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1. Introduction 

Microstructured adhesive surfaces, inspired by some 

biological attachment systems (e.g. Gecko foot pad) 

often exhibit extremely high adhesive performance [1,2]. 

Recent experimental observations [3] have shown that 

mushroom shaped microstructures [Figure 1-(a)] 

strongly outperform, in terms of adhesive properties, 

surfaces covered with miniaturized flat-punches [Figure 

1-(b)] made of the same material (polyvinylsiloxane 

(PVS), Young’s modulus E = 3MPa). 

 

 
Figure 1:  A SEM image of microfabricated PVS 

mushroom shaped pillars (courtesy of prof. Gorb): LP, 

contact plate lip; NR, narrow neck; SH, pillar shaft, (a); 

a SEM image of a microstructured surface with flat 

punch (adapted from Ref. [3]), (b). 

 

Recently the authors [4] have clarified the physical 

mechanism providing mushroom shaped micro-pillars 

with superior adhesive performance compared to 

cylindrical micro-pillars. In fact these type of 

micro-pillars present much lower adhesive strength as 

they usually debond because of crack propagation from 

the external perimeter (mode I mechanism) [Figure 2]. 

 

 
 

Figure 2:  Debonding of a flat punch pillar may 

occur because of crack propagation from the pillar edge 

(a), nucleation and propagation of interfacial defects (b), 

decohesion due to the achievement of the theoretical 

contact strength (c). Map of debonding mechanisms of a 

flat punch (d). 

 

Optimal mushroom shapes, on the contrary, usually 

detach because of the propagation of existing interfacial 

defects, e.g. dust particles or solid impurities (mode II 

debonding) [see Figure 3].  

 

 
Figure 3: Map of debonding mechanisms for an 

optimal mushroom shaped pillar. Detachments in this 

case must be governed by mode II or mode III debonding, 

depending on which one of them is energetically more 

favorable. 

 

However, even on perfectly clean surfaces, micro- 

nano-bubbles of air might form during the initial 

approach of the micro-pillar to the substrate. These 

bubbles may strongly reduce the adhesive strength of the 

system. In this paper, we focus on this aspect of 

micro-pillar adhesion. With this scope in mind, we first 

calculate the interfacial energy of the system, then we 

determine the equilibrium conditions depending on the 

applied tractive stress and initial size of the entrapped 

air bubble.  

We calculate the critical pull-off stress as a function 

of the initial volume of the entrapped air, and compare 

these results with those obtained when, instead of air, 

small external solid particles are entrapped at the 

interface. Our results show that the presence of 

entrapped air is more critical since it strongly reduces 

the suction effect. The critical stress, indeed, is about 

35−40% smaller than the value observed in the case of 

solid particles. 

2. The total interfacial energy of the system 

In order to carry out the analysis we need to precisely 

calculate the total energy change of the system when a 

bubble of air is present at the interface. We assume that 

the bubble of air is much smaller than the diameter and 
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height of the pillar so that one can treat the pillar as an 

elastic half-space in contact with a rigid flat surface. We 

assume isothermal conditions and a constant uniform 

asymptotic far field tractive stress σ , so that the 

equilibrium of the system can be sought by requiring that 

the total free energy at the interface (i.e. the interfacial 

Gibbs energy) is stationary. Given the defect size and 

assuming a linear elastic material, the calculation of the 

energy change of the system must consider four different 

contributions (see also [5] for a different derivation): (i) 

the contribution to the interfacial elastic energy due to the 

asymptotic applied uniform tractive stress σ , (ii) the 

contribution to the interfacial elastic energy due the air 

pressure p , (iii) the internal energy of the air bubble, 

(iv) the variation of surface energies due to the presence 

of van der Waals forces. Let us consider the system 

shown in Figure 4, where the bottom (initially flat) 

surface of an elastic half-space is glued to a rigid plate 

except on a circular region of radius a . Let us displace 

the rigid plate of a quantity 0u  (see Figure 4) so that a 

small void is formed at the interface. Assume that the air 

pressure in the void is p . 

 
Figure 4: The displacement, gap and stress distributions 

involved in the calculation of the free interfacial energy. 

 

To calculate the elastic energy of the system, let us 

first observe that the contact problem may have an 

equivalent formulation in terms of interfacial elastic 

energy, i.e. in terms of the amount of elastic energy 

stored at the interface as a consequence of local 

interfacial deformations [6]. Accordingly, the elastic 

interfacial energy is [6]. 

( ) ( ) ( )[ ]xxx zzzz
2

el uuxd
2

1
U −∫= σ  (1) 

where x  is the in-plane position vector, ( )xzzσ  is 

the non uniform normal interfacial stress, ( )xzu  is the 

local normal displacement of the surface, and ( )xu  is 

the average displacement at the interface (the symbol ⋅  

is the average operator). Considering that because of 

force balance the uniform stress σ  at infinity is  

( )xzzσσ =  one can rephrase Eq. 1 as 

( )[ ] ( )xx zzzel uxdU σσ −= ∫
2

2

1
 (2) 

Now let us define (see Figure 4) the gap distribution 

( )xv  as ( ) ( )xx zuuv −= 0 . Of course ( ) 0≠xv  on the 

circular region of radius a , whereas it vanishes 

elsewhere. Using ( )xv  and considering that 

( ) pzz −=xσ  for a<x , Eq. 2 becomes 

( )Vp
2

1
Uel σ+=  (3) 

where ( )xxvdV 2
∫=  is the volume of the air bubble. 

The total Helmholtz free interfacial energy F is then the 

sum of the elastic interfacial energy, the free internal 

energy ( )000 /ln VVVpU A −=  of the entrapped air, and 

the surface energy, i.e.  

( ) ( ) ( ) γπ ∆++= 2
,, aVUaVUaVF Ael  (4) 

From thermodynamics one concludes that under 

isothermal conditions and constant bubble volume V  

the equilibrium of the system corresponds to the 
stationary values of the energy F. However, in our 

analysis we keep constant the asymptotic load 

( ) σσ =x . In this case the equilibrium of the system 

corresponds to the stationary values of the interfacial 

Gibbs energy ( )aG ,σ . Following the standard approach 

of thermodynamics [7], we obtain ( )aG ,σ  by enforcing 

a Legendre transformation, i.e.  

( ) ( ) V
V

F
aVFaG

a∂

∂
−= ,,σ  (5) 

Observing that σ+=∂∂ pVU
ael /  and 

pVU
aA −=∂∂ / , one yields the required expression for 

the interfacial Gibbs energy G, i.e.  

( ) ( ) γπσσ ∆++−=∆= 2

2

1
, aUVpUaG Atot  (6) 

Beside Eq. 6 two additional equations are needed 

00VppV =  (7) 

and 

( )p
E3

a8
V

3

+=
∗

σ  (8) 

where ( )2
1/EE µ−=∗ , µ  is Poisson’s ratio. Eqs. 7,8 

allow to calculate the quantity V  and p  as a function 

of the radius a  of the non contact circular area. 

Therefore, the total energy change totU∆  given by Eq. 6 

finally depends only on the applied constant stress σ  

and the size of the voids a . By following a similar 

approach as in JKR theory [8], requiring that 

0a/U tot =∂∂
σ

∆  allows to calculate the values of a  

at equilibrium, given the applied uniform stress σ . The 
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critical pull-off stress crσ , which destabilize the defect

and causes the detachment of the pillar from the rigid flat 

substrate, is determined by requiring that at equilibrium 

the relation 0/
22 =∂∆∂

σ
aU tot  is also satisfied. 

The above equations can be rephrased in a 

dimensionless form. To this end let us define the 

adhesion length ∗∆= E/γδ  and the dimensionless 

quantities ∗= E/~ σσ , ∗= Epp /~ , δ/~ aa = ,

3/
~

δVV = . The dimensionless total energy change of the 

system is therefore ( )∗∆=∆ EUU tottot
3

/
~

δ , where 

( )( ) 3~~~3/8
~

apV += σ  and 00

~~~~ VpVp = . 

3. The critical stress

In order to calculate the critical stress and the critical 

air bubble size, we assume that the environment pressure 

is bar1 , so that the initial pressure of the entrapped air 

bubble is also MPap 1.00 =  . We also notice that the 

asymptotic applied stress σ  is 00 p−= σσ , where

A/P0 =σ  is the external applied average stress, P

the applied load and A  the cross section area of the 

pillar. Figure 5 shows the total dimensionless energy 

change totU
~

∆  as a function of the dimensionless radius

a~ , for different values of the initial dimensionless size

0a~  of the void. In our calculations we have used

MPa2.0=σ  (i.e. MPa3.00 =σ ), 2
m/mJ16≈γ∆ , 

MPa3E =  and 5.0=ν . 

Figure 5: The dimensionless total energy totU
~

∆  as a 

function of the radius of the detached area a~ , for three

different values of the initial radius 0
~a , given the same

value of dimensionless stress 035.0~ =σ  (blue, red and

green curves). Increasing 0a~ determines a decrease of

the energy barrier BU
~

∆  between the stable and 

unstable equilibrium states. The solid black curve 

represents the total energy as a function of a~  when the

pillar is subjected to the environment pressure only, i.e. 

0p~~ −=σ , and for 100a~0 = . Notice that in this case 

there is only one equilibrium condition at aa~ = which is

necessarily stable. 

The figure shows that for any value of 0a~ , two

equilibrium conditions exist, i.e. the stable state (energy 

minimum) and the unstable state (energy maximum). 

However, as expected, when the asymptotic applied 

stress is zero or even negative only a stable equilibrium 

state must be present (see the black line in Figure 5 with 

100~
0 =a  and 0

~~ p−=σ , i.e. 0~
0 =σ ). When an external 

stress 0>σ  is applied, an energy barrier must be 

exceeded in order to destabilize the system. The energy 

barrier BU
~

∆  in this case is defined as the difference 

between the energy value of the unstable equilibrium 

state and the energy value of the stable equilibrium state. 

From Figure 5, given the same applied stress, one 

observes that the energy barrier BU
~

∆  decreases as the 

initial radius 0
~a  of the bubble (i.e. its initial volume) is

increased. When 0
~

=∆ BU , i.e. when 0/ =∂∆∂
σ

aU tot  

and 0/
22 =∂∆∂

σ
aUtot , the critical defect size ( )

cr0a~

is found which prevents the pillar from adhering to the 

substrate. 

Given the initial defect size 0a~ , it is also interesting

to analyze what happens when the applied stress σ  is 

increased. In particular, Figure 6 shows that, for a fixed 

value of the radius 0a~  (we have considered

m6.0a0 µ= , i.e. 150a~0 = ), when the applied stress σ  

increases an unstable equilibrium state appears, which is 

again separated from the corresponding stable 

equilibrium by an energy barrier BU
~

∆ . As the stress σ~

is further increased, the energy barrier BU
~

∆  decreases 

and vanishes at a certain stress level cr
~σ  (the so called 

critical pull-off stress) at which the air bubble of initial 

size 0a~  is destabilized and the pillar detaches from the

substrate. 

Figure 6: The dimensionless total energy totU
~

∆  as a 

function of the radius of the detached area a~ , for four

different values of the applied stress σ~ , and for 

150a~0 = . Increasing σ~  determines a decrease of the 

energy barrier BU
~

∆  between the stable and unstable 

equilibrium states until it vanishes and the air bubble is 

destabilized. 
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4. Comparison with solid defects

We now compare the critical stress in case of solid 

defects of size Sa  (dust particles, impurities, etc.) 

( )[ ] 2/1
2/ SII aE

∗∆= γπσ  with the critical pull-off stress 

crσ  obtained in the case a bubble of air entrapped at the

interface. The comparison must be carried out assuming 

that, at 0p~~ −=σ  (i.e. 0~
0 =σ ), the (dimensionless) size

a  of the air bubble at equilibrium is identical to the 

(dimensionless) solid defect size, i.e. Sa~a = . Figure 7

compares the critical stress 0crcr0 p~~~ += σσ  in the two 

cases as a function of the radius a . 

entrapped air
solid defect

200 400 600 800 1000
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

a
-

Σ�

0
cr

Figure 7: The dimensionless external critical stress 

0crcr0 p~~~ += σσ  as a function of the air bubble or solid 

particle size a . The blue curve refer to the air bubble 

case, the black curve to the interfacial solid particle 

case. 

We observe that, in the case of air bubble, the 

debonding stress cr0
~σ  is always significantly smaller 

than the one obtained in the case of solid defects with a 

reduction of about 35-40% over the entire range of defect 

size considered in the calculation, i.e. 

m44.0a~a S µ−== . Indeed, micro-air bubbles weaken

the adhesive link between the pillar and the rigid 

substrate more than the presence of external particles, 

since their gas pressure exerts an additional debonding 

force and reduce the suction effect which contributes to 

keep the pillar in contact with the substrate. This 

represents a practical problem during fast 

attaching-detaching of this kind of microstructure, since 

in this case the entrapment of air can hardly be avoided.  

5. Conclusions

In this paper, we study the influence of interfacial 

micro-bubbles of air on the adhesive perfomance of 

micro- mushroom-shaped pillars. We show that, in 

absence of an applied load, the micro-bubble remains in 

stable equilibrium. However as soon as an external 

tractive stress is applied to the pillar, an unstable 

equilibrium condition appears. It follows that a critical 

pull-off stress exists which destabilize the air bubble and 

causes the complete detachment of the pillar from the 

substrate. We calculate this critical pull-off stress and we 

show how it depends on the initial volume of entrapped 

air. Of course, increasing the amount of entrapped air 

leads to a significant reduction of the pull-off stress. 

Interestingly our results have highlighted that the air 

bubbles at the interface are more critical than the 

presence of interfacial solid defects of same size. This 

means that to achieve the highest adhesive performance 

the approach of the pillar to the substrate must be carried 

out very carefully, to avoid entrapment of air at the 

interface. 
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