
GPU Cost Estimation for Load Balancing in Parallel Ray Tracing

Biagio Cosenza1, Carsten Dachsbacher2 and Ugo Erra3

1Universität Innsbruck, Austria
2Karlsruhe Institute of Technology, Germany

3Università della Basilicata, Italy
cosenza@dps.uibk.ac.at, dachsbacher@kit.edu, ugo.erra@unibas.it

Keywords: Ray Tracing, Image-based Techniques, Parallel Rendering, GPU.

Abstract: Interactive ray tracing has seen enormous progress in recent years. However, advanced rendering techniques
requiring many million rays per second are still not feasible at interactive speed, and are only possible by means
of highly parallel ray tracing. When using compute clusters, good load balancing is crucial in order to fully
exploit the available computational power, and to not suffer from the overhead involved by synchronization
barriers. In this paper, we present a novel GPU method to compute a cost map: a per-pixel cost estimate of
the ray tracing rendering process. We show that the cost map is a powerful tool to improve load balancing in
parallel ray tracing, and it can be used for adaptive task partitioning and enhanced dynamic load balancing. Its
effectiveness has been proven in a parallel ray tracer implementation tailored for a cluster of workstations.

1 INTRODUCTION

Ray tracing algorithms (Gla89) model physical
light transport by shooting rays into the scene with
the ultimate goal of producing photorealistic images.
Considerable efforts have been made in order to in-
vestigate new ways to reduce the high computational
demands of ray tracing. Recent advances in ray trac-
ing include exploiting coherence between neighbor-
ing pixels with packet traversal (Wal04), ray sort-
ing (GL10), frustum traversal (RSH05), and fast up-
dating of the acceleration data structure for animated
scenes (ZHWG08; Cos08). Thanks to recent im-
provements in both software and hardware, Whitted-
style ray tracing reaches interactive frame rates on
CPUs (ORM08) and GPUs (LGS+09). However, if
we want to provide more realism in the produced im-
ages, e.g. by computing global illumination, we need
to drastically increase the number of secondary rays.
Even though several optimization strategies allow a
certain amount of interactivity, the use of complex
rendering techniques and shading algorithms, shad-
ows, reflections and other global illumination effects
drastically increase computation. The number of rays
grows from less than one million of typically coherent
rays, up to several millions (sometime even billions)
of mostly incoherent rays. In this context, distribut-
ing ray tracing among several workers, i.e. multiple
CPUs or GPUs, is a viable solution to reach interac-
tive frame rates.

In this paper, we describe a GPU-based approach
for an efficient estimate of the per-pixel rendering
cost. The approach uses information available in the
G-Buffer generated by widely used deferred shading
techniques. By using the per-pixel rendering cost, we
are able to estimate the rendering time of any part of
the image generated by Whitted-style ray tracing or
path tracing.

A scenario where this approach would be use-
ful is a parallel ray tracing on clusters, where one
master node (equipped with a GPU) is responsible
for distributing tiles of an image (i.e. tasks) to sev-
eral worker nodes (equipped with multi-core CPUs or
GPUs) which perform ray tracing computation. In or-
der to have a good load balancing, the master node
tries to equally distribute tasks to each node minimiz-
ing the response time. Then, using our approach to
estimate the ray tracing cost of a tile of an image,
we can further improve task partitioning and dynamic
load balancing strategies.

We validate our idea by implementing a parallel
ray tracing system based on Whitted-style ray trac-
ing and path tracing that exploits the estimate of the
per-pixel rendering cost for balancing and distribut-
ing rendering tasks across workers in a network. We
perform the following steps to balance the rendering
load:

1. Compute a per-pixel, image-based estimate of the
rendering cost, called cost map.

Figure 1: Left to right: the ray-traced image, the GPU-based estimation of the rendering cost, the actual packet-based render-
ing cost, position and normals in eye-space (used for the cost estimation), and using our method for an adaptive tiling of the
image for parallel rendering.

2. Use the cost map for subdivision and/or schedul-
ing in order to balance the load between workers.

3. A dynamic load balancing scheme improves bal-
ancing after the initial tiles assignment.

We show that the per-pixel cost estimate enables
good load balancing while maintaining a small num-
ber of tiles, thus allowing high rendering performance
even with slow networks.

2 PREVIOUS WORK

Ray tracing parallelization approaches can be
classified into two main categories: image paral-
lel decomposition and scene geometry parallel de-
composition (SGPD), sometime referred as data par-
allel (CR02). With image parallel methods, each
worker is responsible for a region of the image (e.g. a
pixel or a tile), while the scene data is usually (but not
necessarily) replicated in the memory of each node.
On the contrary, in SGPD methods, each worker is
responsible for a part of the scene, while rays prop-
agate among the nodes. An image parallel approach
is typically the better solution for scenes that can be
stored in a single node as in our case.

Early works in parallel ray tracing that reached in-
teractive performance used massively parallel shared
memory supercomputers (Muu95). Current hard-
ware trends in processor designs are turning towards
multi-core architectures and wide vector instructions.
Manta (BSP06) is an interactive ray tracing system
combining a high level of parallelism with modern
packet-based acceleration structures. It uses a multi-
threaded scalable parallel pipeline in order to ex-
ploit parallelism on multi-core processors. Similarly,
(GS08) focuses on exploiting the massive parallelism
of multi-core hardware.

Ray tracing on distributed memory systems.
Developing interactive ray tracing for distributed
memory systems is an intricate process. Extend-
ing a renderer’s architecture to a cluster of work-
stations requires implementing several components,
such as a high-performance communication layer

and an efficient dynamic load balancer. Without
these techniques, the overhead of the communication
causes poor scalability and performance penalties.
Commodity-based clusters offer a cost-effective solu-
tion to speed up ray tracing, and many parallel render-
ing frameworks as GigaWalk (BSGM02) or VR Man-
taJuggler (OSR09) already support networked work-
stations.

Wald et al. (WSBW01) used coherent ray trac-
ing techniques in distributed memory architectures.
Their system used a central server that takes care of
load balancing and stores the whole scene, but they
were able to render large and complex models at in-
teractive rates by using a two level BSP for per-node
caching of geometry. Later, several works improved
these techniques in order to render massively complex
models (WDS04; DSW07). Distributed Shared Mem-
ory systems (DSM) offer a virtual distributed memory
address space in which each node of a cluster has ac-
cess to shared memory in addition to each node’s non-
shared private memory. DeMarle et al. (DGP04), and
more recently Ize et al. (IBH11), presented a state-of-
the-art read-only DSM ray tracer tailored for cluster
hardware. Our work is different in two aspects: We
focus on high-quality rendering using more involved
algorithms, such as path tracing, for scenes that can be
stored in a single node. Moreover our parallelization
approach is based on the message passing paradigm.
Budge et al. (BBS+09) introduced a system that en-
ables the rendering of globally illuminated images of
large, complex scenes by using a hybrid CPU/GPU
algorithm on a cluster. They developed an efficient
out-of-core data-management layer and coupling this
with an application layer containing a path tracer.

Load balancing. The major challenge of parallel
ray tracing on clusters is load balancing. In particu-
lar, if a rendering system is subject to a barrier syn-
chronization point (e.g., in synchronous rendering),
then the slowest task will determine the overall per-
formance. Achieving a good load balance is not trivial
and can be achieved using two main strategies: trying
to equally partition tasks, or using dynamic work as-
signment. Also choosing the number of tiles to sub-
divide the image into (i.e. task granularity) is non-

trivial. For example, while a higher number of tiles
facilitates load balancing in a dynamic work assign-
ment strategy, it also results in a high number of com-
munication, which is critical in networks with high
latency.

Researchers have proposed many strategies for ad-
dressing load balancing in this context. Heirich and
Arvo (HA98) discussed the importance of dynamic
load balancing for ray tracing in interactive settings.
Further related work examines the importance of the
subdivision granularity (Pla02), and suggests adaptive
subdivision to balance the workload (CCD+08).

Although a demand driven centralized balancing
scheme achieves a well balanced workload, it in-
volves significant master-to-worker communication
which becomes a bottleneck when network transmis-
sion delay and the number of workers increase. A
decentralized load balancing scheme, such as work
stealing (BL99) or work redistribution, eliminates
the communication bottleneck thus improving perfor-
mance and scalability.

DeMarle et al. (DPH+03; DGBP05) implemented
a decentralized load balancing scheme based on work
stealing. It is important to notice that in their im-
plementation, task migration is done at the begin-
ning of the next frame (frame-to-frame steals), and
the synchronization bottleneck at the master node is
hidden by an asynchronous task assignment. Ize et al.
(IBH11) use a master dynamic load balancer with a
work queue comprised of large tiles which are given
to each node (the first assignment is done statically
and is always the same), and each node has its own
work queue where it distributes sub-tiles to each ren-
der thread.

More generally, the problem of load balancing is
very important for parallel rendering and visualiza-
tion and many solutions have been introduced, as for
instance using a kd-tree to divide the image into tiles
of equal cost (MWMS07) or a cost estimation based
on the intersected primitives (Mue95).

Because of the higher load imbalance with more
involved rendering techniques (e.g. path tracing),
and because of the GPU availability on the master
node, we balance workload in a more effective way:
We implemented four different balancing strategies,
based on adaptive tiling, dynamic load balancing and
cost prediction, and we combine them with a multi-
threading parallelization based on tile buffering.

Rendering Cost Evaluation. Several factors af-
fect the rendering cost in ray tracing, such as scene
size, resolution, rendering technique, coherence be-
tween rays, material properties, and the choice of the
acceleration data structure. In our context shading al-
gorithms affect the number of secondary rays traced

into the scene, and are the major cause load imbalance
among different pixels in the image (Figure 3).

Some techniques known in literature tackle the
problem of estimating the rendering cost. Gillibrand
et al. (GLDC06) suggest that an approximate render
cost can be generated from a rasterized scene preview.
Profiling techniques are approaches where the com-
putation time of a small number of samples (or pix-
els) is measured in order to have a coarse approx-
imation of the rendering cost. While using a dis-
tributed memory architecture, profiling is typically
done on the master rather than on the workers. If per-
formed on the workers, sample measures have to be
sent back. Another issue is that tracing few incoher-
ent rays is slow. For these reasons, we did not use pro-
filing in our work. Beyond image-space approaches,
rendering cost estimation has been explored even for
SGPD (RKC98).

An important remark is that our workload differs
from (BWS03) in two aspects: First, we use Whit-
ted ray tracing and path tracing instead of Instant
Global Illumination; second, our test scene exhibits
high variance in shaders and geometry. Both con-
tribute to a high workload imbalance per pixel (as
shown by the real cost map in Figure 12), which is
challenging for system scalability. Our workload is
more similar to (CDS+06), where a parallel selective
renderer is used for physically-based rendering.

3 THE COST MAP

In this section, we show how to obtain the cost
map, i.e. the image-based, per-pixel cost estimate
of the rendering process (see Figure 1 and Figure 2).
First, we define the problem statement and related ap-
proaches. Then, we introduce a GPU approach capa-
ble of quickly computing an approximate cost map,
and finally analyze the cost estimate error.

Figure 2: A comparison of the real cost (left) and our GPU-
based cost estimate (right).

Figure 3: Estimating the rendering cost: diffuse surfaces
typically have lower cost (in particular for Whitted-style
ray tracing), while specular surfaces generate more sec-
ondary rays thus causing higher rendering cost. Regions
where multiple reflections occur are typically more expen-
sive and can be found by a search in image-space. When us-
ing Monte Carlo-based techniques, the image-space search
can be adapted according to the specular coefficient of the
surface (see the sphere in the images).

3.1 The GPU-based Cost Map

To compute the cost map quickly on the GPU, we
make use of G-buffers known from deferred shad-
ing (Har04) and image-space sampling. The underly-
ing idea is that it is often possible to detect potentially
expensive areas, e.g. with multiple interreflections by
solely performing a search for such geometric config-
uration using image-space information.

Algorithm 1 describes our image-based technique,
assuming that the properties of each pixel belonging
to a visible surface are available.

We assign a certain basic cost to each pixel Pi de-
pending on its material, e.g. the cost for evaluating
the BRDF model. Next, if the surface is reflective,
we perform an image space search in order to de-
tect potentially expensive areas, e.g. where multiple
interreflections are likely. To this end, we create a
set of samples which are used to obtain the informa-
tion about the surfaces from the G-buffer. We use an
initially uniformly distributed set of sampling points
which is transformed before sampling (line 5). This
transformation is computed according to the reflec-
tion properties of the surfaces (mainly glossiness), the
rendering technique (Whitted-style raytracing, path
tracing etc.) and oriented along the reflection vector
R projected into image space. Intuitively, the pattern

Algorithm 1: Approximated cost map computa-
tion algorithm. Code for pixel Pi

1 // All the data of the hit surface on the pixel Pi
are available

2 costi← basic material cost of the hit surface ;
3 if Pi is reflective then
4 // Determinate the sampling pattern S, at

the point Pi, toward the reflection vector R
5 S = compute sampling pattern(Pi,R) ;
6 // For each samples, calculate cost

contribute
7 for each sample S j in S do
8 sample j← 0 ;
9 if visibility check(S j,Pi) then

10 increase sample j ;
11 if

secondary re f lection check(S j,Pi)
then

12 increase sample j ;
13 end
14 end
15 end
16 // Samples gathering
17 costi = costi + gather(S) ;
18 end
19 return costi

is scaled to become more narrow for surfaces with
higher specularity, and positioned at the surface point
Pi in question and oriented along the projection of its
reflection vector (Figure 3).

For every sample S j, we retrieve its surface loca-
tion and orientation from the G-Buffer. Next, we per-
form a test to detect the sample cost: We test if Pi and
S j are mutually front-facing (line 9). Later, a test de-
tects if the sampled surface is reflective (line 11). If
the surface at S j is reflective, and the lobe of specular
reflection of S j points towards Pi then we detected a
region with a potentially high number of interreflec-
tions, and further increase the cost estimate. After the
sampling phase, we gather the contributions from all
samples.

Sampling pattern. The sampling pattern evalu-
ated by computesamplingpattern(Pi,R) (see Figure
4) is randomly generated (a) and scaled (b) accord-
ing to the surface properties. Essentially, the pattern
is translated (c) and rotated (d) to align with the re-
flection vector R. Step (b) depends on the material
as well as the rendering technique. In particular, we
distinguish a wider sampling pattern for Lambertian
and glossy surfaces for path tracing, but the pattern
collapses to a line for Whitted-style ray tracing and

R

(a) (b) (c) (d)

Figure 4: Sampling pattern. The sampling patterns used in the cost map generation algorithm. At first, an uniformly
distributed set of points is generated (a). According to the shading properties, the pattern is scaled (b) and translated to the
origin (c). In the last step, it is transformed according to the projection of the reflection vector in the image plane(d).

for path tracing using a perfect mirror material. The
sampling for the cost map computation is performed
only once per pixel, not recursively.

Sample gathering. Once sampling has been per-
formed, we gather the contributions from all sam-
ples. This step is somewhat correlated to the ren-
dering technique. In particular, the final cost may be
computed in two ways: by summing up the sample
contributions, or by taking their maximum. The first
approach is used in path tracing, where we suppose
that secondary rays spread along a wide area. In the
contrary, when using Whitted ray tracing, all samples
belong to one secondary ray and we conservatively
estimate the cost by taking the maximum.

Edge detection. Real-time ray tracers use bundles
of coherent rays, called ray-packets, to achieve real-
time performance on CPUs (Wal04; ORM08). When-
ever packet-based ray tracing is used, packet splitting
raises the cost because of the loss of coherence be-
tween rays. This occurs at depth discontinuities that
we detect by using a simple edge-detection filter on
the G-Buffer. By further increasing the cost estimate
at edges, we account for the impact of packet split-
ting. We experienced that this extra cost is significant
only with Whitted ray tracing.

Implementation details. The algorithm has been
implemented in a two pass shader. In the first pass,
we render the scene to a G-Buffer using multiple ren-
der targets to store data. For every pixel, we store the
position, the normal, and a value indicating if the sur-
face is reflective, for the first visible surface seen from
the camera (Figure 3). We also store three additional
values: The basic shader cost, the specular coefficient
and the Phong exponent. In the second pass, we gen-
erate the cost map using the image-space information
stored in the G-Buffer. The basic value has been used
in several points of the algorithm (i.e. lines 2 and 10).
The other values both are required in the sampling
phase (line 5 and Figure 4). Details about rendering
parameters are shown in Table 1. The memory re-

quired by the algorithm amounts to three screen-sized
textures used by the G-Buffer (in our implementation,
three 5122 floating-point RGBA textures, i.e. 12 MB).

The cost map generation is fast: Whereas both
CPU and GPU computation take less than 1 ms, the
most expensive task is the data transfer between GPU
and CPU (5-6 ms). However, this time is spent by
the master node in barrier, i.e. when preparing the
cost map before distributing the work load. For that
reason, this time is further hidden using an pipelined
prediction optimization (details in Section 5).

3.2 Cost Estimation Error Analysis

The resulting cost map is obviously approximate. We
analyzed the error in order to understand where and
why the estimate is accurate and where not. Because
of the use of ray-packets, our analysis is performed
at packet-level instead of pixel-level. First, we mea-
sure the difference between the approximate cost and
the real cost (packet-based error) for each ray-packet.
Second, we analyze difference maps of real and ap-
proximate cost to be thoroughly aware about where
the estimate is less accurate. In the subsequent sec-
tions, we analyze the performance of a parallel ray
tracing system, evaluating how much the cost map en-
ables better task distribution to several worker nodes
by using two balancing techniques.

Five test scenes (Figure 5) have been used to eval-
uate the estimate of the cost map. In Figure 6, we
show the error distribution of the (packet-based) dif-
ference between the real computing time and the es-
timated one. The analysis shows that the estimate is
quite accurate, and errors usually lead to an under-
estimation, caused by the off-screen geometry prob-
lem. Because our strategy works on a rasterized scene
preview, our algorithm only works on visible geome-
try. Nevertheless, reflected rays may fall in geometry
not present in the frame buffer. When this happens,
the algorithm is not able to detect a reflected surface

Kalabsha Temple Cornell box Ekklesiasterion Toasters Paestum Temple

Figure 5: Our test scenes. Rendering parameters are shown in Table 1.

and the resulting calculated cost is under-estimated in
respect to the real one (Figure 7).

For instance, in the case of the Cornell box scene,
the cost estimation is quite accurate: the 86% of
the predictions fall in the first approximation interval
(+/− 5% of the real packet time). Note that the 87%
of the predictions are under-estimated (error ≥ 0). In
the contrary, the Ekklesiasterion scene is less accu-
rate: only the 57% have a good approximation. Here,
84% of the predictions are under-estimated. Figure 12
shows real cost and GPU-calculated cost maps, and
the difference between real and approximate cost.

Note that we can reduce the off-screen problem
by computing the cost map for an extended image
plane to capture surfaces outside the current view.
The use of the A-buffer would further guarantee
that the whole geometry is available on the render
buffer (Car84), and it requires only a fixed amount of
GPU memory that increases linearly with image space
size (YHGT10). One limitation of our implementa-
tion is that the scene should fit into the GPU memory.
However, because we use the GPU only for the cost
map computation (i.e. does not affect the final render-
ing), one could easily use low-resolution meshes or
level-of-detail approaches for the GPU cost map esti-
mation, which might then be slightly less accurate.

4 LOAD BALANCING

In this section, we describe how we use the cost
map for two different load balancing strategies. In or-
der to exploit the cost map, we use a Summed Area
Table (Cro84) created on the GPU. Summed Area Ta-
bles (SATs) allow us to compute the sum of values in
a rectangular region of an image in constant time. A
SAT of the cost map allows us to directly compute the
cost estimate for an image tile. Given a cost map of
dimension n× n (where n is the number of pixel per
dimension), we can compute a SAT directly on the
GPU in O(logn) time (HSC+05).

SAT Sorting. An immediate use of the SAT is to
compute the cost of a tile after subdividing the image

in equally sized tiles. Next, we can sort the tiles for
decreasing cost, assuring that computationally more
expensive tiles are scheduled before cheaper ones.
The reason for this approach is that dynamic load bal-
ancing typically works better if nodes work on more
expensive tasks at first, and task transfers or steals
are performed for smaller tasks afterward (e.g. chunk
scheduling (GKKA03)).

Algorithm 2: The SAT-tiling algorithm. Start-
ing with a single tile covering the entire image
(i.e. of the same size as the cost map), each iter-
ation chooses a split-axis and subdivides the tile
in two tiles T1 and T2, with approximately the
same cost. The running time is O(n2), where n
is the number of pixel per dimension.

1 // Set the first split axis (0=x-axis, 1=y-axis)
2 Axis← 0 ;
3 // Create and enqueue the initial tile (covering

the entire image) to P
4 Enqueue(P, CreateTile()) ;
5 // Loop l times to obtain 2l tiles
6 for i← 0 to l do
7 // Q contains all tiles to be split
8 Q← P ;
9 // P stores the newly split tiles

10 P← /0 ;
11 while Q �= /0 do
12 // Remove a tile T from the queue
13 T← Dequeue(Q) if axis = 0 then
14 (T1,T2)← SplitX(T) ;
15 else
16 (T1,T2)← SplitY(T) ;
17 end
18 // Enqueue two tiles T1 and T2 and

select the next split axis
19 Enqueue(P, T1) ;
20 Enqueue(P, T2) ;
21 Axis← 1 - Axis ;
22 end
23 end

0K

20K

40K

60K

80K

100K

120K

140K

160K

180K

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0 -5 0 5 10 15 20 25 30 35 40 45 50

Cornell box

0K

10K

20K

30K

40K

50K

60K

70K

80K

90K

100K

-1
00 -9
0

-8
0

-7
0

-6
0

-5
0

-4
0

-3
0

-2
0

-1
0 0 10 20 30 40 50 60 70 80 90 10
0

Ekklesiasterion

0K

20K

40K

60K

80K

100K

120K

-2
0

-1
8

-1
6

-1
4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

Toasters

0K

20K

40K

60K

80K

100K

120K

-2
0

-1
8

-1
6

-1
4

-1
2

-1
0 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

Paestum Temple

0K

20K

40K

60K

80K

100K

120K

140K

-5
0

-4
5

-4
0

-3
5

-3
0

-2
5

-2
0

-1
5

-1
0 -5 0 5 10 15 20 25 30 35 40 45 50

Kalabsha Temple

Figure 6: Error distribution of the estimation. Each packet-based rendering time is subtract from the cost map estimate,
for the same corresponding packet of pixels. The x-axis shows the difference in error intervals, from negative values (left,
over-estimation) to positive ones (right, under-estimation). The y-axis plots error occurrences for each error interval. Tests
have been performed on one Intel Pentium IV CPU 3.40GHz with 2048KB cache size, averaged for a walk through of few
frames in the scene.

SAT Adaptive Tiling. We can alternatively use
the SAT to determine an adaptive subdivision of
the image space into tiles of roughly equal cost.
Our adaptive subdivision algorithm can be seen as a
weighted kd-tree split using the SAT to locate the op-
timal splits.

In our implementation we use two temporary de-
ques (double-ended queues), P and Q, and the cost
map C and the number of iterations l as input. During
subdivision, we use Q to store the current tiles to be
split, and P to store the tiles that have already been
split. The resulting subdivision of our algorithm is
well balanced and all tiles exhibit almost equal cost
(see Algorithm 2).

5 PARALLEL RAY TRACING

In this section, we briefly discuss the main chal-
lenges of our parallel ray tracing system: the tile-to-
packet mapping, the dynamic load balancing, and fur-
ther optimizations. In order to validate the use of the
cost map, we implemented Whitted-style ray tracing
and path tracing.

Our implementation of the work assignment,

scheduling, and dynamic load balancing is decou-
pled from the ray tracing implementation that runs on
the individual worker. We base our ray tracing im-
plementation on Manta (BSP06), which we extended
with new image traversal algorithms, load balancers,
shaders, and by adding new components. In partic-
ular, our parallel code is hidden behind the traversal
logic, with a master-side and a worker-side compo-
nent. The first is responsible for the prediction and
assignment, and implements a GPU-based rendering
system with programmable shaders. The latter hides
the CPU-based ray tracing system and the dynamic
distributed load balancer. A material table is in charge
of linking the ray tracer shading information with the
GPU-cost map generation. As we use static scenes,
we employ precomputed kd-trees built with a SAH
metric as acceleration data structure.

Tile-to-Packet Mapping. As we discussed be-
fore, we use a ray tracer which bundles coherent rays
together to ray-packets. The packeting size is usually
set to a value that enables exploit SIMD units and op-
timize data locality. Recent approaches encourage the
usage of large ray packets for Whitted-style ray trac-
ing (ORM08).

The use of two different levels of parallelism, one
being the packets of the ray tracer, and one being the

Figure 7: Off-screen geometry problem. The image indi-
cates an area where secondary rays fall outside geometry in
the rendering buffer (a), hence raising the cost of these pix-
els (b). Our GPU technique under-estimates the cost of this
area (c).

splitting of the image into tiles, raises the problem of
how to map a tile to packets. The optimal packet size
mainly depends on the scene, the acceleration data
structure, and the hardware architecture. Similarly,
a parallel distributed memory system has an optimal
task (i.e. tile) size that depends on the ratio of compu-
tation to the amount of communication, being critical
in systems like a cluster of workstations. Fixing the
same task size for both with an one-to-one approach
does not reach optimal performance of the whole sys-
tem. A one-to-one approach also complicates, and
limits, the exploitation of the cost map for adaptive
subdivision. Our system uses a one-to-many approach
instead: each tile is subdivided into packets of fixed
optimal size, e.g. each tile is subdivided in packets
of 8×8 rays per packet. Ize et al. (IBH11) used a
similar two-level load balancer in their DSM-based
implementation, but in our work, the first level load
balancer is based on work stealing (i.e. distributed
load balancing).

Work Stealing. Our parallel system performs in-
frame steals to improve the load balancing computed
from the cost estimation. Note that a perfect cost
map would make work stealing superfluous; however,
this cannot be expected from an image-space estima-
tion. Our work stealing implementation follows the
scheme suggested in (BL99) where each worker has
a queue1: each worker first processes his own tasks
starting from the top of his queue. When the queue is
empty, workers start stealing tasks from another ran-
domly chosen worker (Figure 8). Although dynamic
load balancing is distributed, first task assignment is
centralized. All tiles are assigned at the beginning of
the frame by the master node, using prefetching to
hide latency (i.e. by assigning all the tiles at once,
without any on demand request from the workers) and
assuring fairness (i.e. preventing starvation of MPI
processes). Then the dynamic distributed load bal-

1We adopt the terminology of (BL99) using the word
queue. However, as our work stealing algorithm performs
operations in both the top and the bottom of the queue, the
correct term would be deque.

Figure 8: A master node is responsible for the first task
assignment. Using work stealing idle workers search among
the other workers in order to find unprocessed tiles.

ancing algorithm takes care of an initially unbalanced
work distribution. Further optimizations in the work
stealing protocol can save communication when, for
instance, two nodes send crossed steal requests (i.e.
avoiding to send two negative ack messages). An im-
portant aspect when implementing in-frame steals is
to take care of the frame synchronization barrier. A
node entering into stealing mode performs steal re-
quests until a new frame starts. The new frame mes-
sage, however, is sent by the master node without a
guarantee for order-preserving and delivery, i.e. it
may happen that a node at frame f + 1 receives an
old steal request sent by a node at the frame f . We
solve this problem by adding the frame number to the
steal request and steal ack messages.

Further optimizations. On each node, the ray

Figure 9: Multi-threading with tile buffering. A small num-
ber of tiles moves from the queue to the buffer. This al-
lows separating the work stealing algorithm, working on the
queue, from the multi-threading parallelization, working on
the tile buffer.

tracing itself can also be parallelized via multiple
threads and ray packets, e.g. if multi-core CPUs
and SIMD instruction sets are available. On top of
Manta, our distributed parallel architecture introduces
the queue of tiles as an additional element to support
work stealing. Moreover, a tile buffer has been intro-
duced to efficiently support multi-threading. Figure 9
shows how the tile buffer is integrated with the work
stealing queue.

We utilize MPI as a means to exchange data be-
tween nodes. Our system hides latency by implement-
ing task prefetching and using asynchronous data
transfer where possible. At the beginning of each
frame, the camera position and a list of prefetched
tiles is sent to each worker.

The overhead introduced for generating the cost
map, the SAT and to compute the tiling causes a
longer barrier. We hide this overhead by means of a
pipelined prediction: after the task assignment for the
frame f , when all workers are busy, the master node
starts computing the prediction for the frame f + 1.
The overall architecture is still synchronous, whereas
just the prediction phase is computed asynchronously.

6 RESULTS

We ran several benchmarks on a test platform con-
sisting of a cluster of workstations equipped with Intel
six-core Xeon X5650 CPUs running at 2.7 GHz and
24 GB DDR3 ECC RAM. Nodes are interconnected
with an Infiniband network. The master and visu-
alization node is equipped with an NVidia GeForce
GTX 570. The cost map computation has been imple-
mented using OpenGL and GLSL. Running the mas-
ter and the worker node on a single host may reduce
performance. For this reason, we used a specific vi-
sualization host as the master node.

Test scenes. All images have been rendered at a
resolution of 1024×1024 pixels, with 128 tiles and
a maximum recursion depth of 4, resulting in highly
varying rendering cost in regions with interreflec-
tions. Pipelined prediction has been enabled in all
tests. In order to study the impact of our techniques,
we used five different test scenes (Figure 5), having
different rendering parameters, rendering techniques
and overall workload: The first three scenes use path
tracing and thus are computationally more expensive.
The first is the Kalabsha temple. For each pixel, we
apply a jitter pattern of 128 rays/pixel, shooting 134.2
million of primary rays. We used the same parameters
for the second scene, a Cornell box with a reflective
Bunny and an area light. The Ekklesiasterion scene
contains an ancient Greek building. For this scene,

we used 32 rays/pixel. The other two test scenes
were rendered using Whitted ray tracing with respec-
tively 8 and 1 rays/pixel. The Toaster and Poseidonia-
Paestum temple both present a large number of re-
flective surfaces. Table 1 shows ray-packet size, the
number of primary rays, and the rendering parame-
ters used for each test scene. We performed scalabil-
ity tests by using up to 16 workers; each worker uses
6 threads.

For each test scene, we show results using 4 dif-
ferent balancing approaches: A simple unbalanced
approach without dynamic load balancing and using
equally sized tiles (Regular without WS); a regular ap-
proach using work stealing for load balancing (Regu-
lar); an adaptive approach using the SAT of the cost
map and work stealing (SAT Adaptive); a sorting-
based approach using SAT and work stealing. For all
approaches, there is an initial tiles assignment phase
where each node gets a set of tiles that are close in im-
age space. Table 2 shows performance for 16 workers
and shows the parallel speedup and efficiency.

An analysis of the number of steal transfers is
shown for all the test scenes in Figure 10. This analy-
sis is helpful to understand how different tiling algo-
rithms work and, once an initial tile set is assigned,
how balancing algorithms integrate with work steal-
ing algorithms.

0

2

4

6

8

10

12

Kalabasha Cornell Ekklesiasterion Toasters Paestum

Regular without WS

Regular

SAT Adaptive Tiling

SAT Sorting

Figure 10: Steal transfers. The graph shows the average
number of steal transfers performed during our test, using 4
workers. Note that a node may steal even more than one tile
per frame. Note, the regular approach does not use work
stealing.

7 DISCUSSION

Our analysis of the results focuses on the ef-
fectiveness of the load balancing techniques utilized
(SAT Adaptive Tiling and SAT Sorting), their corre-
lation with the approximation of the cost map, and
scalability.

SAT Adaptive Tiling. Our results show that the
Adaptive Tiling is similar in performance to the Regu-

Scene Kalabsha temple Cornell box Ekklesiasterion Toasters Paestum temple

triangles 4529462 69495 3346 11141 13556
Rendering tech. path tracing path tracing path tracing whitted whitted
Rays/pixel 128 jitter 128 jitter 32 jitter 8 jitter 1
Packet size 8 8 16 16 32
Primary rays 134.2M 134.2M 33.6M 8.4M 1.0M
Sampling pattern wide pattern wide pattern wide pattern collapsed collapsed

to a line to a line
Edge detection no no no yes yes
Samples gathering sum sum sum max max

Table 1: Summary of the parameters used for rendering and cost map computation. The packet size is the optimal value for
each test scene.

Scene Kalabsha temple Cornell box Ekklesiasterion Toasters Paestum temple

Regular without WS 5.285 2.901 0.765 0.067 0.0126
Regular 4.862 2.783 0.750 0.066 0.0112
SAT Adaptive Tiling 4.889 2.680 0.745 0.064 0.0108
SAT Sorting 4.542 2.548 0.638 0.059 0.0102
1 worker 70.639 40.005 9.391 0.932 0.154
Speedup* 13.4 - 15.6× 13.8 - 15.7× 12.3 - 14.7× 13.9 - 15.8× 12.2 - 15.1×
Efficiency* 83 - 97% 86 - 98% 76 - 91% 86 - 98% 76 - 94%

+16% +13% +19% +13% +23%

Table 2: Performance comparison for our five test scenes; timings are given in seconds per frame. We report speedup and
also efficiency which describes the fraction of the time that is being used by the processors. Tests have been performed with
16 workers and multi-threading. (*) Speedup and efficiency is shown for Regular without WS and SAT Sorting approach

lar approach. However, it never outperforms the SAT
Sorting approach. The steal transfers analysis (Fig-
ure 10) reveals additional information. An important
issue is that the number of steal transfers of adaptive
tiling is often the lowest. This means that (1) the ini-
tial tile assignment provided by the adaptive tiling is
more balanced than the regular one; (2) work steal-
ing does not work well with such kind of (almost bal-
anced) workload. In fact dynamic load balancing, in
our case the work stealing strategy, rivals adaptive
tiling since both try to balance the workload: a fine
grained balancing with dynamic techniques requires
more expensive tiles at the beginning and the cheaper
ones at the end; but in contrast to that, adaptive tiling
aims to equally balance cost between tiles.

The adaptive tiling performance is the worst for
scenes with higher approximation error where (e.g.
the Ekklesiasterion). In fact, this scene shows the
least accuracy (see Figure 6). This indicates that the
accuracy required by an adaptive approach is critical,
and in general a very accurate cost map is required in
order to significantly increase rendering speed.

SAT Sorting. The use of the SAT for sorting tiles
always improves performance. Contrary to adaptive
tiling, this technique does not require an exact esti-
mation of the rendering cost: it just needs a correct
tile ordering. In particular, the use of the SAT Sort-

ing strategy, combined with a distributed load bal-
ancing algorithm, helps assuring a good load balance.
The combined use of both techniques, sorting and dy-
namic load balancing, also achieves a good scalability
with the number of workers (Table 2). The rationale
behind is that adaptive approaches benefit from the in-
formation how much costly a tile is than another one,
while sort-based approaches only requires to under-
stand which one is bigger.

Scalability. In order to determine how our sys-
tem scales with the number of distributed workers,
we ran a scalability test with 1, 4, 8, and 16 work-
ers. Figure 11 shows the scalability for the Cornell
box test scene. Results indicate that the SAT Sort-
ing approach provides higher scalability and is par-
ticularly useful with high workloads. The improve-
ment of the SAT Sorting strategy, compared to a naı̈ve
balancing-unaware approach is about 13-23% with 16
workers. Efficiency is always superior to 95% with
Whitted style ray tracing test scenes. Instead, using
path tracing we have slightly lower performance, with
an efficiency of at least 91% with 16 workers.

Even though work stealing is a popular approach
to distributed dynamic load balancing, its perfor-
mance is not well understood yet. The effectiveness
of our sorting-based approach raises new interesting
applications in the context of massively parallel pro-

cessing. In our system, work stealing is particularly
efficient when we have more than 8 workers. Hence,
it seems to be a perfect candidate for today’s and fu-
ture massively parallel systems. Our steal analysis
also shows that the number of steal transfers is lower
with high workloads. We suppose that this is related
to the fixed number of tiles size and we plan to inves-
tigate how to beneficially change this number accord-
ing to the workload. Increasing the quality, e.g. using
more samples per pixel and using path tracing, only
slightly affects the scalability of the system.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 4 8 16

Regular without WS

Regular

SAT Adaptive Tiling

SAT Sorting

Figure 11: Scalability for up to 16 workers measured for
the Cornell box and path tracing. Timings are in frames per
second.

8 CONCLUSION

In this paper, we described a GPU-based algo-
rithm used to compute a per-pixel ray tracing cost
estimate. The proposed approach, based on deferred
shading and image sampling, is fast and requires only
a fixed amount of GPU memory that increases linearly
with image size and produces a good approximation
of the real computation time. Moreover, our approach
could use any type of cost estimate; for instance it
could also be applied to a cost map produced by us-
ing the ray tracing algorithm itself (i.e. profiling).

In order to validate our idea, we implemented a
parallel ray tracing system for distributed memory
architectures based on Whitted-style ray tracing and
path tracing. Together with our ray tracing system,
we also presented two methods that exploit the cost
map in order to speed up performance: SAT Adaptive
Tiling uses the cost map in order to subdivide the im-
age in tile with the same cost and SAT Sorting instead
exploits the cost map using a dynamic load balanc-
ing, and sorts tiles according to their cost. Our results
indicate that while the SAT Adaptive tiling is more
sensitive to the cost map approximation, SAT Sorting

is always the best approach. It fits well into dynamic
load balancing and provides good scalability for mul-
tiple workers.

In future work, we plan to introduce an automatic
cost map tool to facilitate the tuning of the cost map
generation algorithm. We would like to see how effec-
tive these techniques can be for GPU-based ray trac-
ing implementations (e.g. Nvidia OptiX (PBD+10)
employs a three-tiered dynamic load balancing ap-
proach on multi-GPUs). Moreover, we are interested
in evaluating the effectiveness of the techniques while
having models that do not fit the GPU memory, hence
by using a simplification technique for the cost map
computation. With increasingly more computational
power for commodity hardware and the availability of
multicore architectures, we believe that similar bal-
ancing techniques will become of growing interest in
the next future.

ACKNOWLEDGEMENTS
Part of this work was funded by the Austrian Science Foun-
dation FWF (DK+CIM, W1227) and also by the Austrian
Ministry of Science BMWF as part of the UniInfrastruk-
turprogramm of the Research Platform Scientific Comput-
ing at the University of Innsbruck.The first author initiated
this work at the Visualization Research Center, Universität
Stuttgart, and has been partially funded by a DAAD Schol-
arship and a HPC-EUROPA2 project(228398). Carsten
Dachsbacher acknowledges support from the Intel Visual
Computing Institute, Saarbruecken.

REFERENCES

B. Budge, T. Bernardin, J. Stuart, S. Sengupta, K. Joy, and
J. Owens. Out-of-core Data Management for Path
Tracing on Hybrid Resources. In Eurographics, 2009.

R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. Journal of
ACM, 46(5):720–748, September 1999.

W. V. Baxter, III, A. Sud, Naga K. Govindaraju, and
D. Manocha. GigaWalk: Interactive Walkthrough of
Complex Environments. In Eurographics workshop
on Rendering, EGRW, pages 203–214, 2002.

J. Bigler, A. Stephens, and S.G. Parker. Design for Paral-
lel Interactive Ray Tracing Systems. In IEEE Sym-
posium on Interactive Ray Tracing, pages 187 –196,
sept. 2006.

C. Benthin, I. Wald, and P. Slusallek. A Scalable Approach
to Interactive Global Illumination. Computer Graph-
ics Forum, 22(3):621–630, 2003.

L. Carpenter. The A-buffer, an antialiased hidden surface
method. In ACM SIGGRAPH, pages 103–108, 1984.

B. Cosenza, G. Cordasco, R. De Chiara, U. Erra, and
V. Scarano. Load Balancing in Mesh-like Computa-
tions using Prediction Binary Trees. In Symposium on
Parallel and Distributed Computing (ISPDC), pages
139–146, 2008.

A. Chalmers, K. Debattista, V. Sundstedt, P. Longhurst, and
R. Gillibrand. Rendering on Demand. In EGPGV,
pages 9–17, 2006.

B. Cosenza. A Survey on Exploiting Grids for Ray Tracing.
In Eurographics Italian Chapter Conference, pages
89–96, 2008.

A. Chalmers and E. Reinhard. Pratical Parallel Rendering.
AKPeters, 2002.

F. C. Crow. Summed-area Tables for Texture Mapping. In
11th annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH, pages 207–212,
1984.

D. E. DeMarle, C. P. Gribble, S. Boulos, and S. G. Parker.
Memory Sharing for Interactive Ray Tracing on Clus-
ters. Parallel Comput., 31(2):221–242, February
2005.

D. E. DeMarle, C. P. Gribble, and S. G. Parker. Memory-
Savvy Distributed Interactive Ray Tracing. In
EGPGV, pages 93–100, 2004.

D. E. DeMarle, S. Parker, M. Hartner, C. Gribble, and
C. Hansen. Distributed Interactive Ray Tracing for
Large Volume Visualization. In IEEE Symposium on
Parallel and Large-Data Visualization and Graphics,
PVG, pages 12–, 2003.

A. Dietrich, A. Stephens, and I. Wald. Exploring a Boe-
ing 777: Ray Tracing Large-Scale CAD Data. IEEE
Comput. Graph. Appl., 27(6):36–46, November 2007.

A. Grama, G. Karypis, V. Kumar, and Gupta A. Introduc-
tion to Parallel Computing, 2nd edition. Pearson Ad-
dison Wesley, 2003.

K. Garanzha and C. T. Loop. Fast Ray Sorting and Breadth-
First Packet Traversal for GPU Ray Tracing. Com-
puter Graphics Forum, pages 289–298, 2010.

A. S. Glassner. An Introduction to Ray Tracing. Morgan
Kaufmann, 1989.

R. Gillibrand, P. Longhurst, K. Debattista, and A. Chalmers.
Cost prediction for global illumination using a fast
rasterised scene preview. In AFRIGRAPH, pages 41–
48, 2006.

I. Georgiev and P. Slusallek. RTfact: Generic concepts for
flexible and high performance ray tracing. In Inter-
active Ray Tracing, 2008. RT 2008. IEEE Symposium
on, pages 115 –122, aug. 2008.

A. Heirich and J. Arvo. A Competitive Analysis of Load
Balancing Strategies for Parallel Ray Tracing. Journal
of Supercomputing, 12(1-2):57–68, January 1998.

S. Hargreaves. Deferred shading, 2004. Game Developers
Conference Talks.

J. Hensley, T. Scheuermann, G. Coombe, M. Singh, and
A. Lastra. Fast Summed-Area Table Generation
and its Applications. Computer Graphics Forum,
24(3):547–555, 2005.

T. Ize, C. Brownlee, and C. D. Hansen. Real-Time Ray
Tracer for Visualizing Massive Models on a Cluster.
In EGPGV, pages 61–69, 2011.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and
D. Manocha. Fast bvh construction on gpus. Com-
puter Graphics Forum, pages 375–384, 2009.

C. Mueller. The sort-first rendering architecture for high-
performance graphics. In Symposium on Interactive
3D graphics, I3D, pages 75–ff., 1995.

M. J. Muuss. Towards real-time ray-tracing of combinato-
rial solid geometric models. In BRL-CAD Symposium,
1995.

B. Moloney, D. Weiskopf, T. Mller, and M. Strengert. Scal-
able Sort-First Parallel Direct Volume Rendering with
Dynamic Load Balancing. In Symposium on Parallel
Graphics and Visualization (EGPGV), pages 45–52,
2007.

R. Overbeck, R. Ramamoorthi, and W.R. Mark. Large ray
packets for real-time whitted ray tracing. In Interac-
tive Ray Tracing, 2008. RT 2008. IEEE Symposium
on, pages 41 –48, aug. 2008.

C. N. Odom, N. J. Shetty, and D. Reiners. Ray Traced Vir-
tual Reality. In ISVC, pages 1031–1042, 2009.

S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hobe-
rock, D. Luebke, D. McAllister, M. McGuire, K. Mor-
ley, A. Robison, and M. Stich. Optix: a general
purpose ray tracing engine. ACM Trans. Graph.,
29(4):66:1–66:13, July 2010.

T. Plachetka. Perfect load balancing for demand-driven par-
allel ray tracing. In International Euro-Par Confer-
ence on Parallel Processing, pages 410–419, 2002.

E. Reinhard, A. J. F. Kok, and A. Chalmers. Cost distribu-
tion prediction for parallel ray tracing. In Eurograph-
ics Workshop on Parallel Graphics and Visualisation,
pages 77–90, September 1998.

A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray
tracing algorithm. In ACM SIGGRAPH, pages 1176–
1185, 2005.

I. Wald. Realtime Ray Tracing and Interactive Global Il-
lumination. PhD thesis, Computer Graphics Group,
Saarland University, 2004.

I. Wald, A. Dietrich, and P. Slusallek. An Interactive Out-
of-Core Rendering Framework for Visualizing Mas-
sively Complex Models. In Eurographics Symposium
on Rendering, 2004.

I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interac-
tive Distributed Ray Tracing of Highly Complex Mod-
els. In Eurographics Workshop on Rendering Tech-
niques, pages 277–288, 2001.

J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz. Real-
Time Concurrent Linked List Construction on the
GPU. Comput. Graph. Forum, 29(4):1297–1304,
2010.

K. Zhou, Q. Hou, R. Wang, and B. Guo. Real-time KD-
tree construction on graphics hardware. In ACM SIG-
GRAPH Asia, pages 126:1–126:11, 2008.

pa
th

tr
ac

in
g

w
hi

tte
d

(a) real cost map (b) GPU cost map (c) difference (d) adaptive tiling

Figure 12: Effectiveness of the cost map generation in different test scenes. For each scene, we show the real packet-based
cost map based on timings (a); the GPU-based cost map estimate (b); an explanatory difference map mapped on a gradient:
In blue areas estimation is precise, whereas yellow areas show less accuracy. (c); the resulting adaptive tiling (d). The cost
maps are obtained mapping the cost of the pixel/packet into the range [0,1].

