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Influence of nonlinear effects on the efficiency of a thermoelectric generator1

P. Rogolino, A. Sellitto and V. A. Cimmelli2

Abstract. We propose a nonlinear model for thermoelectric coupling which is based on the thermomass theory of heat3

conduction. We show that in this model, the second Kelvin relation and the classical Onsager relations are no longer4

satisfied simultaneously, namely if one holds, then the other one breaks down, and viceversa. As a function of the different5

breaking, we evaluate the efficiency of a thermoelectric generator. The influence of the electric-charge gradient on the6

efficiency of thermoelectric coupling is investigated as well.7

Keywords. Thermomass theory · Nonlinear effects · Onsager symmetry · Maximum efficiency · Thermoelectric generator.8

1. Introduction9

Classical irreversible thermodynamics [1–3] provides a natural theoretical framework for coupled trans-10

port processes. The thermoelectric effects (i.e., the possibility of coupling thermal transport and electric11

current) are nowadays among the most explored coupled phenomena, since they offer a promising pos-12

sibility in energy management [4–6]. From the very beginning, in the analysis of thermoelectric effects,13

it has been used the so-called second Kelvin relation (SKR) Π = ǫT , Π being the Peltier coefficient,14

ǫ the Seebeck coefficient, and T the temperature. This relation, stated by Lord Kelvin since 1854, ex-15

presses a substantial and useful connection between the Peltier effect (namely, the heating, or cooling,16

of an electrified junction) and the Seebeck effect (i.e., the conversion of temperature differences into17

electricity).18

The search of new strategies for improving the efficiency in the thermoelectric-energy conversion has19

led to some generalizations of the governing equations describing thermoelectric effects [7–9] from the20

theoretical point of view and to intensive studies on nanoscale devices from the practical point of view.21

Indeed, at nanoscale (or in fast perturbations), the classical Fourier law is no longer applicable to have22

detailed descriptions of the heat conduction [3,5,10–16]. Thus, several theoretical models, going beyond23

it and accounting for memory, nonlocal, and nonlinear effects [15,17–23] have been developed in the past24

decades.25

Among them, an enhanced heat-transport equation has been recently obtained in the framework of26

thermomass (TM) theory [24–28] in which the heat flow is due to a gas-like collection of heat carriers,27

characterized by an effective mass density and flowing through the medium due to a thermomass-pressure28

gradient. This collection is made by massive quasi-particles of heat carriers, i.e., the thermons, which are29

representative of the vibrations of the molecules generated by heating the conductor and whose mass may30

be calculated from the Einstein’s mass-energy duality. In gases and liquids, the thermons are supposed to31

be attached on the molecules or atoms of the medium. In solids, the thermomass gas will be the phonon32

gas for crystals, attached on the electron gas for pure metals, or just both of them for systems in which33

the heat carriers are phonons and electrons [24–28].34
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In TM theory, the heat-transport equation reads [25]35

τtm
∂q

∂t
− ρcv

∂T

∂t
l + ∇q · l + λ (1 − b) ∇T + q = 0 (1)36

wherein ρ is the mass density of the medium, cv is the specific (i.e., per unit of mass) heat capacity of37

the solid, λ is the thermal conductivity,38

τtm =
λ

2γρc2
vT

39

is the relaxation time in the TM theory [26,29,30] with dimensionless parameter γ being the Grüneisen40

constant,41

b =
q2

2γρ2 (cvT )
342

stands for a dimensionless number which is called thermal Mach number of the drift velocity relative to43

the thermal-wave speed in the heat-carrier collection, and44

l =
λq

2γρcv (cvT )
245

denotes a characteristic-length vector [29,30]. In fact, the physical dimensions of |l| are meters, as it46

can be directly inferred by the dimensional analysis Eq. (1). It conceptually differs from the mean-free47

path of thermons and characterizes the strength of the non-Fourier effects introduced by Eq. (1) [29,30].48

Moreover, in practical applications and for conceivable values of q, |l| attains values which are always49

much smaller than those of the mean-free path of the thermons.50

Beside to describe relaxational effects, Eq. (1) incorporates information on the characteristic length of51

the system (i.e., nonlocal effects) and accounts for nonlinear phenomena. In the linear case (i.e., when the52

terms which contain the quantities (∂T/∂t) l, ∇q · l and q2 are negligible), Eq. (1) takes the same form of53

the classical Cattaneo’s equation [31], even though, from the experimental point of view, the relaxation54

time of TM theory is two orders of magnitude higher than that of the Cattaneo’s theory and, in silicon55

films, it predicts a much slower response to the thermal perturbations [32]. The compatibility of Eq. (1)56

with the basic principles of continuum physics has been explored in Ref. [30].57

Although Eq. (1) has been fruitfully used to study some interesting features of heat transfer in small58

systems [29,33–35], in modeling thermoelectric effects, its role has not yet been explored. In doing this,59

to account for the additional heat-flux production due to the Peltier effect, we have to modify Eq. (1) as60

τtm
∂q

∂t
− ρcv

∂T

∂t
l + ∇q · l + λ (1 − b) ∇T + q = Πi (2)61

since the Peltier effect is just the production of an heat flux by an electrified junction of different ma-62

terials. In Eq. (2), i means the electric-current density, which we express (as it is standard in classical63

thermoelectricity) by the constitutive equation64

i = −σeǫ∇T + σeE (3)65

wherein E is the electric field, and σe is the electric conductivity. Finally, the electric field E is regarded66

as a given external force [1,5].67

In more details, in the present paper, we explore the consequences of the coupling of Eqs. (2) and (3)68

with the local balance of energy69

ρ
∂u

∂t
= −∇ · q + E · i (4)70

where u is the specific internal energy, together with the local balance of the electric charge71
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Efficiency of a thermoelectric generator

ρ
∂z

∂t
= −∇ · i (5)72

with z as the electric charge per unitary mass.73

For the sake of simplicity, we assume that the electric charge is due to the motion of electrons only74

and that the production of electric charge in our system is zero. In Eq. (4), the term E · i accounts for the75

expenditure of power due to the propagation of electric current. However, we do not include in Eq. (4)76

any additional rate of work due to the thermomass pressure. This is tantamount to assume that such a77

power is negligible with respect to the power expended by the electric-charge motion. In this way, in the78

absence of electric field, Eq. (4) reduces to the classical energy balance in solid crystals which is expected79

in classical phonons hydrodynamics [36]. As a consequence of the hypotheses above, the evolution in time80

of our thermoelectric crystal will be represented by the solutions of the nonlinear system (2)–(5), which81

are continuous curves (with respect to the parameter t), in the state space S = {u, z, q} [3,5].82

It is not difficult to prove that, whenever the nonlinear effects may be neglected, the model above allows83

to prove the validity of the SKR by means of the Onsager relations [37,38] (OR), stating the symmetry of84

the transport coefficients linking the thermodynamic fluxes with the conjugated thermodynamic forces.85

Although in the linear approximation the OR are satisfied in all the known situations and comply86

with the experimental evidences [2,3,39,40], in the nonlinear regime, these relations may result no longer87

valid [41]. Thus, in practical applications at nanoscale, it is natural to investigate whether the OR still88

hold, or if they suffer a break [42]. In particular, in what follows we prove that, as a consequence of the89

nonlinearity of Eq. (2), the SKR may break down even if the OR hold.90

The paper runs as follows.91

In Sect. 2, we evaluate the system (2)–(5) in the linear regime and briefly review the classical proof92

given in irreversible thermodynamics of the validity of the SKR.93

In Sect. 3, we neglect the effects due to the chemical potential of the electric charges and show that94

in the nonlinear regime one of the following conditions may occur: (i) the OR hold, but the SKR breaks95

down; (ii) the SKR holds, but the OR break down; (iii) both the OR, and SKR break down. In all the96

situations above, we evaluate the efficiency of a thermoelectric generator and show that in the cases i)97

and ii) it may be enhanced with respect to the case considered in Sect. 2.98

In Sect. 4, we take into account the effects of the chemical potential of the electric charges, since these99

effects may be interesting in the so-called “functionally graded materials,” in which material inhomogene-100

ity plays a relevant role [43,44]. Since in this case, the constitutive equations for the heat flux and for the101

electric current are modified, we get a more general expression of the thermodynamic efficiency, which102

depends on the gradient of the temperature and the gradient of the electric charge. In this section, we103

also investigate the possibility of determining a maximum for such efficiency. To this end, we postulate104

that the maximum of the efficiency corresponds to a minimum of the rate of entropy production, or,105

equivalently, to a minimum of the rate of energy dissipated along the process. We prove that such a106

criterion offers a manageable and physically sound method for determining the conditions under which107

the efficiency is optimal.108

Final remarks on the thermoelectric coupling in TM theory are given in Sect. 5.109

In closing this section let us observe that from the practical point of view, a thermoelectric device110

(for example, a thermocouple, a radioisotope thermoelectric generator, a thermoelectric coolers, etc) is111

a combination of p-n junctions which are connected electrically and thermally in series and parallel,112

respectively. Since each p-n junction generates a small voltage difference, a lot of junctions are necessary113

to generate the desirable output voltage. Although, in principle, modeling the junction between the two114

different materials deserves consideration, our aim here is only to analyze the consequences of accounting115

for Eq. (1) in modeling thermoelectric effects. Therefore, remaining on a general level, we sketch the116
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thermoelectric device as a cylindrical nanowire1 under the action of an electric field E and crossed by117

an electrical current i. Moreover, we assume that the properties and composition of our system change118

continuously, i.e., that the limits of the material functions on both sides of any junction coincide.119

2. SKR in the linear regime120

As we previously observed, it is well known that in the linear regime, the validity of SKR may be proved121

owing to the OR, by applying a simple thermodynamic procedure [1,5]. In the nonlinear regime, instead,122

the same procedure leads to the conclusion that in some cases, the OR may loose their validity. Thus,123

to illustrate our general method of investigation, let us first apply it to the linear case, by considering a124

rigid nanowire in which the heat flux is stagnated, i.e., ∂q/∂t = 0 in Eq. (2). Moreover, we suppose that125

the nonlinear terms in that equation are negligible, in such a way that it reduces to the usual constitutive126

for q in the thermoelectric coupling [1,5], i.e.,127

q = −λ∇T + Πi (6)128

In this situation, denoting by s the specific entropy, we may write the following Gibbs relation [1,3,5]129

∂s

∂t
=

(

∂s

∂u

)

∂u

∂t
+

(

∂s

∂z

)

∂z

∂t
⇔ T

∂s

∂t
=

∂u

∂t
−

µz

z

∂z

∂t
(7)130

wherein we used the usual definition of the absolute temperature, i.e., T−1 = ∂s/∂u and that of specific131

chemical potential due to the electric charge, i.e., µz = −Tz∂s/∂z. The coupling of Eq. (7) with Eqs. (4)132

and (5) yields133

ρ
∂s

∂t
= −

∇ · q

T
+

E · i

T
+

( µz

zT

)

∇ · i134

= −∇ ·
(q

T
−

µz

zT
i
)

+
1

T

[

−
q

T
· ∇T +

µz

Tz
i · ∇T − i · ∇

(µz

z

)

+ E · i
]

(8)135

136

Recalling that the usual form of the local balance of entropy is137

ρ
∂s

∂t
= −∇ · Js + σs (9)138

with Js as the entropy flux, and σs ≥ 0 as the local entropy production, then a simple comparison between139

Eqs. (8) and (9) leads to140

Js =
q

T
−

µz

zT
i (10a)141

σs =
1

T

[

−
q

T
· ∇T +

µz

Tz
i · ∇T − i · ∇

(µz

z

)

+ E · i
]

(10b)142

143

Equation (10a) turns out the usual result of classical irreversible thermodynamics according to which144

the entropy flux is given by the sum of the thermodynamic affinities (i.e., the partial derivatives of the145

entropy with respect to the independent variables) times the corresponding fluxes [45].146

The result in Eq. (10b), instead, allows to point out useful relations among the different phenom-147

enological coefficients involved in our theoretical model. To see this, let us suppose for a while that the148

contribution due to the chemical potential of the electrons is negligible, namely µz/z = 0. In this case,149

the entropy flux reads Js = q/T , and Eq. (10b) reduces to150

Tσs = E · i −

(

∇T

T

)

· q (11)151

1From the theoretical point of view, it is well known that the use of quantum wires with a constant transversal section,
the diameter of which should be smaller than 10 nm, may enhance the performances in the thermoelectric-energy conversion.
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Efficiency of a thermoelectric generator

According with the classical Onsager approach [1], we may regard the right-hand side of Eq. (11) as152

a bilinear product of the thermodynamic forces153

X(j) =

{

E,−
∇T

T

}

, j = 1, 2154

and their conjugated thermodynamic fluxes155

J(i) = {i,q} , i = 1, 2156

respectively. Thus, a sufficient condition to ensure that the right-hand side of Eq. (11) is always non-157

negative is to assume that each J(i) is given by a linear combination of all the vectors X(i), namely,158

J(i) =
∑

j

LijX
(j)

159

wherein Lij are the phenomenological transport coefficients. From the practical point of view, this is a160

tantamount to suppose that the following linear relations hold161

q = −L11
∇T

T
+ L12E (12a)162

i = −L21
∇T

T
+ L22E (12b)163

164

which allow to identify the phenomenological coefficients Lij by simple comparisons. In fact, observing165

that the coupling of Eqs. (3) and (6) gets166

q = − (λ + Πσeǫ) ∇T + ΠσeE (13)167

then the comparison of Eqs. (13) and (3) with Eqs. (12a) and (12b), respectively, yields168

L11 = (λ + Πσeǫ) T (14a)169

L12 = Πσe (14b)170

L21 = σeǫT (14c)171

L22 = σe (14d)172
173

Finally, by the OR L12 = L21, the SKR Π = ǫT ensues.174

3. Thermoelectric coupling in the nonlinear regime175

The generation of electrical energy from thermal energy by thermoelectric devices is one of the most176

important goals of the current energy management. Many research groups are focusing their attention on177

the search of different strategies to enhance the efficiency in the thermoelectric-energy conversion, defined178

as179

η =
Pel

Q̇tot

(15)180

with Pel being the electric-power output, and Q̇tot being the total heat supplied per unit time.181

The analysis of the efficiency of a thermoelectric generator, in which the heat flux drives the elec-182

trical one, has been performed in deep in the linear regime, and it is almost simple to be treated from183

the theoretical point of view when simplifying assumptions hold. For example, let us consider a single184

thermoelectric nanowire generator of length L, the two sides of which are steadily kept at the different185

temperatures Th (the hotter temperature) and Tc (the colder one) in such a way that both a quantity of186

heat per unit time uniformly flows through the system, and an uniform electric current is produced by187

the Seebeck effect. Moreover, we assume that our system may be considered as almost homogeneous and188

that the different material functions may be taken as constants.189
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In such a case, if we take into account Eqs. (3) and (6), making use of the approximation ∇T ≃ ∆T/L,190

we get191

Pel = i

L
∫

0

Edζ = iǫ (Th − Tc) −
i2L

σe

(16a)192

Q̇tot =
λ (Th − Tc)

L
+ Πi (16b)193

194

with ζ denoting the position of the points of the system. Note that in principle, the Seebeck coefficient195

may assume either a positive value (for example, in the case of a p-type semiconductor wherein the current196

is brought by holes), or a negative one (for example, in the case of a n-type semiconductor wherein the197

current is carried by electrons). Our main conclusions here will be derived under the assumption that198

ǫ > 0. However, the case ǫ < 0 also deserves consideration and will be the subject of future studies. In199

this case, from Eq. (15), we have that the thermoelectric efficiency in the linear regime reads200

η =
iǫ (Th − Tc) −

i2L

σe

λ
(Th − Tc)

L
+ iΠ

= ηc

[

ǫx − x2λσ−1
e

T−1
h + ǫx

]

(17)201

once the SKR has been used. In Eq. (17) ηc = (1 − Tc/Th) means the usual Carnot efficiency, and202

x =
iL

λ (Th − Tc)
(18)203

denotes the ratio between the intensity of the electric current and that of the heat flux. The search of the204

x value which maximizes Eq. (17) allows to point out, for example, useful information about the way of205

enhancing the performances of a thermoelectric device in the linear regime.206

Here, we aim to extend a similar analysis to the nonlinear regime. In this case, we have to observe at207

first that the heat flux is no longer given by Eq. (6), but it transforms in208

q = −∇q · l − λ (1 − b) ∇T + Πi (19)209

To treat with Eq. (19) in the very general case is cumbersome since, due to the nonlinear term210

∇q · l therein, one should know a priori how q (as well as E and T ) depends on ζ. However, interesting211

information can be obtained if we make simplifying assumptions which do not hurt with the generality.212

Therefore, let us suppose that both q and E take a constant value in any transversal section along the213

longitudinal axis ζ, as well as that q and i are parallel. Then, by the balance of energy (4), we obtain214

∇ · q =
∂q (ζ)

∂ζ
= E · i215

which allows the following further approximation216

∇q · l =
∂q (ζ)

∂ζ
l = E · i

qλρ

2γcv (ρcvT )
2

∼=
λρEq

2γcv

(

ρcvT
)2 i ∼= Eli (20)217

where E, q, T and l denote the mean values of |E|, |q|, T and |l| on the interval [0, L]. We also explicitly218

note that l in Eq. (20) (which we introduced here just for the sake of a formal simplicity), has to be219

meant as a positive constant, which is related to well known and measurable quantities.220

The coupling of Eqs. (19) and (20) gets221

q = −
[

λ (1 − b) + σeǫ
(

Π − El
)]

∇T + σe

(

Π − El
)

E (21)222
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Efficiency of a thermoelectric generator

so that, comparing Eqs. (21) and (3), with Eqs. (12a) and (12b), respectively, we obtain223

L11 = λ (1 − b) T + σeǫ
(

Π − El
)

T (22a)224

L12 = σe

(

Π − El
)

(22b)225

L21 = σeǫT (22c)226

L22 = σe (22d)227
228

By the analysis of Eqs. (22b) and (22c), it is easy to infer that the following different conditions may229

occur, which point out that the investigation of the validity of the OR in the present nonlinear situation230

deserves consideration, since, beside its intrinsic theoretical interest, it allows to evaluate in a more precise231

way the efficiency of thermoelectric generator.232

3.1. The OR hold and the SKR breaks down233

If one assumes that the OR hold, then from Eqs. (22b) and (22c) the condition L12 = L21 yields234

Π = ǫT + El (23)235

namely the SKR is no longer valid. In this case, due to the contribution of the nonlinear terms in the236

constitutive equation of the heat flux, the total heat supplied per unit of time becomes237

Q̇tot =
λ (1 − b) (Th − Tc)

L
+

(

Π − El
)

i (24)238

while the electrical power obtained is still given by Eq. (16a). Then, from Eq. (15) the following thermo-239

electric efficiency ensues:240

η =
iǫ (Th − Tc) −

i2L

σe

λ (1 − b)
(Th − Tc)

L
+ iǫT

= ηc

[

ǫx − x2λσ−1
e

(1 − b) T−1
h + ǫx

]

(25)241

once Eq. (23) has been taken into account.242

By the expression above, we infer that the nonlinear term ∇q · l does not influence η which, instead, is243

affected by the further nonlinear term λb∇T . This results in an increasing of η, depending, through b, on244

the intensity of the heat flux. Therefore, if the OR hold but the SKR breaks down, there is an improve-245

ment of the thermoelectric-device performances due to a reduction in the effective thermal conductivity246

λ (1 − b). However, one should notice that such an increase is bounded by the constraint that the latter247

quantity has to remain always positive. The positivity of this parameter in TM theory is related to a248

well-known phenomenon, confirmed by several experiments and referred to as the occurrence of “flux249

limiters” [46].250

3.2. The SKR holds and the OR break down251

If one assumes that the SKR holds, then from Eqs. (22b) and (22c), the condition Π = ǫT yields L12 �= L21,252

that is, the OR are no longer valid.253

In this case, it is easy to observe that the thermoelectric efficiency becomes254

η =
iǫ (Th − Tc) −

i2L

σe

λ (1 − b)
(Th − Tc)

L
+ i

(

ǫT − El
)

= ηc

[

ǫx − x2λσ−1
e

(1 − b) T−1
h +

(

ǫ − ElT−1
h

)

x

]

(26)255
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From Eq. (26), it follows that in contrast with previous case, if there is a breaking in the OR and the256

validity of the SKR, an enhancement in η is obtained not only by the reduction in the effective thermal257

conductivity λ (1 − b), but also by means of the second nonlinear term ∇q · l. In this case, new interesting258

strategies seem to arise, since in nanoscale engineering, the main part of researchers is trying to obtain259

higher efficiencies only by reducing the thermal conductivity.260

3.3. Both the OR hold and the SKR break down261

From the theoretical point of view, the analysis of Eqs. (22b) and (22c) may also suggest that neither262

the OR, nor the SKR may longer hold. In such a situation, the thermoelectric efficiency becomes263

η =
iǫ (Th − Tc) −

i2L

σe

λ (1 − b)
(Th − Tc)

L
+ i

(

ǫT − El
)

= ηc

[

ǫx − x2λσ−1
e

(1 − b) T−1
h +

(

Π − El
)

T−1
h x

]

(27)264

which clearly points out that it is directly affected by both nonlinear terms again. However, in such265

a case, since no any relation between Π and ǫT can be inferred in principle, we cannot say whether266

there is an improvement of η, or not. In fact, although in this situation, we still have a reduction in the267

effective thermal conductivity (which would lead to an enhancement in η), for any value of x, the term268
(

Π − El
)

may attain either larger or smaller values with respect to both the corresponding terms ǫTh269

and
(

ǫTh − El
)

in Eqs. (25) and (26), respectively. Thus, the denominator of Eq. (27) may also attain270

larger values with respect to both the denominator of Eq. (25) and that of Eq. (26), so that the nonlinear271

term ∇q · l leads to a worsening of the performances of a thermoelectric device.272

4. The effects of the electric charge273

In previous sections, we always neglected the contribution arising from the term µz/z in Eqs. (10). This274

simplifying assumption seems logical in homogeneous systems. In the case of a junction of two different275

materials, instead, the term µz/z, as well as all the material functions (which we treated as constant276

values), should be represented, instead, by stair-shaped functions. Indeed, in recent year, functionally277

graded materials (FGMs) [47], i.e., a new class of advanced materials with varying properties over a278

changing dimension, are attracting the attention of scientists due to their unique properties. In particu-279

lar, their versatility allows the use of these materials in thermoelectric applications, too. In FGMs, the280

particular properties change continuously, or quasi-continuously, along one direction, and this implies281

that the different material functions may be assumed continuous, or quasi-continuous. In thermoelectric282

devices, the conversion efficiency can be substantially improved by adjusting the carriers’ concentration283

along the material’s length. This can be achieved by employing a functionally graded thermoelectric284

material (FGTM), with the carriers’ concentration optimized for operation over the specific temperature285

gradient [43,44].286

In this case, it may be also interesting to investigate the consequences of including in the entropy flux287

the term (µz/Tz) i before neglected, having present that the local entropy production is now given by288

the full version of Eq. (10b). Here, we pursue this analysis under the further hypotheses µz = µz (u, z)289

and T = T (u), so that we are allowed to write290

µz

z
= f̃ (u, z) = f (T, z) ⇒ ∇f̃ (u, z) = ∇f (T, z) =

∂f

∂T
∇T +

∂f

∂z
∇z (28)291
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Efficiency of a thermoelectric generator

wherein, owing to the positive definiteness of the specific heat cv = du/dT , we have expressed u as a292

function of T . In this way, the rate of energy dissipation per unitary volume Tσs becomes293

Tσs =

(

E +
f

T
∇T

)

· i −

(

∂f

∂T
i +

q

T

)

· ∇T −
∂f

∂z
i · ∇z (29)294

Again, according with the classical Onsager approach [1], we regard the right-hand side of Eq. (29) as295

a bilinear product of the generalized thermodynamical forces296

X(j) =

{(

E +
f

T
∇T

)

,∇T, ∇z

}

, j = 1, 2, 3297

and of their conjugated thermodynamical fluxes298

J(i) =

{

i,

(

−
∂f

∂T
i −

q

T

)

,−
∂f

∂z
i

}

, i = 1, 2, 3299

respectively, and write each of the latter as a linear combination of the formers, namely,300

i = L11

(

E +
f

T
∇T

)

+ L12∇T + L13∇z (30a)301

−
∂f

∂T
i −

q

T
= L21

(

E +
f

T
∇T

)

+ L22∇T + L23∇z (30b)302

−
∂f

∂z
i = L31

(

E +
f

T
∇T

)

+ L32∇T + L33∇z (30c)303

304

In particular, the substitution of Eq. (30a) in Eq. (30b) gets305

q = −

(

1

2

∂f2

∂T
L11 + T

∂f

∂T
L12 + L21f + L22T

)

∇T −

(

T
∂f

∂T
L11 + L21T

)

E306

−

(

T
∂f

∂T
L13 + L23T

)

∇z (31)307

308

To derive useful information on the phenomenological coefficients, Eqs. (30a) and (31) may be com-309

pared with the following generalization of the constitutive Eqs. (3) and (21)310

i = −σeǫ∇T + σeE + α∇z (32a)311

q = −
[

λ (1 − b) + σeǫ
(

Π − El
)]

∇T + σe

(

Π − El
)

E + Πα∇z (32b)312
313

wherein α is a positive constant, in such a way that the usual convention that the electric current is in314

the opposite direction of the motion of the electrons is respected. That comparison leads to the following315

identifications316

L11 = σe (33a)317

L12 = −σe

(

ǫ +
f

T

)

(33b)318

L13 = α (33c)319

L21 = −σe

[

∂f

∂T
+

(

Π − El
)

T

]

(33d)320

L22 =
λ (1 − b)

T
+

σe

(

Π − El
)

T

(

ǫ +
f

T

)

+ (σeǫ)
∂f

∂T
+

( σe

2T

) ∂f2

∂T
(33e)321

L23 = −α

(

∂f

∂T
+

Π

T

)

(33f)322

323
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Equations (33b) and (33d) lead to the same conclusions of Sect. 3. In particular, from those relations,324

if we assume that the OR hold, i.e., L12 = L21, we have325

Π = ǫT + f − T
∂f

∂T
+ El (34)326

showing the breakdown of the SKR. Note that Eq. (34) turns out the SKR whenever both the role of the327

nonlinear term El and that of the gradient of the electric charge (expressed through the function f) are328

neglected in the constitutive equation for the heat flux (32b).329

4.1. The thermoelectric efficiency330

In what follows, we study the role played by the gradient of the electric charges on the thermoelectric331

efficiency. In doing this, we assume that the OR do no longer hold, i.e., we disregard Eq. (34). By some332

lengthy calculations similar to those made in Sect. 3, we can put the thermodynamic efficiency (15) in333

the following form334

η (x, y) = ηc

{

ǫx − x2λσ−1
e − ασ−1

e y2

T−1
h

[

1 − b +
(

Π − El
)

x − αy2
]

}

(35)335

wherein x is still given by Eq. (18), and336

y =

√

1

λ

∣

∣

∣

∣

zc − zh

Th − Tc

∣

∣

∣

∣

337

Although the couple (x, y) which optimizes the efficiency may be searched by investigating the max-338

imum of the function η (x, y), here we apply a different procedure, which is based on the mathematical339

analysis of the local rate of entropy production along the thermoelectric process.340

The analysis of the rate of entropy production is a useful mean in the modeling of nonequilibrium341

phenomena. For instance, it is postulated that in nonequilibrium processes, the appropriate constitutive342

equations are the ones that maximize the rate of entropy production, allowing the system to proceed faster343

toward the equilibrium [48,49]. Here we assume that as it can be physically expected, the best efficiency344

corresponds to a minimum of the rate of energy dissipated along the process. This is logical, since the345

thermoelectric efficiency is related to the irreversibility induced by the heat and electrical transport.346

To proceed further, we use Eqs. (32) in order to eliminate E and q in Eq. (29), getting so347

Tσs =
i2

σe

+ f1∇T · i − f2i · ∇z +
λ

T
(1 − b) (∇T )

2
−

αEl

T
∇z · ∇T (36)348

with349

f1 (z, T ) = ǫ +
f

T
−

∂f

∂T
−

Π − El

T
(37a)350

f2 (z, T ) =
α

σe

+
∂f

∂z
(37b)351

352

At this point, we observe that, since σs is the local rate of entropy production along the process353

of energy conversion, the right-hand side of Eq. (36) may be interpreted as the local rate of energy354

dissipated along the same process. In this way, in order to obtain the values of (x, y) guaranteeing the355

optimal efficiency, we are allowed to calculate the minima, if they exist, of the right-hand side of Eq. (36).356

In terms of the variables x and y defined above, this is equivalent to calculate the points of minimum357

of the following function358
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g (x, y) ≡ Tσs

[

L

λ (Th − Tc)

]2

=
x2

σe

−
x

λ
f1 − f2xy2 − Ay2 +

1 − b

λT
(38)359

wherein360

A =
αElL2

Tλ
361

is a constant value. The stationary points for g (x, y) are the solutions of the following algebraic system362

⎧

⎪

⎨

⎪

⎩

∂g

∂x
=

2x

σe

−
f1

λ
− f2y

2 = 0

∂g

∂y
= −2f2xy − 2Ay = 0

(39)363

Since, by definition, x is a strictly positive quantity, by direct calculations we have that364

[

x =
σef1

2λ
; y = 0

]

(40)365

is the only physical admissible stationary point of the function g (x, y). That solution allows us to obtain366

also the following thermodynamic restriction on the function f1367

f1 ≥ 0 =⇒ ǫ +
f

T
−

∂f

∂T
−

Π − El

T
≥ 0 (41)368

Now, we have to investigate the sign of the second derivatives of g, which are given by369

∂2g

∂x2
=

2

σe

(42a)370

∂2g

∂y2
= −2f2x − 2A (42b)371

∂2g

∂x∂y
=

∂2g

∂y∂x
= −2f2y (42c)372

373

It is evident that ∂2g/∂x2 is always positive, while ∂2g/∂x∂y vanishes in correspondence of the374

solution (40). Then, in order to make positive the determinant of the Hessian matrix of g (x, y), it is375

necessary and sufficient that ∂2g/∂y2 is positive. This yields376

σef1f2

4
+

αElL2

T
≤ 0 (43)377

The conditions (41) and (43) can be interpreted as constraints on f , namely on the chemical potential378

due to the electric charge. In fact, if the inequalities (41) and (43) are satisfied, then the efficiency of the379

thermoelectric-energy conversion gets a maximum in correspondence of the point determined in Eq. (40),380

in that the rate of energy dissipated by the process of conversion gets a minimum.381

5. Discussion382

In this paper, we have proposed a new theoretical model for thermoelectric coupling, which is based on383

the TM theory of heat conduction. We have shown that if the nonlinear terms entering the evolution384

equation for the heat flux are taken into account, one of the following situations may occur: (i) the OR385

hold, but the SKR breaks down; (ii) the SKR holds, but the OR break down; (iii) both the OR and SKR386

break down. In all the situations above, we have evaluated the efficiency of a thermoelectric generator. We387

have observed that the analytical form of the efficiency changes for the three different cases. This could388

be a useful mean to investigate what of the situations above is true in the practical applications. In fact,389

the efficiency could be evaluated by measuring directly the quantities Pel and Q̇tot, and then comparing390
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the value so obtained with the theoretical ones given by the relations (25), (26) and (27), one may infer391

what really happens in practical applications. That way, the results of Sect. 3 have not only a practical392

importance, but they can be also related to a fundamental thermodynamic problem, namely the validity393

of the OR in the nonlinear regime. It is worth noticing that the OR have been already investigated in TM394

theory, in the absence of current circulation [40]. However, here we have applied a different approach, by395

relating their validity to the efficiency of thermoelectric coupling.396

We have also investigated the effects due to the chemical potential of the electric charges. Under the397

hypothesis of stationary fluxes, we postulated new constitutive equations for the heat flux and for the398

electric current and proved that the new terms entering these equations strongly influence the thermody-399

namic efficiency. We have obtained suitable conditions to guarantee that such an efficiency is optimal. To400

achieve that task, we have assumed that, in correspondence of the optimal efficiency, the local rate of en-401

ergy dissipation gets a minimum. Such an assumption, far from being a physical principle well established402

and confirmed by the experimental evidence (as for instance, second law of thermodynamics), represents403

only a manageable and physically sound criterion to calculate the conditions of optimal efficiency. Fur-404

thermore, it seems to comply with other approaches to nonequilibrium processes [48,49], exploiting the405

points of maximum of the rate of entropy production to get information on the form of the constitutive406

equations. Finally, its validity may be easily tested by accordance with the experiments, for instance by407

comparison of the efficiency given by Eq. (35), evaluated in the point (40), with the measured one.408

From the mathematical point of view, the criterion proposed here is not difficult to apply, and so it409

could provide important information in those nonlinear cases in which also nonlocal effects are considered,410

as for instance when the evolution of the is governed by a nonlinear generalization of the classical Guyer–411

Krumhansl equation [17,18].412
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