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a b s t r a c t

By using a symbolic method, known in the literature as the classical umbral calculus,
the trace of a non-central Wishart random matrix is represented as the convolution
of the traces of its central component and of a formal variable matrix. Thanks to this
representation, the moments of this randommatrix are proved to be a Sheffer polynomial
sequence, allowing us to recover several properties. The multivariate symbolic method
generalizes the employment of Sheffer representation and a closed form formula for
computing joint moments and cumulants (also normalized) is given. By using this closed
form formula and a combinatorial device, known in the literature as necklace, an efficient
algorithm for their computations is set up. Applications are given to the computation of
permanents as well as to the characterization of inherited estimators of cumulants, which
turn useful in dealing withminors of non-centralWishart randommatrices. An asymptotic
approximation of generalized moments involving free probability is proposed.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let {X(1), . . . , X(n)} be random row vectors independently drawn from a p-variate normal distribution with zero mean 0
and full rank covariance matrix Σ . Letm1, . . . ,mn be row vectors of dimension p. The non-central Wishart distribution is the
distribution of the square randommatrix of order p

Wp(n, Σ,M) =

n
i=1

(X(i) − mi)
T (X(i) − mi), with M =

n
i=1

mT
i mi, (1)

denoted by W (n) for simplicity. The matrix Ω = Σ−1M is called the non-centrality matrix and it is usually employed
instead of M to parametrize the Wishart distribution. For M = 0 the Wishart distribution is said to be central and denoted
by W (n) in the following.

The most popular application of Wishart distributions is within maximum likelihood estimation in connection with the
sample covariance matrix. Therefore these distributions are successfully employed in several areas: a good review is given
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in [28]. In parallel to its spread in the applications, also its mathematical properties have received great attention in the
literature, including those involving determinants and eigenvalues. According to the so-called moment method [26], which
relies on eigenvalue distribution, the ithmoment of a p×p randommatrix A is E[Trp(Ai)], where Trp denotes the normalized
trace. In particular, the computation of joint moments

E

Tr [W (n)H1]i1 · · · Tr [W (n)Hm]im


with H1, . . . ,Hm ∈ Cp×p (2)

is a very general task: for example, when H1, . . . ,Hm are sparse matrices, Eq. (2) returns joint moments of entries ofW (n).
Moments ofWishart randommatrices are employed not only to characterize asymptotic properties of the sample covariance
matrix [19] but also to quantify the performance of manymultidimensional signal processing algorithms [25]. For example,
within wireless communication theory, most literature focuses on channel capacity modeled by a memoryless linear vector
of the form

y = Bx + n (3)

with x a p-dimensional input vector, y a n-dimensional output vector and n a n-dimensional vector representing a circularly
symmetric Gaussian noise. The n× p randommatrix B encodes the characteristics of the channel system having n receivers
and p transmitters. Quite often performance measures of (3) rely on the product BĎB, which is a non-central Wishart
random matrix when the entries of B are Gaussian i.i.d. random variables (r.v.’s) [27]. Numerical evaluations of these
indexes involve cumbersome integrals, but fortunately, much deeper insights can be obtained using the tools provided by
asymptotic randommatrix theory, that is to characterize the asymptotic spectrum of B as the number of columns and rows
goes to infinity. Usually the Stieltjes transformation is employed as uniquely determines the distribution function of the
spectrum. As an alternative, especially when the inversion formula of Stieltjes–Perron could not be applied, the evaluation
of normalized moments Tr(BĎB)i together with the study of their convergence provides a tool to characterize the limiting
spectrum through themoment convergence theorem. Since randommatrices are non-commutative objects, for dimensions
greater than 8 free probability tools can be employed to recognize if two or more channels are independent. Within free
probability, the classical notion of independence is replaced by the notion of freeness. Freeness allows us to recover the
asymptotic spectrum of the sum of random matrices from the individual asymptotic spectra. In order to recognize the
freeness property a great number of joint moments need to be computed, so that efficient algorithms are necessary.

For finite matrix theory, the computation of joint moments is still an object of in-depth analysis due to its complexity.
In order to compute (2) when i1 = · · · = im = 1, the theory of representation group together with the differential of
the Laplace transform in suitable directions have been employed in [12,16]. Weighted generating functions onmatchings of
graphs have been used in [15]. In order to compute jointmoments in terms of joint cumulants, multivariate Bell polynomials
are resorted in [28] but the resulting expressions are cumbersome to deal with. Via Edgeworth expansion, joint cumulants of
Wishart distributions are employed in approximating density or distribution functions of some statistics relied on quadratic
forms of normal samples [14].

The aim of this paper is twofold: to give a closed form formula to compute jointmoments (2), thus generalizing the result
given in [16], and to introduce a symbolic method, known in the literature as the classical umbral calculus, as a natural
way to deal with moments of Wishart distributions. This method allows us to manage moment sequences without making
hypothesis on the existence of an underlying distribution probability. Many results rely on the representation of the trace of
a non-central Wishart random matrix as the convolution of the traces of its central component and of a formal variable (or
symbol)matrix,whose entries are uncorrelatedwith those of the central component. This representation allows us to express
{E[Tr(W (n)i)]} as a Sheffer polynomial sequence [7]. Then many Sheffer properties are shared: for example the role played
by complete homogeneous symmetric polynomials as well as cyclic polynomials is highlighted when referred to the central
component, whose moments result to be a sequence of binomial type. When the indeterminate of a Sheffer polynomial
sequence is replaced by a suitable r.v., a randomized non-centralWishart distribution is recovered. Themultivariate version
of this symbolicmethod extends the employment of Sheffer polynomial sequences to the computation of jointmoments (2).
Moreover, in order to take into account the cyclic property of traces, the notion of necklace is fruitfully employed in setting
up an efficient symbolic procedure. The algorithm in Maple 12 is available on demand. Parallelisms with other techniques
proposed for computing (2) are given forward.

The usefulness of the symbolic representation of non-centralWishart distributions is not only confined to computational
issues. To widening its applicability, further applications are proposed at the end of the paper. The first concerns the
computation of permanents of special classes of matrices. The second characterizes spectral polykays which are unbiased
estimators of cumulants. Spectral polykays have the advantage to preserve its expansion in terms of power sum symmetric
polynomials when referred to principal submatrices. Last application allows us an asymptotic approximation of generalized
moments relied on some results borrowed from free probability.

In order to make the paper self-contained, a short introduction on the symbolic method and on its multivariate version
is given in Sections 2 and 4 respectively. Open problems still concern an exact computation of generalized moments as well
as the employment of the symbolic method in computing moments of a non-central Wishart randommatrix inverse, which
are also employedwithin signal processing [19]. The difficulty of this task relies on the circumstance that thesemoments are
usually expressed in terms of zonal polynomials whose efficient handling is still an appealing problem from a computational
point of view.
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2. Moment symbolic method: the univariate case

The moment symbolic method we use relies on the classical umbral calculus introduced by Rota and Taylor in 1994 [23].
The method has been developed and refined in a series of papers starting from [9,10] reducing the overall computational
apparatus to few fundamental relations. The key point consists in working with symbols instead of scalar or polynomial
sequences.

Let C be the complex field whose elements are called scalars. An umbral calculus consists in a generating set A =

{α, β, . . .}, called alphabet, whose elements are named umbrae, a polynomial ringC[A] and a linear functional E:C[A] → C
called evaluation. The linear functional E is such that E[1] = 1 and

E[αiβ j
· · · γ k

] = E[αi
] E[β j

] · · · E[γ k
], (uncorrelation property) (4)

for any set of distinct umbrae in A and for i, j, k nonnegative integers. In particular, we set E[αi
] = ai for i = 0, 1, . . .

with a0 = 1 and α ∈ A. The scalar ai is the ith moment of α and we say that the sequence {ai} is umbrally represented by
α. Conversely, a sequence of scalars {ai} with a0 = 1 is represented by an umbra α if E[αi

] = ai for i = 0, 1, . . .. Indeed
it is always possible to insert in the alphabet new symbols such that each scalar sequence {ai} corresponds to an element
in A, which is not necessarily unique. Indeed, two umbrae α and γ may represent the same sequence of moments when
E[αi

] = E[γ i
] for all nonnegative integers i. In this case, α and γ are said to be similar, in symbols α ≡ γ . For umbral

polynomials p, q ∈ C[A] a nimbler equivalence is the umbral equivalence: p ≃ q if and only if E[p] = E[q]. Umbral
polynomials with disjoint supports1 are uncorrelated, that is E[p q] = E[p] E[q].

The alphabet A contains special symbols representing special sequences. For example the augmentation umbra ε is such
that E[εi

] = 0 for all positive integers i and the unity umbra u is such that E[ui
] = 1 for all positive integers i. Further special

umbrae will be introduced when necessary. The formal power series in C[A][[z]]

u +


i≥1

αi z
i

i!
(5)

is the generating function (g.f.) of an umbra α and denoted by eαz . Moreover, for any exponential formal power series in
C[[z]]

f (z) = 1 +


i≥1

ai
z i

i!
(6)

there exists an umbra α such that E[eαz
] = f (z), by extending coefficient-wise the action of E, cf. [4]. The formal power

series f (z) in (6) is the g.f. of α, usually denoted by f (α, z) to avoid misunderstandings.
For distinct (and so uncorrelated) umbrae α and γ , we have f (α + γ , z) = f (α, z)f (γ , z). More in general f (α′

+ · · · +

α′′, z) = [f (α, z)]n if α′, . . . , α′′ are n uncorrelated umbrae similar to an umbra α. The summation α′
+ · · · + α′′ is denoted

by the auxiliary symbol n . α which is named as the dot product of the nonnegative integer n and the umbra α. Its moments
are [4]

E[(n . α)i] =


λ⊢i

(n)l(λ) dλ aλ (7)

where λ = (1r1 , 2r2 , . . .) is a partition2 of the integer i, aλ = ar11 ar22 · · · and

dλ =
i!

(1!)r1 r1!(2!)r2 r2! · · ·
.

Let us recall that if α, γ ∈ A then

n . (α + γ ) ≡ n . α + n . γ and (n + m) . α ≡ n . α + m . α. (8)

The integer n in (7) can be replaced by −1. The auxiliary umbra −1 . α is the inverse umbra of α with g.f. f (−1 . α, z) =

f (α, z)−1. Also the composition of g.f.’s can be symbolically represented by using the dot-product. The first step is to replace
the integer nwith an umbra γ ∈ A, so that

f (γ . α, z) = f (γ , log[f (α, z)]), (9)

which is not yet the composition of f (α, z) and f (γ , z) but plays a fundamental role in the symbolic method. Indeed, if in
(9) the umbra γ is replaced by the singleton umbra χ with g.f. f (χ, z) = 1 + z, then f (χ . α, z) = 1 + log[f (α, z)] and the

1 The support of an umbral polynomial p ∈ C[A] is the set of all umbrae which occur.
2 Recall that a partition of an integer i is a sequence λ = (λ1, λ2, . . . , λt ), where λj are weakly decreasing integers and

t
j=1 λj = i. The integers λj are

named parts of λ. The length of λ is the number of its parts and will be denoted by l(λ). A different notation is λ = (1r1 , 2r2 , . . .), where rj is the number of
parts of λ equal to j and r1 + r2 + · · · = l(λ). We use the classical notation λ ⊢ iwith the meaning ‘‘λ is a partition of i’’.
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moments of the auxiliary umbra ~α ≡ χ . α result to be the formal cumulants3 of α. The umbra ~α is the α-cumulant umbra,
cf. [10]. A special cumulant umbra, employed very often in the rest of the paper, is ~ū ≡ χ . ū, with ū the boolean unity [8].
The boolean unity represents the sequence {i!} and its g.f. is the ordinary formal power series

f (ū, z) = 1 +


i≥1

z i =
1

1 − z
. (10)

From (9) and (10), we have f (χ . ū, z) = 1+ log(1−z)−1
= 1+


i≥1

zi
i so that E[(χ . ū)i] = (i−1)! for all positive integers

i.
If in γ . α we replace the umbra γ with the Bell umbra4 β , the dot-product β . α denotes the α-partition umbra. One of

its main properties is

β . (α+̇γ ) ≡ β . α + β . γ (11)

where the symbol α+̇γ , denotes the disjoint sum of α and γ and umbrally represents the sequence {an + gn} with {an} and
{gn} moments of α and γ respectively. More in general, the symbol +̇n

k=1αk denotes an auxiliary umbra whose ith moment
is the summation of the ith moments of α1, . . . , αn respectively, that is

Si = E


+̇
n
k=1αk

i
= ai,1 + · · · + ai,n, (12)

with ai,j = E[αi
j] for all nonnegative integers i and j = 1, 2, . . . , n. Since Si ≃ αi

1 +· · ·+αi
n, the symbol Si is used in analogy

with the ith power sum symmetric polynomial. A special auxiliary umbra employed in the following is −1 . β . α with g.f.
f (−1 . β . α, z) = exp [1 − f (α, z)].

Nesting dot-products, one ofwhich is theα-partition umbra, we get the composition umbra. Indeed the symbol γ . (β . α),
whereβ is the Bell umbra, has g.f. which is the composition of f (α, z) and f (γ , z), that is f (γ . (β . α), z) = f (γ , f (α, z)−1).
Parenthesis can be avoided since γ . (β . α) ≡ (γ . β) . α. From (7) the moments are [10]

E[(γ . β . α)i] =


λ⊢i

gl(λ) dλ aλ, (13)

with {gi} umbrally represented by γ . For f (z) = f (α, z), the coefficients of the compositional inverse of f (z) are represented
by the symbol α⟨−1⟩ such that α⟨−1⟩ . β . α ≡ α . β . α⟨−1⟩

≡ χ . The umbra α⟨−1⟩ is the compositional inverse of α.
Also polynomial sequences in the indeterminate x can be represented by suitable umbrae, if the complex field C is

replaced by C[x]. The uncorrelation property (4) becomes E[xiαkγ m
· · ·] = xiE[αk

]E[γ m
] · · · for any set of distinct umbrae

in A and for nonnegative integers i, k,m, . . . . In C[x][A], an umbra is said to be a scalar umbra when its moments are
elements of C, while it is said to be a polynomial umbra if its moments are polynomials of C[x]. A sequence of polynomials
q0, q1, . . . ∈ C[x] is umbrally represented by a polynomial umbra if q0 = 1 and qi is of degree i for all nonnegative integers i.
A special family of polynomials, including many classical polynomial sequences, is the Sheffer polynomial sequence. In [7],
it has been proved that any Sheffer polynomial sequence is umbrally represented by the so-called Sheffer polynomial umbra
α + x . β . γ ⟨−1⟩, with γ an umbra possessing compositional inverse, that follows if E[γ ] ≠ 0. If α is replaced by the
augmentation umbra ε then the Sheffer polynomial sequence reduces to its associated sequence x . β . γ ⟨−1⟩, satisfying the
binomial property [22].

The polynomial ringC[x] can be further replaced byC[x1, . . . , xp]with x1, . . . , xp indeterminates [4]. As example, but also
because employed in the following, let us recall that the complete homogeneous symmetric polynomials {hi} are umbrally
represented by the umbral polynomial x1ū1 + · · · + xpūp, with ū1, . . . , ūp uncorrelated umbrae similar to the boolean unity
ū. Indeed we have

hi(x1, . . . , xp) =


1≤j1≤···≤ji≤p

xj1 · · · xji =
1
i!
E[(x1ū1 + · · · + xpūp)

i
]. (14)

3. Symbolic representation of Wishart distributions

According to the moment method, the trace of W (n) is represented by an umbral polynomial µ1 + · · · + µp ∈ C[A],
where {µ1, . . . , µp} are umbral monomials having not necessarily disjoint supports and corresponding to the eigenvalues
of W (n). For the sake of brevity, we denote the summation µ1 + · · · + µp with Tr[W (n)] as if it was an element of C[A].
This notation will be employed in the rest of the paper.

3 For all nonnegative integers i, cumulants Ci(Y ) of a r.v. Y have the following properties: (Homogeneity) Ci(aY ) = aiCi(Y ) for a ∈ C, (Semi-invariance)
C1(Y + a) = a + C1(Y ), Ci(Y + a) = Ci(Y ) for i ≥ 2, (Additivity) Ci(Y1 + Y2) = Ci(Y1) + Ci(Y2), if Y1 and Y2 are independent r.v.’s. Formal cumulants are
the coefficients of log[f (z)] with f (z) a formal power series. They share the same properties of cumulants of a r.v. When numerical values are considered,
we need to check that the so-called ‘‘problem of cumulants’’ admits solution, cf. [4] and references therein.
4 The Bell umbra represents the sequence of Bell numbers. Its g.f. is f (β, z) = exp[ez − 1].
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Theorem 1. If diag(θ1, . . . , θp) = Λ is the eigenvalue matrix of the covariance Σ = QΛQ T , with Q the eigenvector matrix,
{ū1, . . . , ūp} uncorrelated umbrae similar to the boolean unity umbra ū and {ν1, . . . , νp} umbral monomials such that

νk = χ . bkk. β for k = 1, 2, . . . , p, (15)

with b11 + · · · + bpp = Tr(Q TΩQ ) and Ω the non-centrality matrix Ω = Σ−1M, then

Tr[W (n)] ≡

p
k=1

[−1 . β . (νkθkūk) + n . (θkūk)] ≡ −1 . β .

+̇

p
k=1νkθkūk


+ n .


+

p
k=1 θkūk


, (16)

where the symbol +p
k=1 θkūk denotes θ1ū1 + · · · + θpūp.

Proof. The moment generating function (m.g.f.) ofW (n) is [20]

f (Tr[W (n)], z) = E {exp (Tr[W (n)] z)} =
exp


−Tr[(Ip − z Σ)−1M z]


[det(Ip − z Σ)]n

=
exp


−Tr[(Ip − z Σ)−1ΣΩ z]


[det(Ip − z Σ)]n

. (17)

If θ1, . . . , θp are the eigenvalues of Σ , then

det(I − z Σ)−1
=

p
i=1

(1 − z θi)
−1 and [det(I − z Σ)]−n

= f [n . (θ1ū1 + · · · + θpūp), z]

from (10). From the first equivalence in (8)

n .

+

p
k=1 θkūk


≡ n . (θ1ū1) + · · · + n . (θpūp)

as given in (16). Moreover, in (17) if Σ = QΛQ T , then Tr[(Ip − z Σ)−1Σ Ω z] = Tr[Q (I − z Λ)−1 Q T Q ΛQ T Ω z] =

Tr[(I − z Λ)−1 Λ B z], with B = Q TΩQ . Therefore we have

Tr[(I − z Λ)−1 Λ B z] =

p
k=1

bkkθk z
(1 − z θk)

. (18)

The ith coefficient of the formal power series in (18) is i! (b11 θ i
1 + · · · + bpp θ i

p). Since i! θ i
k = E[(θkūk)]

i and bkk =

E[(χ . bkk . β)i], for all nonnegative integers i, then

i! Si = i! (b11 θ i
1 + · · · + bpp θ i

p) = E


+̇
p
k=1νkθkūk

i
, (19)

with νk given in (15) and Si in (12). Note that Si = Tr(BΛi) = Tr(ΩΣ i). Since [10]

−1 . β .

+̇

p
k=1νkθkūk


≡ −1 . β . (ν1θ1ū1) + · · · + −1 . β . (νpθpūp),

both the contributions in (16) follow from (11). �

In the following we always assume that the hypothesis of Theorem 1 holds. Moments of Tr[W (n)] can be computed by
binomial expansion:

E

Tr[W (n)]i


=

i
j=0


i
j


E


−1 . β .

+̇

p
k=1νkθkūk

j E n . (+
p
k=1 θkūk)

i−j


= i!
i

j=0


λ⊢j

(−1)l(λ)

r1!r2! · · ·

l(λ)
i=1

Tr(ΩΣ i)ri


λ′⊢i−j

nl(λ′)

r1!r2! · · ·

l(λ′)
i=1

Tr(Σ i)ri


. (20)

In order to take advantage of equivalence (16), we denote with A the matrix of umbral monomials such that

Tr(A) = −1 . β .

+̇

p
k=1νkθkūk


. (21)

Remark 1 (Central Wishart Distribution). When M = 0 in (1), then W (n) = W (n) = XT
(1)X(1) + · · · + XT

(n)X(n) with
{XT

(1)X(1), . . . , XT
(n)X(n)} i.i.d. randommatrices of order p. We write W (1) to denote one of the randommatrices XT

(k)X(k). From
Theorem 1, if bkk = 0 for k = 1, 2, . . . , p then ν1 ≡ · · · ≡ νp ≡ ε, and

Tr[W (n)] ≡ n . (+
p
k=1 θkūk) ≡ n . (θ1ū1) + · · · + n . (θpūp). (22)
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Then equivalence (16) separates the contribution of the non-centrality matrix Ω included in A from the central Wishart
distribution W (n). This remarkwas already done in [1]without giving an explicit expression to the convolution. This because
the symbol in (16) does not have a probabilistic counterpart. Indeed if it is true that n . (+

p
k=1 θkūk) corresponds to a central

Wishart distribution, Tr(A) in (21) is just a formal compound Poisson r.v. [9], since its parameter −1 is negative.

Proposition 2 states the connection between central Wishart distributions (22) and partition umbrae.

Proposition 2. Tr[W (n)] ≡ n . β .

+̇

p
k=1~θkūk


.

Proof. Since β . χ ≡ u [4], then n .

+

p
k=1 θkūk


≡ n . β . χ .


+

p
k=1 θkūk


. The result follows from Theorem 1 by recalling

the additivity property of cumulants

χ .

+

p
k=1 θkūk


≡ +̇

p
i=1χ . (θkūk) ≡ +̇

p
i=1~θkūk . �

Theorem 3 (Sheffer Polynomial Sequence5). The sequence {E[Tr(W (n))k]} is of Sheffer polynomial type with x replaced by the
nonnegative integer n.

Proof. The umbra α + x . β . γ ⟨−1⟩ is a Sheffer umbra [7]. The result follows from Theorem 1 and Proposition 2, choosing
as umbra α the umbra −1. β.


+̇

p
k=1νkθkūk


and as umbra γ ⟨−1⟩ the umbra +̇

p
k=1~θkūk , given in Proposition 2. Observe that

this umbra has compositional inverse since E[+̇
p
k=1~θkūk ] = Tr(Σ) ≠ 0. �

If bii = 0 for i = 1, 2, . . . , p, then −1. β .

+̇

p
k=1νkθkūk


≡ ε and {E[Tr(W (n))k]} is a binomial sequence: E(Tr[W (n +

m)]i) =
i

k=0


i
k


E(Tr[W (n)]i)E(Tr[W (m)]i−k).

Corollary 4 (Binomial Polynomial Sequence). The sequence {E(Tr[W (n)]k)} is the binomial sequence associated to
{E(Tr[W (n)]k)}.

Since the m.g.f. of Tr[W (n)] is convergent in a suitable neighborhood of 0, the distribution of Tr[W (n)] is univocally
determined by its moments. Thanks to the latter equivalence in (8), with the umbra α replaced by +

p
k=1 θkūk, a further

consequence of Corollary 4 is the following result.

Corollary 5. Tr[W (n + m)]
d
= Tr[W (n)] + Tr[W (m)].

Proposition 6 gives a Sheffer identity (cf. [22]) for Tr[W (n)].

Proposition 6. Tr[W (n + m, Σ,M)]
d
= Tr[W (n, Σ,M)] + Tr[W (m)].

Proof. The result follows from equivalence (22) by observing that

Tr[W (n + m)] ≡ −1. β .

+̇

p
k=1νkθkūk


+ (n + m).


+

p
k=1 θkūk


≡

−1. β .


+̇

p
k=1νkθkūk


+ n.


+

p
k=1 θkūk


+ m.


+

p
k=1 θkūk


. �

Proposition 7. If M = M1 + M2 with M1 =
n

i=1 m
T
i mi and M2 =

n+m
i=n+1 m

T
i mi, then Tr[W (n + m, Σ,M)]

d
=

Tr[W (n, Σ,M1)] + Tr[W (m, Σ,M2)].

Proof. Assume Tr(M1) = b11+· · ·+bpp and Tr(M2) = b̃11+· · ·+b̃pp with Tr(M1)+Tr(M2) = Tr(M). The result follows from
Theorem 1 by observing that the umbral monomials νk in (15) can be splitted in the summation of the umbral monomials
ν̃k ≡ (χ . bkk. β) and ν̄k ≡ (χ . b̃kk . β), since χ . (bkk + b̃kk). β ≡ (χ . bkk + χ . b̃kk). β ≡ χ . bkk. β + χ . b̃kk. β . This last
equivalence is a consequence of (8) which holds also when n and m are replaced by some umbrae δ and γ , cf. [10]. �

One feature of the umbral calculus is the chance to replace the nonnegative integer n in the dot-product n. α with an
umbra. Then the umbral counterpart of a randomized non-central Wishart distribution W (N) = Wp(N, Σ,M) can be
recovered from Theorem 1, with

W (N) =

N
i=1

(X(i) − m)T (X(i) − m), (23)

m a vector of complex numbers andM = mTm.

5 In terms of g.f.’s, Sheffer polynomial sequences {si(x)} are such that


i≥1 si(x)
zi
i! = g(z) exp[xf (z)] with g(z) and f (z) formal power series such that

g(0) = 1 and f (0) = 0. For further references on Sheffer polynomial sequences see [22].
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Proposition 8. If N is a r.v. with moment sequence umbrally represented by an umbra α, then {E(Tr[W (N)]k)} is umbrally
represented by

Tr[W (α)] ≡ α . β .

−1. β .


+̇

p
k=1νkθkūk


+

+

p
i=1 θiūi


.

Proof. The m.g.f. of a random sum SN = X1 + X2 + · · · + XN is the composition of the m.g.f. g(z) corresponding to the
index N and of the m.g.f. h(z) corresponding to {Xi}. The umbral counterpart of SN is the composition umbra α . β . γ , where
α represents the sequence of moments of N and γ represents the sequence of moments of {Xi}. From (23) Tr[W (N)] =N

i=1 Tr[(X(i) − m)T (X(i) − m)], so that the sequence {E(Tr[W (N)k])} is represented by the composition umbra α . β . γ ,
with α the umbral counterpart of N and γ the umbral counterpart of Tr[(X(i) −m)T (X(i) −m)]. The result follows from (16)
and Remark 1 since γ ≡ +

p
i=1 θiūi. �

3.1. Moments and cumulants of Wishart distributions

3.1.1. Central distributions
Moments of centralWishart distributions can be expressed bymeans of complete homogeneous symmetric polynomials

{hi} given in (14). Indeed, from (14) and equivalence (22) we have E(Tr[W (1)]i) = i! hi(θ1, . . . , θp) and the generalization
to Tr[W (n)] follows by using the dot-product with n. From (7) we have

E(Tr[W (n)]i) =


λ⊢i

(n)l(λ) d̃λ hλ(θ1, . . . , θp) with hλ = hr1
1 hr2

2 · · · and d̃λ =
i!

r1!r2! · · ·
. (24)

Remark 2 (Cyclic Polynomials). Thanks to (24), moments of Tr[W (n)] can be expressed in terms of cyclic polynomials

Ci(x1, . . . , xi) =


λ⊢i

cλx
r1
1 · · · xrii with cλ =

i!
1r1 r1! 2r2 r2! · · ·

. (25)

A well-known relation between cyclic polynomials and complete homogeneous polynomials is Ci(s1, . . . , si) = i! hi(x1,
. . . , xp), with {sj} power sum symmetric polynomials in the indeterminates x1, . . . , xp, cf. [18]. By replacing the indetermi-
nates {xk} with the eigenvalues of Σ , we have Ci[Tr(Σ), . . . , Tr(Σ i)] = i! hi(θ1, . . . , θp) = E(Tr[W (1)]i) and from (24)

E(Tr[W (n)]i) =


λ⊢i

(n)l(λ) dλ Cλ[Tr(Σ), . . . , Tr(Σ i)] with Cλ = C
r1
1 C

r2
2 · · · . (26)

Proposition 9. If {Tr(Σ i)} is umbrally represented by σ , then Tr[W (n)] ≡ n . β . (σ~ū).

Proof. From (13), with γ replaced by the unity umbra u, we have E[(β . (α~ū))
i
] =


λ⊢i dλ aλ uλ with uλ = (2 − 1)!r2(3 −

1)!r3 · · ·. By observing that cλ = dλuλ in (25), we have

E[(β . (α~ū))
i
] = Ci(a1, . . . , ai). (27)

Then Tr[W (1)] ≡ β . (σ~ū) and the result follows since f (Tr[W (n)], z) = f (Tr[W (1)], z)n. �

As a consequence, the symbolic representation of a randomized central Wishart distribution is α . β . (σ~ū) with moments
given in (13).

Remark 3. A different expression for moments of central Wishart distributions is given in [28] where vectors and matrix
exponential Bell polynomials are employed and introduced as derivatives of a function of a vector or matrix function of a
vector ormatrix. On the other hand there is awell-known relation between cyclic polynomials and complete Bell exponential
polynomials [18], that is Ci(a1, a2, . . . , ai) = Yi[a1, a21!, a32!, . . . , ai(i− 1)!]. Due to (27), the partition umbra is the bridge
between the two families of polynomials, since E[(β . α)i] = Yi(a1, . . . , ai), cf. [9].

Proposition 9 is in agreement with Eq. (2.4) of [12] where permutations6 are employed in place of integer partitions. Indeed
indexing Eq. (26) in permutations,

E[(n . β . (σ~ū))
i
] =


σ∈Si

nl(σ )


c∈C(σ )

Cl(c)(s1, . . . , sl(c))

and Eq. (2.4) of [12] follows for h1 = · · · = hk = Ip since Ci(s1, . . . , si) =


σ∈Si


c∈C(σ ) sl(c).

6 A permutation σ ∈ Si of [i], with Si the symmetric group, can be decomposed into disjoint cycles. The length of the cycle c ∈ C(σ ) is its
cardinality, denoted by l(c). The number of cycles is denoted by |C(σ )|. A permutation σ with r1 1-cycles, r2 2-cycles and so on is said to be of cycle class
λ = (1r1 , 2r2 , . . .) ⊢ i. The integer cλ in (25) denotes the number of permutations σ ∈ Si of cycle class λ = (1r1 , 2r2 , . . .) ⊢ i. When misunderstandings
occur, we refer to the cycle class of a permutation σ as λσ . In particular we have l(λσ ) = |C(σ )|.
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As often happens with r.v.’s, the sequence of cumulants of central Wishart distributions is more manageable of its
moments. In the following, Cumi(Tr[W (n)]) denotes its ith cumulant for all positive integer i, and ~Tr[W (n)] denotes the
Tr[W (n)]-cumulant umbra, that is the umbra whose moments are Cumi(Tr[W (n)]).

Proposition 10. Cumi(Tr[W (n)]) = n(i − 1)!Tr(Σ i).

Proof. From Proposition 9, Cumi(Tr[W (n)]) = E[(χ . n . β . (σ~ū))
i
]. The result follows from (13), with γ replaced by the

umbra χ . n. Indeed E[(χ . n)l(λ)
] ≠ 0 only with the partition λ of i having length 1. In this case, E[(χ . n)l(λ)

] = n and only
the ith moment E[(σ~ū)

i
] = (i − 1)!Tr(Σ i) gives contribution in (13). �

Moments from cumulants can be recovered by using the partition umbra since if ~ ≡ χ . α then α ≡ β . ~ , cf. [4].

Corollary 11. Tr[W (n)] ≡ β . ~Tr[W (n)] ≡ n . β . ~Tr[W (1)].

3.2. Non-central distributions

From the additivity property of cumulants and Theorem 1, cumulants of non-central Wishart distributions are such that
Cumi(Tr[W (n)]) = Cumi(Tr[W (n)]) + Cumi(Tr(A)). This is the key to prove the following theorem.

Theorem 12. Cumi(Tr[W (n)]) = n (i − 1)!Tr(Σ i) − i!Si, with {Si} given in (19).

Proof. From Theorem 1, cumulants of Tr[W (n)] are umbrally represented by

χ . [−1 . β . (ν1θ1ū1+̇ · · · +̇νpθpūp) + n . (θ1ū1 + · · · θpūp)].

From the additivity property of cumulants this umbra is similar to

χ . [−1 . β . (ν1θ1ū1+̇ · · · +̇νpθpūp)]+̇χ . n . (θ1ū1 + · · · + θpūp).

Sinceχ . n . (θ1ū1+· · ·+θpūp) ≡ χ . n . β . (σ~ū), itsmoments are given in Proposition 10.Moreover E{(χ . [−1 . β . (ν1θ1ū1

+̇ · · · +̇νpθpūp)])
i
} =


λ⊢i E[(−χ)l(λ)

] dλ λ! Sλ = −i!Si with λ! = λ1! λ2! . . . since E[(−χ)l(λ)
] ≠ 0 only for l(λ) = 1. �

Corollary 13. Cumi(Tr[W (n)]) = (i − 1)!
p

j=1[n − i bj j] θ i
j .

Example 1. Set n = 3. If

Σ =

 0.025 0.0075 0.00175
0.0075 0.0070 0.00135
0.00175 0.00135 0.00043


and M =

0.0001 0.0210 0.3000
0.0400 0.0005 0.0200
0.0010 0.0100 0.0004



then Ω =


−1.8721 0.1670 17.3410
14.7071 −11.3087 −5.8077

−36.2288 58.0801 −51.4103


and B =


−58.8960 59.9910 19.4203
−19.2629 −7.2024 −5.9850
−10.0248 −2.1620 1.5074


and from Corollary 13 we have

Cum1(Tr[W (3)]) = 0.0963, Cum2(Tr[W (3)]) = 0.000327, Cum3(Tr[W (3)]) = −0.00003089 and so on.

Complete Bell exponential polynomials give moments in terms of cumulants [4]: if {ci} is the sequence of formal cumulants
of {an}, then an = Yn(c1, . . . , cn). The connection with cyclic polynomials is a consequence of Remark 3.

Corollary 14. If c̃i = n (i − 1)! Tr(Σ i) and c̄i = −i! Si, then

E(Tr[W (n)]i) = Yi(c̃1 + c̄1, . . . , c̃i + c̄i) = Ci


c̃1 + c̄1, . . . ,

c̃i + c̄i
(i − 1)!


.

A completely different expression of E(Tr[W (n)]i) is given in [15], whereweighted generating functions of special graphs
are employed.

In [6], a different family of cumulants has been introduced, representing {Cumi(Tr[W (n)])} normalized to the dimension
p of W (n). Indeed the definition given in [6] leads to the introduction of umbral polynomials {c1,µ, . . . , cp,µ} with µ =

(µ1, . . . , µp) and Tr[W (n)] ≡ µ1 + · · · + µp, such that

Tr[W (n)] ≡ p . β . Tr[ C(n)] (28)

where Tr[ C(n)] = c1,µ + · · · + cp,µ. Note that the order p plays a fundamental role in (28), differently from Theorem 12
where instead the integer n gives the main contribution. The following theorem highlights the connection between the two
families of cumulants.

Theorem 15. ~Tr[W (n)] ≡ χ . p . β .Tr[ C(n)] and Tr[ C(n)] ≡ χ . 1
p . β . ~Tr[W (n)].

Proof. The first equivalence follows from (28) by taking the dot-product with χ of both sides. The latter follows from the
first by taking the dot-product of both sides with χ . 1

p . �
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4. Joint moments and joint cumulants of Wishart distributions

In order to deal with joint moments (2), we need to recall the multivariate version of the symbolic method. As before,
we just introduce the tools necessary to work with the object of this paper. The reader interested in a detailed exposition of
the topic is referred to [5].

4.1. Multivariate symbolic method

Let {ν1, . . . , νm} be a set of umbral monomials with supports not necessarily disjoint. A sequence {gi}i∈Nm
0

∈ C, with
gi = gi1,i2,...,im and g0 = 1, is represented by them-tuple ν = (ν1, . . . , νm) if

E[νi
] = gi, (29)

for each multi-index i ∈ Nm
0 . The elements {gi}i∈Nm

0
in (29) are calledmultivariate moments of ν. Paralleling (5), the g.f. of ν is

the exponential formal power series

eν1z1+···+νmzm = u +


k≥1


|i|=k

νi z
i

i!
∈ C[A][[z1, . . . , zm]] (30)

with z = (z1, . . . , zm), |i| = i1 + · · · + im and i! = i1! · · · im!. If the sequence {gi} is umbrally represented by ν and has
(exponential) g.f.

f (z) = 1 +


k≥1


|i|=k

gi
z i

i!
(31)

then from (30) E[eν1z1+···+νmzm ] = f (z). Taking into account (29), the g.f. in (31) is denoted by f (ν, z). Two umbral vectors
ν1 and ν2 are said to be similar, in symbols ν1 ≡ ν2, iff f (ν1, z) = f (ν2, z), that is E[νi

1] = E[νi
2] for all i ∈ Nm

0 . They are said
to be uncorrelated iff E[νi

1ν
j
2] = E[νi

1]E[ν
j
2] for all i, j ∈ Nm

0 .
An analogous of (7) holds for themultivariate case, provided to replace integer partitionswithmulti-index partitions7 [5].

The dot-product n . ν of a nonnegative integer n and a m-tuple ν denotes the summation ν′
+ ν′′

+ · · · + ν′′′ with
{ν′, ν′′, . . . , ν′′′

} a set of n uncorrelated and similarm-tuples. For i ∈ Nm
0 , its multivariate moments are

E[(n . ν)i] =


λ⊢i

dλ (n)l(λ) gλ, with dλ =
i!

m(λ)!λ!
, (32)

the sum runs over all partitions λ = (λ
r1
1 , λ

r2
2 , . . .) of the multi-index i, gλ = g r1

λ1
g r2
λ2

· · · and gλi = E[νλi ]. If we replace the
integer n in (32) with the dot-product α . β , we get the auxiliary umbra α . β . ν whose moments are

E[(α . β . ν)i] =


λ⊢i

dλ al(λ) gλ, (33)

with {ai} in al(λ) umbrally represented by α. In particular the g.f. of the auxiliary umbra α . β . ν turns to be f (α . β . ν, z) =

f [α, f (ν, z) − 1], that is the composition of the univariate g.f. f (α, z) and the multivariate g.f. f (ν, z). More details on the
composition of multivariate formal power series are given in [5]. For what we need in the following, we just recall that
f (−1 . β . ν, z) = exp{−[f (ν, z) − 1]} and f (n . β . ν, z) = exp{n[f (ν, z) − 1]}. If in (33) the umbra α is replaced by the
umbra χ . χ , then the ν-cumulant umbra χ . χ . β . ν ≡ χ . ν is recovered, whose moments are the multivariate cumulants
of them-tuple ν.

4.2. Joint moments and necklaces

The aim of this paragraph is to find a symbolic representation of joint moment (2) as the i-th coefficient of the g.f.
E (exp{Tr[W (n)(H1z1 + · · · + Hmzm)]}) , with i = (i1, . . . , im). It is well-known that if Z is a p × p Hermitian parameter
matrix, then

E (exp{Tr[W (n) Z]}) =
exp


−Tr[(Ip − Σ Z)−1 Ω Σ Z]


[det(Ip − Σ Z)]n

(34)

7 A partition of a multi-index i, in symbols λ⊢i, is a matrix λ = (λij) of nonnegative integers and with no zero columns in lexicographic order such that
λr1 + λr2 + · · · + λrk = ir for r = 1, 2, . . . , n. The number of columns of λ is called the length of λ and denoted by l(λ). As for integer partitions, the
notation λ = (λ

r1
1 , λ

r2
2 , . . .) means that in the matrix λ there are r1 columns equal to λ1 , r2 columns equal to λ2 and so on, with λ1 < λ2 < · · ·. We call ri

multiplicity of λi and set m(λ) = (r1, r2, . . .).
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with Ω the non-centrality matrix [15]. Within formal power series, f (W (n)H, Z) = f (W (n),H Z) with H ∈ Cp×p. Then
choose H and Z such that Tr[W (n)H Z] = Tr[W (n)H1] z1 + · · · + Tr[W (n)Hm] zm. From (34)

E [exp (Tr[W (n)H Z])] =
exp


−Tr[(Ip − Σ H Z)−1 Ω Σ H Z]


[det(Ip − Σ H Z)]n

. (35)

Eq. (35) is the starting point to prove Theorem16,where the symbolic representation of a non-centralWishart distribution is
generalized to themultivariate case. The form of this symbolic representation is very similar to the univariate case, provided
scalar umbrae are replaced by suitablem-tuples of umbral monomials.

In order to take advantage of the cyclic property of traces, we resort the notion of necklace. A m-ary necklace is an
equivalence class of m-ary strings equivalent under rotation (the cyclic group) [2]. Let the m-ary strings be elements of the
set {1, . . . ,m}

|i|, then having length |i|, with i = (i1, . . . , im). Denote the set of all necklaces of length |i| over the m-ary
alphabet of indexes {1, . . . ,m} with Nm(|i|). It is natural to choose as representative a of a necklace its lexicographically
smallest string. Then we denote the corresponding necklace with [a].

Definition 1. In the set {1, . . . ,m}
|i|, a necklace is said to be of kind i, if the elements in its strings are chosen in themultiset8

{1i1 , 2i2 , . . . ,mim}.

To the best of our knowledge, this definition is given here for the first time.We denote the set of representatives of necklaces
of kind i with Nm[i].

Example 2. If m = 3 and |i| = 3, then N3(3) = {111, 222, 333, 112, 122, 113, 133, 223, 233, 123, 132}. The string 123
is the representative of the necklace [123] = {123, 312, 231} and the string 112 is the representative of the necklace
[112] = {112, 121, 211}. Moreover N3[(3, 0, 0)] = {111} and N3[(1, 2, 0)] = {122}. We have |N3[i]| = 1, for all i with
|i| = 3, except for i = (1, 1, 1) as N3[(1, 1, 1)] = {123, 132}.

In most cases, a necklace has full size, which is equal to the length of a string. But, there are periodic necklaces of period
d < m, a divisor ofm. In the example, 111 is a necklace of period 1. The aperiodic necklaces are also known as Lyndon words.
Denote the set of Lyndon words of length |i| over the m-ary alphabet of indexes {1, . . . ,m} with Mm(|i|). As before, denote
the set of aperiodic necklaces of kind i with Mm[i]. The closed form formula for joint moments (2) is given in the following
theorem.

Theorem 16. For i = (i1, . . . , im) ∈ Nm
0

E

Tr [W (n)H1]i1 · · · Tr [W (n)Hm]im


= E[(−1 . β .η̃ + n . β . ρ̃)i], (36)

with

(i) ρ̃ = (ū1 ρ1, . . . , ūm ρm) and ρ = (ρ1, . . . , ρm) such that

E[ρi
] =


a∈Mm[i]

Tr


k∈a

(ΣHk)


+


a∈Nm[i]−Mm[i]

1
d
Tr


k∈a

(ΣHk)


; (37)

(ii) η̃ = (ū1 η1, . . . , ūm ηm) and η = (η1, . . . , ηm) such that

E[ηi
] =


a∈Nm[i]


b∈[a]

Tr


Ω

k∈b

(ΣHk)


. (38)

If |i| is prime or Nm[i] = Mm[i], then (37) reduces to the first summation.

Proof. Within formal power series, for amatrix A the following identity holds [det(I−A)]−1
= exp


j≥1 Tr(A

j)/j

, cf. [24].

Then taking into account (31) and (35), withHZ replaced byH1z1+· · ·+Hmzm, we have (det[Ip−Σ (H1z1+· · ·+Hmzm)])−n

= exp {n[f (ρ̃, z) − 1]} with

f (ρ̃, z) − 1 =


j≥1

1
j


|i|=j

 
a∈{1,...,m}|i|

Tr


k∈a

ΣHk

 z i11 · · · z imm . (39)

Eq. (37) follows by indexing the inner summation in (39) with the necklaces in Nm[i] for each i and by multiplying the
corresponding traceswith the cardinality of necklaces, due to their cyclic property. In (35) since (I−A)−1

= I+


j≥1 A
j, then

8 Informally, a multiset is a generalization of the notion of set where elements are allowed to appear more than once. The notation {1i1 , 2i2 , . . . ,mim }

denotes that 1 appears i1 times, 2 appears i2 times and so on. For a formal definition, cf. [4].



Author's personal copy

E. Di Nardo / Journal of Multivariate Analysis 125 (2014) 121–135 131

Tr[(Ip−Σ H Z)−1 Ω Σ H Z] = Tr[Σ H Z (Ip−Σ H Z)−1 Ω] =


j≥1 Tr[Ω (Σ H Z)j] and forHZ replaced byH1z1+· · ·+Hmzm
a characterization of f (η̃, z) similar to (39) follows

f (η̃, z) − 1 =


j≥1


|i|=j

 
a∈{1,...,m}|i|

Tr


Ω

k∈a

ΣHk

 z i11 · · · z imm .

Differently from (39), we could not group the inner summation with respect to the elements of necklaces, since we could
not use the cyclic property of the trace, due to the position of the non-centrality matrix Ω . �

A multinomial expansion is applied to the right-hand-side of (36) in order to get

E


m
j=1

Tr

W (n)Hj

ij
=


t1,t2∈Nm

0
t1+ t2=i

i!
t1!t2!

E[(−1 . β.η̃)t1 ]E[(n . β . ρ̃)t2 ] (40)

= i!


t1,t2∈Nm
0

t1+ t2=i


λ⊢t1

(−1)l(λ)

m(λ)


λi

E[ηλi ]
ri


λ⊢t2

(n)l(λ)

m(λ)


λi

E[ρλi ]
ri


(41)

where E[ηλi ] and E[ρλi ] are given in (37) and (38) respectively. The function MakeTab in [5] has been employed for
computing all the multi-indexes t1, t2 in (41). A separate Maple procedure [3] has been set up in order to expand (41),
see the following example.

Example 3. Form = 2 and i = (1, 2), an explicit expression of (41) is given in the following:

E

Tr [W (n)H1] Tr [W (n)H2]2


= nTr (H2) Tr (ΩH1H2) − nTr (H2) Tr (ΩH2H1) + nTr (H2) Tr (ΩH1) Tr (ΩH2)

− nTr (ΩH2) Tr (H1H2) − n2Tr (ΩH2) Tr (H1) Tr (H2) + 2 Tr (ΩH2) Tr (ΩH1H2)

+ 2 Tr (ΩH2) Tr (ΩH2H1) − Tr (ΩH1) (Tr (ΩH2))
2
− Tr


ΩH1H2

2
− Tr (ΩH2H1H2) + Tr (ΩH1) Tr


ΩH2

2
+ 2 n2Tr (H1H2) Tr (H2)

+ n3Tr (H1) (Tr (H2))
2
+ nTr


H1H2

2
+ (n2/2)Tr (H1) Tr


H2

2
+ n2Tr (ΩH1) (Tr (H2))

2
− (n/2) Tr (ΩH1) Tr


H2

2
+ nTr (H1) (Tr (ΩH2))

2
− nTr (H1) Tr


ΩH2

2 .
Remark 4. If we replace the nonnegative integer nwith a scalar umbra α in (36) then

E

Tr [W (α)H1]i1 · · · Tr [W (α)Hm]im


= E[(−1 . β . η̃ + α . β . ρ̃)i] (42)

joint moments of randomized non-centralWishart distributions. Although not explicitlymentioned, this replacement could
be performed for all the results given in the following.

Joint moments of ρ̃ correspond to joint moments E{Tr[W (n)H1]
i1 · · · Tr[W (n)Hm]

im} of central Wishart matrices and are
a generalization of formulae given in [12]. Joint moments of η̃ correspond to joint moments of E{Tr [AH1]i1 · · · Tr [AHm]im}

with A given in (21). Differently from [12,16], where the representation theory of symmetric group is resorted in order to
compute the moments of non-central Wishart distributions, Theorem 16 involves integer partitions. Proposition 17 shows
the connection between the two methods.

Proposition 17. For i = (1, . . . , 1)

E[(n . β . ρ̃)i] =


σ∈Sm

n|C(σ )|


c∈C(σ )

Tr


j∈c

ΣHj


, (43)

E[(−1 . β . η̃)i] =


σ∈Sm

(−1)|C(σ )|


c∈C(σ )

l(c)Tr


Ω

j∈c

ΣHj


. (44)

Proof. Partitions of the multi-index (1, . . . , 1) are matrices with entries equal to 0 and 1. When i has entries equal to 0
or 1, the multivariate moment of ρ involves cyclic permutations of (ΣH1)

i1 · · · (ΣHk)
ik with some powers equal to 0 and

the remaining equal to 1. The elements in the strings a in (37) and (38) are all different and chosen in {1, . . . ,m}, so that
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Mm[i] = Nm[i]. Therefore for these multi-indexes, Eq. (37) reduces to E[ρi
] = Tr[(ΣH1)

i1 · · · (ΣHk)
ik ]. Eq. (43) follows by

observing that for i = (1, . . . , 1) and from (33)

E[(n . β . ρ̃)i] =


π∈Π|i|

pπ n|π |

B∈π

Tr


j∈B

ΣHj


,

with Π|i| the set of all partitions9 of {1, 2, . . . , |i|} and pπ =


B∈π (|B| − 1)! the number of permutations of {1, 2, . . . , |i|}
corresponding to the partition π . The result follows by indexing the summation with permutations instead of partitions.
Eq. (44) follows by similar arguments. �

For i = (1, . . . , 1) and by using the permutation identity e ∈ Sm, we have

E[(n . β . ρ̃)i] = E

 
c∈C(e)

Tr
W (n)Hc


and E[(−1 . β . η̃)i] = E

 
c∈C(e)

Tr [AHc ]


.

By the group action of Sm on C, from (43) and (44) we have

E

 
c∈C(σ )

Tr


j∈c

W (n)Hj


=


τ∈Sm

nl(σ τ−1)


c∈C(τ )

Tr


j∈c

ΣHj


, (45)

E

 
c∈C(σ )

Tr


j∈c

AHj


=


τ∈Sm

(−1)l(σ τ−1)


c∈C(τ )

l(c) Tr


Ω

j∈c

ΣHj


. (46)

4.3. Joint cumulants

Joint cumulants of non-central Wishart distributions can be recovered from Theorem 16, by using the additivity
property given in Proposition 4.1 of [5]. Denote them-tuple (Tr[W (n)H1], . . . , Tr[W (n)Hm]) with µ. Its i-th joint cumulant
Cumi(Tr[W (n)H1], . . . , Tr[W (n)Hm]) is the multivariate moment of (χ . µ)i. From (36) we have

E[(χ . µ)i] = E

[χ . (−1) . β . η̃]

i
+ E[(χ . n . β . ρ̃)i]. (47)

Eq. (33) allows us to compute E[(χ . (−1) . β . η̃)i] and E[(χ . n . β . ρ̃)i], with α replaced by χ . (−1) and χ . n respectively,
and ν replaced by η̃ and ρ̃ too. Since the moments of χ . (−1) and χ . n are all zero except the first, the only contribution in
(33) is for λ = i for which dλ = 1. Then the following theorem is proved, which generalizes Theorem 12 and Proposition 10.

Theorem 18. Cumi(Tr[W (n)H1], . . . , Tr[W (n)Hm]) = i!(nE[ρi
] − E[ηi

]), with E[ρi
] and E[ηi

] given in (37) and (38)
respectively.

Example 4. If m = 2 and i = (1, 2), then

Cum(1,2)(Tr[W (n)H1], Tr[W (n)H2]) = 2!

nTr


(ΣH1)(ΣH2)

2
− Tr


Ω(ΣH1)(ΣH2)

2
− Tr


Ω(ΣH2)

2(ΣH1)

− Tr [Ω(ΣH1)(ΣH2)(ΣH1)]


.

Depending on the symbolic representation of non-central Wishart distributions (42), cumulants of the randomized version
are obtained from (47) by replacing χ . nwith χ . α, which is the α-cumulant umbra. Then Theorem 18 needs to be updated
as follows.

Theorem 19. If {ci} is the sequence of cumulants of α, then

Cumi(Tr[W (α)H1], . . . , Tr[W (α)Hm]) = i!


λ⊢t

cl(λ)

m(λ)


λi

E[ρλi ]
ri − E[ηi

]


. (48)

9 A partition π of {ν1, . . . , νi} is a collection π = {B1, . . . , Bk} of k ≤ i disjoint non-empty subsets of {ν1, . . . , νi}whose union is {ν1, . . . , νi}. We denote
the set of all partitions of the set {ν1, . . . , νi} with Πi .



Author's personal copy

E. Di Nardo / Journal of Multivariate Analysis 125 (2014) 121–135 133

Example 5. If m = 2 and i = (1, 2), in order to compute Cum(1,2)(Tr[W (α)H1], Tr[W (α)H2]) and to better understand
the power of the symbolic method, we could employ the results of Example 3 for the part not involving the non-centrality
matrix Ω . Indeed, the summation in (48) corresponds to the latter in (41) with nl(λ) replaced by cl(λ). Then in Example 3, we
can select the terms not involving Ω and replace the occurrences of nk with ck. The result is the following:

Cum(1,2)(Tr[W (α)H1], Tr[W (α)H2]) = 4 c2Tr (H1H2) Tr (H2) + 2 c3Tr (H1) (Tr (H2))
2

+ 2 c1Tr

H1H2

2
+ c2Tr (H1) Tr


H2

2
− 2Tr


Ω (ΣH1) (ΣH2)

2
− 2Tr


Ω (ΣH2)

2 (ΣH1)

− 2Tr [Ω (ΣH1) (ΣH2) (ΣH1)] .

5. Applications

5.1. Permanents

Let Y = (yij) ∈ Cp×p. For d ∈ C, the d-permanent perd(Y ) of the matrix Y is the function

perd(Y ) :=


σ∈Sp

d|C(σ )|

p
j=1

yj,σ (j). (49)

The determinant function corresponds to d = −1 while d = 1 gives the classical permanent function. The d-extension of
the master theorem [17] states that if Z = diag(z1, . . . , zm) and T = (ti,j) is a m × m matrix such that10 ∥ZT∥ < 1 then
perd[T (i)] is the i-th coefficient of det(I − ZT )−d,

perd[T (i)] =
∂ |i|

∂z i11 · · · ∂z imm


det(I − ZT )−d

z=0 with T (i) =

ti1,i1 . . . ti1,im
...

...
...

tim,i1 . . . tim,im

 .

From (34), det(I − ZT )−d is the g.f. of a class of central Wishart distributions. Then the following result holds when ZT can
be decomposed as Σ (H1z1 + · · · + Hmzm) for suitable matrices Σ and H1, . . . ,Hm.

Proposition 20. If there exists a symmetric matrix Σ ∈ Cp×p and H1, . . . ,Hm ∈ Cp×p such that ZT = Σ(H1z1 + · · · + Hkzk),
then perd[T (i)] = E[(d . β . ρ̃)i] with ρ̃ given in (37).

A generalization of Proposition 20 consists in replacing the complex d with an umbra α umbrally representing {ai},
that is

perα[T (i)] :=


σ∈Sp

a|C(σ )|

p
j=1

[T (i)]j,σ (j) = E[(α . β . ρ̃)i].

5.2. Spectral polykays

Cumulants of Wishart distributions have been employed in approximating the density of sample correlation matrix [13]
or within wireless communications [27]. Moreover, due to Theorem 12 estimations of cumulants can addmore information
on the structure of the covariance matrix and of the non-centrality matrix. A classical way to estimate cumulants and their
products is by using k-statistics and polykays [4]. They rely on power sum symmetric polynomials involving i.i.d. r.v.’s of ran-
dom samples. A different way has been recently proposed in [6] by introducing the notion of spectral sample. Consider the
matrix H[m×p] obtained by deleting the last p − m rows of a random unitary matrix H uniformly distributed with respect to
Haarmeasure [21]. The set of eigenvalues y = (y1, . . . , ym) ∈ Rm of them×mHermitian randommatrix Y = H[m×p]XH

Ď
[p×m]

is called a spectral sample of size m from (x1, . . . , xp) ∈ Rp with X = diag(x1, . . . , xp). If λ = (1r1 , 2r2 , . . .) is a par-
tition of some nonnegative integers,11 spectral polykays Kλ(y) are symmetric polynomials expressed in terms of Tr(Y i),
such that

E[Kλ(y)] =

l(λ)
i=1

E(Tr[C(m)]λi) (50)

10 If A is am × mmatrix, then ∥A∥ := max{|θ1|, . . . , |θm|}, where θ1, . . . , θm are the eigenvalues of A.
11 Here λ runs through all partitions of length less than or equal tom [18].
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with Tr[C(m)] given in (28). For non-centralWishart distributions and from Theorem15, spectral polykays (50) are unbiased
estimators of normalized cumulants

Cumλ(Tr[W (m)]) =

l(λ)
i=1

(Cumi(Tr[W (m)]))ri = pl(λ)E[Kλ(W (m))]. (51)

For central Wishart distributions, which are unitarily invariant12 the spectral sampling is a way to extract information from
the set of its eigenvalues when X = Λ. In this case, the matrix Y is a principal submatrix [11] of W (n), and Kλ(y) are
unbiased estimators of their normalized cumulants. These estimators do not depend on the size of the submatrix, since
E[Kλ(W (n)mm)|W (n)] = Kλ(W (n)), for m ≤ n, where W (n)mm denotes the principal submatrix involving the first m rows
of W (n), cf. [6]. The spectral estimators of mean, variance, asymmetry and kurtosis are given in the following:

κ(1) =
S1
m

, κ(2) =
mS2 − S21

m

m2 − 1

 , κ(3) = 2
2 S31 − 3mS1 S2 + m2S3
m

m2 − 1

 
m2 − 4


κ(4) = 6

−5S41 + 10mS21S2 + (3 − 2m2)S22 − (4 + 4m2)S1S3 + (m + m3)S4
m2 (m2 − 1) (m2 − 4) (m2 − 9)

.

5.3. Generalized moments and open problems

Similarly to the product (45) involving central Wishart matrices, a generalization of joint moments (2) is given by

E

 
c∈C(σ )

Tr


j∈c

W (n)Hj


, σ ∈ Sk. (52)

Differently from (45), this computation could not be performed by using the group action of Sk on C. A different strategy
consists in using the convolution given in Theorem 1. The first step is to transform (52) in a summation of joint moments
involving W (n) and A. This is the result of the following proposition.

Proposition 21.

E

 
c∈C(σ )

Tr


j∈c

W (n)Hj


=


(B1,...,Bk) ∈{W (n), A}k


c∈C(σ )

E


Tr


j∈c

BjHj


. (53)

Proof. In (52), replaceW (n) with W (n) + A and observe that
c∈C(σ )

Tr


j∈c

(W (n) + A)Hj


=


c∈C(σ )


(Bj1 ,...,Bjl(c) ) ∈{W (n), A}k

Tr(Bj1Hj1 · · · Bjl(c)Hjl(c)).

The result follows by multiplying the summations and by applying the operator E. �

The second step is to compute the right-hand-side of (53) by separating the contribution of W (n) andA, in order to employ
(45) and (46). A way to perform such computation is to resort free probability [21], since W (n) and A are elements of a
noncommutative probability space13 (Mn(C[A]), Tr), withMn(C[A]) the algebra of umbral matrices with the usual matrix
multiplication. In the following, a way involving free cumulants is suggested to perform such computation: it would be
convenient to characterize some closed form formula involving the functional Trwithout the employment of free cumulants.
This is still an open problem.

Let N C be the lattice of all noncrossing partitions14 of [i]. For any noncrossing partition π , set

Trπ (B1, . . . , Bi) =


D∈π

Tr(Bj1 · · · Bjs)

for D = (j1 < · · · < js). Free cumulants are defined as multilinear functionals such that

cπ (B1, . . . , Bi) =


D∈π

c|D|(Bj1 · · · Bjs) with ci(B1, . . . , Bi) =


π∈N C

m(π, 1i) Trπ (B1, . . . , Bi), (54)

12 A unitarily invariant centralWishart matrix is such that W (n) = UΛUĎ , with U a Haar matrix independent of the diagonal matrixΛ of the eigenvalues
of W (n), and the superscript Ď denoting the conjugate transpose. The columns of U are the eigenvectors of W (n).
13 A noncommutative probability space is a pair (A, Φ), where A is a unital noncommutative algebra and Φ : A → C is a unital linear functional.
14 A noncrossing partition π = {B1, B2, . . . , Bk} of the set [i] is a partition such that if 1 ≤ h < l < s < k ≤ i, with h, s ∈ Bn and l, k ∈ Bn ′ , then n = n′ .
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wherem(π, 1i) is theMoebius function on the lattice of noncrossing partitions [21]. For two sets {S1, . . . , Sk} and {T1, . . . , Tk}
of randommatrices satisfying the hypothesis of Theorem 14.4 in [21], we have

Tr(S1T1 · · · SkTk) =


πS∈N C(1,3,...,2n−1)

cπS [S1, . . . , Sk]

 
πT ∈N C(2,4,...,2n)

πS∪πT ∈N C(n)

cπT [T1, . . . , Tk]

 . (55)

The products on the right-hand-side of (53) could be computed by using (55) with a suitable choice of the matrices Si and Ti.
For example, in order to compute Tr(AH1 AH2 W (n)H3 W (n)H4) choose S1 = AH1, T1 = I, S2 = AH2, T2 = W (n)H3, S3 =

I, T3 = W (n)H4. An expression of (53) in terms of (45) and (46) follows by using (54) and by characterizing the permutations
σ corresponding to the non-crossing partitionsπ involved in (55). The hypothesis of Theorem 14.4 in [21] rely on the notion
of freely independence of Si and Ti. This theorem could be still employed if Si and Ti are asymptotical free independent, that
is if A and W (n) are asymptotical free independent. This is true if the fluctuation of A is not too large, behaving like a constant
matrix. Of course, this fluctuation depends on the non-centrality matrix Ω . So, if A admits an eigenvalue distribution and all
normalized traces of Awould have 1/p2 estimates [21], then A and W (n) are asymptotical free independent.
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