Note that the mathematical structure204

of the left-hand side of Eq. (24) implies that the matrix Aαβ is symmetric. The first term in the left-hand side205

of (24) can be nonnegative for arbitrary values of the Xα if and only if the matrix with entries Aαβ is positive206

semidefinite. The linear term in Xα , instead, must vanish, since the coefficients Bα are independent of the Xα ,207

otherwise the quantity Bα Xα could take arbitrary negative values, thus violating the inequality (24). Thus,208

by the arbitrariness of Xα , it follows the additional restriction Bα = 0, which yields the following further209
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relationships between the constitutive quantities T, q, �, r , and s.210

〈

∂2s

∂ρ,k∂ǫ
qi +

∂s

∂ǫ

∂qi

∂ρ,k

− λ(e) ∂qi

∂ρ,k

− λ(iv) ∂�i

∂ρ,k

+ �
(e)
i

∂Tl j

∂ρ,k

vl, j211

−�
(e)
i

(

∂qk

∂ρ
+

∂2q j

∂ρ,k∂ρ
ρ, j +

∂2q j

∂ρ,k∂ǫ
ǫ, j +

∂2q j

∂ρ,k∂ϕ
ϕ, j

)

212

−�
(e)
j

(

∂2qi

∂ρ∂ρ,k

ρ, j +
∂2qi

∂ǫ∂ρ,k

ǫ, j +
∂2qi

∂ϕ∂ρ,k

ϕ, j

)

213

−�
(iv)
i

(

∂�k

∂ρ
+

∂2� j

∂ρ,k∂ρ
ρ, j +

∂2� j

∂ρ,k∂ǫ
ǫ, j +

∂2� j

∂ρ,k∂ϕ
ϕ, j −

∂r

∂ρ,k

)

214

−�
(iv)
j

(

∂2�i

∂ρ∂ρ,k

ρ, j +
∂2�i

∂ǫ∂ρ,k

ǫ, j +
∂2�i

∂ϕ∂ρ,k

ϕ, j

)〉

= 0, (25)215

〈

∂2s

∂ǫ,k∂ǫ
qi +

∂s

∂ǫ

∂qi

∂ǫ,k

− λ(e) ∂qi

∂ǫ,k

− λ(iv) ∂�i

∂ǫ,k

− ρ(�
(e)
i vk − �

(e)
k vi ) + �

(e)
i

∂Tl j

∂ǫ,k

vl, j216

−�
(e)
i

(

∂qk

∂ǫ
+

∂2q j

∂ǫ,k∂ρ
ρ, j +

∂2q j

∂ǫ,k∂ǫ
ǫ, j +

∂2q j

∂ǫ,k∂ϕ
ϕ, j

)

217

+�
(e)
j

(

∂2qi

∂ρ∂ǫ,k

ρ, j +
∂2qi

∂ǫ∂ǫ,k

ǫ, j +
∂2qi

∂ϕ∂ǫ,k

ϕ, j

)

218

−�
(iv)
i

(

∂�k

∂ǫ
+

∂2� j

∂ǫ,k∂ρ
ρ, j +

∂2� j

∂ǫ,k∂ǫ
ǫ, j +

∂2� j

∂ǫ,k∂ϕ
ϕ, j −

∂r

∂ǫ,k

)

219

−�
(iv)
j

(

∂2�i

∂ρ∂ǫ,k

ρ, j +
∂2�i

∂ǫ∂ǫ,k

ǫ, j +
∂2�i

∂α∂ǫ,k

ϕ, j

)〉

= 0, (26)220

〈

∂2s

∂ϕ,k∂ǫ
qi +

∂s

∂ǫ

∂qi

∂ϕ,k

− λ(e) ∂qi

∂ϕ,k

− λ(iv) ∂�i

∂ϕ,k

− ρ(�
(iv)
i vk − �

(iv)
k vi )221

−�
(e)
i

(

∂qk

∂ϕ
+

∂2q j

∂ϕ,k∂ρ
ρ, j +

∂2q j

∂ϕ,k∂ǫ
ǫ, j +

∂2q j

∂ϕ,k∂ϕ
ϕ, j

)

222

+�
(e)
i

∂Tl j

∂ϕ,k

vl, j + �
(e)
j

(

∂2qi

∂ρ∂ϕ,k

ρ, j +
∂2qi

∂ǫ∂ϕ,k

ǫ, j +
∂2qi

∂ϕ∂ϕ,k

ϕ, j −
∂r

∂ϕ,k

)

223

−�
(iv)
i

(

∂�k

∂ϕ
+

∂2� j

∂ϕ,k∂ρ
ρ, j +

∂2� j

∂ϕ,k∂ǫ
ǫ, j +

∂2� j

∂ϕ,k∂ϕ
ϕ, j

)〉

= 0. (27)224

Finally, recalling that the higher derivatives do not depend on the state space, while C is defined on the225

state space, we conclude that the residual inequality C ≥ 0 holds.226

3 Ginzburg–Landau–Korteweg free energy227

In order to derive meaningful consequences of the thermodynamic restrictions above, let us observe that Eq.228

(1) may be easily obtained by choosing229

�i = −ρµϕ,i , r = −µρ,iϕ,i − ρβ f ′(ϕ). (28)230

More difficult is to prove the thermodynamic compatibility of the constitutive equations (2) and (28), since231

the entropy principle, in its classical formulation, denies the dependence of the thermodynamic potentials on the232

gradients of the basic fields [39,42]. To achieve that task, we first substitute Eqs. (28) into the thermodynamic233

restrictions (20)–(22), getting so234
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〈

∂s

∂ǫ, j

∂qk

∂ρ,n

〉

= 0, (29)235

〈

∂s

∂ǫ, j

∂qk

∂ǫ,n

〉

= 0, (30)236

〈

∂s

∂ǫ, j

∂qk

∂ϕ,n

−
∂s

∂ϕ, j

ρµδkn

〉

= 0. (31)237

Then, since Eqs. (29)–(31) do not prevent the specific entropy to depend on the gradient of ρ, ǫ, and ϕ, we are238

allowed to postulate a constitutive equation for it which is simple, includes the gradients of the aforementioned239

quantities, is in accordance with the theory of representation of isotropic scalar functions depending on scalars240

and vectors [44], and fulfills the principle of maximum entropy at the equilibrium [45]. The most general241

second-order polynomial isotropic scalar function having the aforementioned properties is242

s = s0 + s̃1ρ
2
,i + 2s̃2ρ,iǫ,i + 2s̃3ρ,iϕ,i + s̃4ǫ

2
,i + 2s̃5ǫ,iϕ,i + s̃6ϕ

2
,i , (32)243

where s0 and s̃i (i = 1, . . . , 6) depend on ρ, ǫ, and ϕ. Nevertheless, in view of the subsequent analysis, and244

in order to produce a case where conditions (20)–(22) can be easily integrated, we choose the coefficients s̃i245

(i = 1, . . . , 6) as follows:246

s̃1 = s1, s̃2 = κs2, s̃3 = s2, s̃4 = κ2s3, s̃5 = κs3, s̃6 = s3, (33)247

where s1, s2, s3, and κ depend on ρ, ǫ, and ϕ.248

Remark 1 The entropy, as a state function of a thermodynamic system, is well defined only for quasi-static249

thermodynamic processes, in which the system undergoes very slow transformations and passes through250

equilibrium states only. The local equilibrium principle, which states that outside the equilibrium the thermo-251

dynamic systems may be described, locally in space and time, by the same state functions of the equilibrium,252

allows to extend the definition of entropy to nonequilibrium situations, as a chart of local mappings [46–48].253

Then, the constitutive equation (32) should be understood as an extension of the constitutive equation, which254

holds at the equilibrium, to nonequilibrium situations [46–48]. For thermodynamic processes passing through255

equilibrium states only, in which all the unknown fields are constant in space and time, the right-hand side of256

Eq. (32) reduces to s0. Thus, we call s0 the equilibrium entropy. It is worth observing that in our approach, ϕ257

is regarded as an internal variable, so that at the equilibrium it reduces to a function of the standard thermo-258

dynamic variables [49], namely ϕeq = F(ρ, ǫ). As a consequence, ∇ϕeq = ∂ F
∂ρ

· ∇ρ|eq + ∂ F
∂ǫ

· ∇ǫ|eq = 0,259

since both the gradients of ρ and ǫ vanish at the equilibrium. A fortiori the previous conclusion is true if ϕ is260

interpreted as an additional degree of freedom, since these quantities are zero at the equilibrium [49].261

For the sake of completeness, let us consider the case in which the phase field is not ruled by Eq. (10), but262

represents an order parameter ̺ for a system in which the following microforce balance equation263

ξi,i + π + γ = 0, (34)264

holds [1]. In Eq. (34), ξi are the components of the microstress, and the scalar body forces π and γ represent265

internal and external forces distributed over the volume of the body, respectively. As observed in [1], γ has266

a dynamical nature, so that at the equilibrium the previous equation reduces to ξi,i + π = 0, with given267

constitutive representations for the microstress ξ and for the internal microforce π in terms of ̺ and ∇̺. In268

such a case, at the equilibrium, the gradient of ̺ cannot vanish, otherwise the internal microforce would result269

not balanced. However, if πeq is constant in space, then ∇̺|eq is constant as well, and Eq. (32) gives as the270

equilibrium entropy the family of functions seq = s0 + c0, where c0 is a constant.271

The principle of maximum entropy at the equilibrium requires that the entropy of a thermodynamic system272

gets its maximum in correspondence with an equilibrium state. As a consequence, in nonequilibrium situations,273

we must have274
∫

c

ρsdc ≤

∫

c

ρs0dc, (35)275

for an arbitrary material particle c. Such a constraint is satisfied if the nonlocal part of the right-hand side of276

Eq. (32) results to be a negative semidefinite quadratic form. This is true if the relations277
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s1 < 0, s3 <
s2

2

s1
, (36)278

hold true. By substituting Eq. (32) in Eqs. (14)–(19), we get the Lagrange multiplier λ(m) by simple derivation279

of s with respect to ρ, and the further Lagrange multipliers280

�
(m)
i = ρ(2s1ρ,i + 2κs2ǫ,i + 2s2ϕ,i ), (37)281

λ(e) =
∂s

∂ǫ
−

1

ρ
(2κs2ρ

2
, j + 2κ2s3ǫ, jρ, j + 2κs3ρ, jϕ, j ), (38)282

�
(e)
i = 2κs2ρ,i + 2κ2s3ǫ,i + 2κs3ϕ,i , (39)283

λ(iv) =
∂s

∂ϕ
−

1

ρ
(2s2ρ

2
, j + 2κs3ǫ, jρ, j + 2s3ρ, jϕ, j ), (40)284

�
(iv)
i = 2s2ρ,i + 2κs3ǫ,i + 2s3ϕ,i . (41)285

Moreover, a possible constitutive equation for the heat flux allowing to satisfy the restrictions (29)–(31) is286

qi = q0i +
ρµ

κ
ϕ,i , (42)287

where the functions q0i depend on ρ, ǫ, and ϕ. Equation (42) means that the heat flow through the fluid is288

driven by the inhomogeneity of the phase field. It is worth observing that it does not represent the most general289

situation but only a particular solution of Eqs. (29)–(31). More general situations, in which the heat flux depends290

on the gradient of ρ and ǫ too, are possible. On the other hand, a constitutive equation for the Cauchy stress291

depending on ρ, ǫ, ϕ, and their gradients must be in accordance with the theory of representation of isotropic292

tensor functions depending on scalars and vectors [44], and must encompass the Korteweg constitutive equation293

modeling the Cauchy stress of fluids moving in capillary channels, which, in the case of first-order nonlocality,294

reads [33]295

Ti j = (−p + αρ2
,k)δi j + δρ,iρ, j , (43)296

where the pressure p and the material functions α and δ depend on ρ and θ . Then, we generalize Eq. (43) as297

follows298

Ti j = (τ0 + τ1ρ
2
,k + τ2ǫ

2
,k + τ3ϕ

2
,k)δi j + τ4ρ,iρ, j + τ5ǫ,iǫ, j + τ6ϕ,iϕ, j299

+2τ7〈ρ,iǫ, j 〉 + 2τ8〈ρ,iϕ, j 〉 + 2τ9〈ǫ,iϕ, j 〉, (44)300

wherein the functions τi (i = 0, 1, . . . , 9) depend on ρ, ǫ, and ϕ.301

That way, the thermodynamic model depends on the 18 material parameters si , i = 0, . . . , 3, κ τi , i =302

0 . . . , 9, and q0i , which can be determined in order to satisfy the 18 thermodynamic restrictions (25)–(27).303

The considerations above lead to the conclusion that the constitutive equations (28), (32), (42), and (44),304

which characterize the Ginzburg–Landau–Korteweg fluid under consideration, are fully compatible with second305

law of thermodynamics.306

From now on, we will limit ourselves to consider situations close to the equilibrium, in which the absolute307

temperature θ is well defined by the “coldness” 1
θ

= ∂s0
∂ǫ

. Under the hypothesis of invertibility of that function,308

ǫ can be expressed as function of ρ, θ and ϕ, and s as function of ρ, θ , ϕ, and their gradients, namely309

s = ŝ0 + ŝ1ρ
2
,i + 2ŝ2ρ,iθ,i + ŝ3θ2

,i + 2ŝ4ρ,iϕ,i + 2ŝ5θ,iϕ,i + ŝ6ϕ
2
,i , (45)310
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where the functions ŝi (i = 0, . . . , 6) depend now on ρ, θ , and ϕ, and are given by311

ŝ0 = s0(ρ, ǫ(ρ, θ, ϕ), ϕ),

ŝ1 = s1 + 2κs2
∂ǫ

∂ρ
+ κ2s3

(

∂ǫ

∂ρ

)2

,

ŝ2 = 2κs2
∂ǫ

∂θ
+ 2κ2s3

∂ǫ

∂θ

∂ǫ

∂ρ
,

ŝ3 = κ2s3

(

∂ǫ

∂θ

)2

,

ŝ4 = 2κs2
∂ǫ

∂ϕ
+ 2κ2s3

∂ǫ

∂ρ

∂ǫ

∂ϕ
+ 2s2 + 2κs3

∂ǫ

∂ρ
,

ŝ5 = 2κ2s3
∂ǫ

∂θ

∂ǫ

∂ϕ
+ 2κs3

∂ǫ

∂θ
,

ŝ6 = κ2s3

(

∂ǫ

∂ϕ

)2

+ 2κs3
∂ǫ

∂ϕ
.

(46)312

Moreover, the constitutive equation (44) can be written as313

Ti j = (τ̂0 + τ̂1ρ
2
,k + τ̂2θ

2
,k + τ̂3ϕ

2
,k)δi j + τ̂4ρ,iρ, j + τ̂5θ,iθ, j + τ̂6ϕ,iϕ, j314

+2τ̂7〈ρ,iθ, j 〉 + 2τ̂8〈ρ,iϕ, j 〉 + 2τ̂9〈θ,iϕ, j 〉, (47)315

wherein the functions τ̂i (i = 0, 1, . . . , 9) depend on ρ, θ , and ϕ.316

Then, let us define the Helmholtz free energy ψ by the Legendre transformation317

ψ = ǫ − θs318

= ψ0 − θ(ŝ1ρ
2
,i + 2ŝ2ρ,iθ,i + ŝ3θ2

,i + 2ŝ4ρ,iϕ,i + 2ŝ5θ,iϕ,i + ŝ6ϕ
2
,i ), (48)319

where320

ψ0(ρ, θ, ϕ) = ǫ(ρ, θ, ϕ) − θ ŝ0(ρ, θ, ϕ). (49)321

By taking into account Eq. (48), if the constraints322

τ̂4 = 4θ2τ ŝ2
4 , τ̂5 = 4θ2τ ŝ2

5 , τ̂6 = 4θ2τ ŝ2
6 ,

τ̂7 = 4θ2τ ŝ4ŝ5, τ̂8 = 4θ2τ ŝ4ŝ6, τ̂9 = 4θ2τ ŝ5ŝ6,
(50)323

where τ is a function of ρ, θ , and ϕ, are satisfied, Eq. (47) may be rewritten as follows324

Ti j = (τ̂0 + τ̂1ρ
2
,k + τ̂2θ

2
,k + τ̂3ϕ

2
,k)δi j + τ

∂ψ

∂ϕ,i

∂ψ

∂ϕ, j

, (51)325

thus extending to Korteweg fluids the constitutive equation (4) for the Cauchy stress, which holds for two-phase326

Ginzburg–Landau fluids [1–8].327

4 Discussion328

From the results in the previous sections, it emerges clearly the importance of the constitutive equation of the329

free energy in GL models. In fact, beside determining the GL equation, the free energy influences the Cauchy330

stress too, allowing for nonlocal terms into its constitutive equations. Moreover, the form of the free energy is331

also important in proving existence and uniqueness of initial and boundary value problems [50]. Therefore, it332

is worth investigating how much general Eq. (48) is. Below, we show that Eq. (48) encompasses several GL333

free energies proposed in the literature in the past decades. First, we observe that if334

ψ0(ρ, θ, ϕ) = f (ϕ), µ = −2θ ŝ6, (52)335
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where f (ϕ) is the double-well function whose derivatives enter the GL equation, then the constitutive equation336

(48) for the free energy reduces to Eq. (2) either for isothermal and homogeneous phases, or for vanishing337

coefficients ŝi (i = 1, . . . , 5). That way, the earlier model by Gurtin [1,8] is recovered, so that our approach338

is capable of reproducing the results obtained by postulating the microforce balance.339

Fabrizio, Giorgi, and Morro [3] obtained a generalization of Eq. (2) of the form340

ψ(ρ, θ, ϕ, ϕ,i ) = φ1(ρ, θ, ϕ) + φ2(ρ, θ) +
1

2
µ(ρ, θ)ϕ2

,i , (53)341

which is still included in Eq. (48) if342

ψ0(ρ, θ, ϕ) = φ1(ρ, θ, ϕ) + φ2(ρ, θ),

µ = −2θ ŝ6.
(54)343

Thus, although we did not postulate any entropy extra-flux, our model encompasses some earlier models344

in which such a quantity plays a fundamental role.345

Equation (48) also includes a proposal by Penrose and Fife [51], which involves the entropy potential instead346

of the Ginzburg–Landau free energy. Along with what is expected from the second law of thermodynamics,347

the authors prove that the value of the entropy functional cannot decrease along solution paths [51]. In a further348

paper [52], they make a suitable choice of the free energy functional and establish a systematic connection349

with the standard phase-field model. That way, they obtain a local free energy, which takes the form350

ψ0(θ, ϕ) =
θ

4θ0
(ϕ2 − 1)2 +

(

1 −
θ

θ0

)

(−aϕ2 + bϕ + c) −
θ

θ0
ln

(

θ

θ0

)

, (55)351

wherein θ0 is the transition temperature and a, b, c are constants.352

Indeed, by taking353

ǫ(θ, ϕ) = ǫ1(θ) + θǫ2(ϕ) + ǫ3(ϕ),

ŝ0(θ, ϕ) = ŝ01(θ) + ŝ02(ϕ),
(56)354

along with the conditions355

ǫ1(θ) − θ ŝ01(θ) = −
θ

θ0
ln

θ

θ0
,356

ǫ2(ϕ) − ŝ02(ϕ) =
1

θ0

[

(ϕ2 − 1)2

4
− (−aϕ2 + bϕ + c)

]

,357

ǫ2(ϕ) = −aϕ2 + bϕ + c, (57)358

ŝi = 0, i = 1, . . . , 6,359

dǫ1

dθ
+ ǫ2(ϕ) > 0, ∀ θ, ϕ,360

the constitutive equation (55) is recovered. We notice that last condition in (57) guarantees the positivity of361

specific heat in arbitrary thermodynamic processes.362

In most of the examples mentioned above, the free energy is nonlocal with respect to the phase field363

only, while in our case it depends on the gradients of all the thermodynamic variables, thus allowing for the364

description of the capillary phases. This is a consequence of the general procedure applied, which allows to365

treat the phase field as the other thermodynamic variables. The generality of the method is also confirmed366

by its capability to reproduce different models, obtained in different frameworks and by applying different367

mathematical techniques. To achieve that task, we needed suitable constitutive equations for the flux and for368

the production of internal variable, namely Eqs. (28), which have been postulated according to the theorems369

of representation of isotropic scalar and vector functions [44], and in such a way to recover the Ginzburg–370

Landau equation. We also needed a suitable constitutive equation for the specific entropy. Thus, starting371

from Eq. (32), i.e., the most general second-order polynomial isotropic scalar function, depending on scalars372

and vectors [44], which satisfies the principle of maximum entropy at the equilibrium [45], we made the373

additional assumptions (33), which are crucial to integrate the system of thermodynamic restrictions. Of374

course, more general hypotheses are possible, at the price of an increasing difficulty in getting information375

from the thermodynamic restrictions.376
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To our knowledge, the model presented here was never proposed in the literature earlier.377

As final remark, we would like to stress that the problem of the form of the fundamental physical laws378

when dealing with nonstandard phenomena, such as the phase transition, deserves consideration. Our belief is379

that it should be considered from the experimental point of view, by direct measurements of the expenditure380

of power and of the entropy production for different classes of materials. Since that task has not yet been381

achieved, any assumption in this field contains a certain degree of arbitrariness. Analogously, we believe that382

the words microforce and microstress could be, in a certain sense, misleading since one could suppose that383

they are microscopic quantities for which the laws of microscopic physics (quantum mechanics, statistical384

mechanics) should be applied. Indeed, these are macroscopic quantities whose local balances may be derived385

by the classical procedures of continuum mechanics. Hence, it should be possible to measure them. However, to386

our knowledge, such a kind of measurements does not exist. Thus, in order to avoid any kind of arbitrariness, we387

approached the problem from a purely mathematical point of view, by including the gradients of the balance388

equations into the entropy inequality. Although the method can be cumbersome, here we showed that it is389

possible to find particular solutions of the set of thermodynamic restrictions leading to meaningful models.390

From the physical point of view, the model presented here is useful in the analysis of the coexisting phases391

of Korteweg-type fluids and in the modeling of the capillary forces occurring in the phase transition. It is based392

on the universal physical principles only, such as second law of thermodynamics, and can be validated by393

classical experiments, such as the static and dynamic methods to measure the surface tension [27].394

From the mathematical point of view, the model is based on very general mathematical tools, which395

are also suitable to study phase transitions in higher-grade nonlocal materials as, for instance, third-grade396

Korteweg fluids. These phenomena, which have been not yet analyzed in-depth, will be the subject of our397

future researches.398
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