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THE ABEL SUMMABILITY OF CONJUGATE LAPLACE SERIES
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Abstract. In the present paper we describe the concept of conjugate Laplace series and

present some results concerning its Abel summability.
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1. Introduction. The classical theory of conjugate Fourier series is well known
(see, e.g. [1]). It is possible to extend the concept of conjugate series in higher dimen-
sions in different ways. Muckenhoupt and Stein gave a concept of conjugate ultras-
pherical expansion in [2], which later was generalized to Jacobi series by Li [3]. Cialdea
introduced a different concept of conjugate Laplace series in [4]. It hinges on the no-
tion of conjugate differential forms, which is an extension of the classical definition of
conjugate harmonic functions. In the case n = 3, if

∞∑
h=0

2h∑
k=0

ahkYhk(ϕ, θ)

is a spherical expansion, its conjugate series, according to [4], is
∞∑
h=1

2h∑
k=0

ahk
h+ 1

[
1

sinϕ

∂Yhk

∂θ
dϕ− sinϕ

∂Yhk

∂ϕ
dθ

]
. (1)

We remark that (1) is not a series of scalar functions, but a series of differential forms of
degree one on the unit sphere. In general n-dimensional case, it is a series of differential
forms of degree n− 2 on Σ = {x ∈ Rn : |x| = 1}. Different criteria for the summability
of a conjugate Laplace series were given in [5] in the particular case n = 3. These
criteria are not readily extendable to higher dimensions. Here we show how to obtain
the Abel summability of conjugate Laplace series in any dimension.

2. Preliminary. A k-form u is represented in an admissible coordinate system
(x1, . . . , xn) as

u =
1

k!
ui1...ikdxi1 . . . dxik ,

where ui1...ik are the components of a k-covector, i.e. the components of a skew-
symmetric covariant tensor. We denote the differential, the adjoint and the co-differen-
tial operators by d, ∗ and δ, respectively. For details about the theory of differential
forms we refer to [6,7].

By Cm
k (Ω) we denote the space of all k-forms defined in a domain Ω ⊂ Rn, whose

components are continuously differentiable up to the order m in a coordinate system of
class Cm+1 (and then in every coordinate system of class Cm+1). We say that u ∈ C1

k(Ω)
and v ∈ C1

k+2(Ω) are conjugate if
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{
du = δv
δu = 0, dv = 0.

(2)

If n = 2, k = 0, system (2) turns into the Cauchy-Riemann system.
A k-form u is said to be harmonic if

(dδ + δd)u = −∆u = − 1

k!
∆ui1...ikdxi1 . . . dxik = 0.

We note that two conjugate forms are both harmonic forms.
If u is a harmonic function in the unit ball B = {x ∈ Rn : |x| < 1}, we have the

expansion

u(x) =
∞∑
h=0

|x|h
Nh,n∑
k=1

ahkYhk

(
x

|x|

)
,

where {Yhk} stands for an orthonormal complete system of spherical harmonics and

Nh,n ≡ dim[Yh,n(Σ)] =
(h + n− 3)!

h!(n− 2)!
(2h + n− 2), h ∈ N,

Yh,n(Σ) being the spherical harmonic space of order h in n dimensions.
The trace of u on Σ is given by the expansion

∞∑
h=0

Nh,n∑
k=1

ahkYhk(x), |x| = 1. (3)

If the coefficients ahk are

ahk =

∫
Σ

Yhkdµ (ahk =

∫
Σ

fYhkdσ),

we say that (3) is the Laplace series of the measure µ (of the function f). In what
follows, the term measure means a finite signed measure defined on the Borel sets of
Σ.

According to [4,5], we introduce conjugate Laplace series by analogy with the case
of trigonometric series. Let us consider the 2-form

v(x) =
∞∑
h=0

Nh,n∑
k=1

ahk
(h+ 2)(h+ n− 2)

dYhk

(
x

|x|

)
∧ d(|x|h+2). (4)

The h-th term of this series is a differential form whose coefficients are harmonic homo-
geneous polynomials of degree h. It is possible to show that the couple (u, v) satisfies
system (2), that means that u and v are conjugate forms. The boundary behaviour of
v is determined by the restriction of v and ∗v on Σ. If the restriction of v exists, it is
equal to 0 because of the presence of the term d(|x|h+2), while the restriction of ∗v is
(formally at least)

∞∑
h=0

Nh,n∑
k=1

ahk
(h+ 2)(h+ n− 2)

∗
(
dYhk

(
x

|x|

)
∧ d(|x|h+2)

)∣∣∣∣
|x|=1

. (5)
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We call (5) the series conjugate to the spherical expansion (3). If (3) is a Laplace series,
we say that (5) is the Laplace series conjugate to (3).

Let us consider the Laplace series of a measure µ. Arguing as in [5], the series (4)
and (5) can be written in a simpler way by means of the Legendre polynomials Ph,n as

v(x) =
1

ωΣ

∞∑
h=1

Nh,n

h+ n− 2
|x|h−1

[ ∫
Σ

P ′
h,n

(
x

|x|
· y

)
yi1xi2dµy

]
dxi1dxi2

and

1

(n− 2)!ωΣ

∞∑
h=1

Nh,n

h+ n− 2

[ ∫
Σ

P ′
h,n(x · y)δ1..........ni1i2j1...jn−2

yi1xi2dµy

]
dxj1 . . . dxjn−2

∣∣∣∣
|x|=1

,

respectively.

3. Abel summability. We treat now the Abel summability of conjugate Laplace
series; this topic is discussed more fully in [8].

Let us consider the series
∞∑
h=1

Nh,n

h+ n− 2
rhP ′

h,n(t). (6)

It absolutely converges for r ∈ (−1, 1), t ∈ [−1, 1]. Moreover, it uniformly converges
for r ∈ K ⊂ (−1, 1), t ∈ [−1, 1]. It is possible to give an integral representation for the
series (6). Namely, if r ∈ (0, 1), t ∈ [−1, 1], then

∞∑
h=1

Nh,n

h+ n− 2
rhP ′

h,n(t) =
n

rn−2

∫ r

0

ρn−2 − ρn

(1 + ρ2 − 2tρ)
n+2
2

dρ ≡ Jn(r, t).

Setting r = |x| and t = x · y, the function Jn(r, t) can be seen like the kernel of
conjugate series.

The coefficients vj1...jn−2(x) of ∗v satisfy a limit relation, described by the next
theorem.

Theorem 1. Let

vj1...jn−2(x) ≡
1

(n− 2)!ωΣ

∞∑
h=1

Nh,n

h+ n− 2
|x|h−1

[ ∫
Σ

P ′
h,n

(
x

|x|
· y

)
δ1..........ni1i2j1...jn−2

yi1xi2dµy

]
(1 ≤ jk ≤ n, k = 1, . . . , n − 2), where µ is a measure on Σ. If x ∈ Σ is a Lebesgue
point of µ, then

lim
τ→0+

[
vj1...jn−2((1− τ)x)− 1

(n− 2)!ωΣ

∫
Σ\Στ

Jn(1, x · y)δ1..........ni1i2j1...jn−2
yi1xi2dµy

]
= 0,

where Στ = {y ∈ Σ : |y − x| < τ} 1.

1We recall that x ∈ Σ is a Lebesgue point for the measure µ if

lim
τ→0+

|µ− f(x)σ|(Στ )

σ(Στ )
= 0,

where | · | is the total variation measure, σ is the (n− 1)-dimensional Lebesgue measure on Σ and f
is the Radon-Nikodym derivative of µ.
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Since one can write

Jn(1, x · y) δ1..........ni1i2j1...jn−2
yi1 xi2 = |x− y|nJn(1, x · y)M j1...jn−2

y

(
1

|x− y|n−2

)
,

where M j1...jn−2 ≡ δ1..........ni1i2j1...jn−2
νi1

∂
∂xi2

(1 ≤ jk ≤ n, k = 1, . . . , n− 2) the next statement

is obtained by means of some properties involving such tangential operators.
Theorem 2. If µ is a measure on Σ, the singular integrals

1

(n− 2)!ωΣ

∫
Σ

Jn(1, x · y)δ1..........ni1i2j1...jn−2
yi1xi2dµy

(1 ≤ jk ≤ n, k = 1, . . . , n− 2) do exist almost everywhere on Σ.
The last two results combine to give the Abel summability of conjugate Laplace

series.
Theorem 3. The conjugate Laplace series of measure µ is Abel summable almost

everywhere on Σ and its Abel sum is

(A)
1

(n− 2)!ωΣ

∞∑
h=1

Nh,n

h+ n− 2

[ ∫
Σ

P ′
h,n(x · y)δ1..........ni1i2j1...jn−2

yi1xi2dµy

]
dxj1 . . . dxjn−2

∣∣∣∣
|x|=1

=
1

(n− 2)!ωΣ

[ ∫
Σ

Jn(1, x · y)δ1..........ni1i2j1...jn−2
yi1xi2dµy

]
dxj1 . . . dxjn−2

∣∣∣∣
|x|=1

.
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