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We prove Caccioppoli type estimates and consequently establish local Hölder continuity for a class of weak contact (2! + 2)-
harmonic maps from the Heisenberg group H! into the sphere "2"−1.

1. Introduction

Se study of pseudoharmonic maps was started by Barletta et
al. [1] (cf. also [2, 3] for successive investigations) as a gener-
alization of the theory of harmonic maps among Riemannian
manifolds (cf., e.g., [4]) and by identifying the results of Jost
and Xu [5], Zhou [6], Hajłasz and Strzelecki [7], and Wang
[8] as local aspects of the theory of pseudoharmonic maps
from a strictly pseudoconvexCRmanifold into a Riemannian
manifold (cf. also [9, pages 225-226]).

A similar class of maps, yet with values in another CR
manifold, was studied in [10]. Sese are critical points of the
functional

# (%) = 12 ∫$* (%) ,V, % ∈ /∞ (0,3) , (1)

where0 is a compact strictly pseudoconvex CR manifold of

CR dimension !, *(%) = ‖(,%)&,&!‖2, ,V = 5 ∧ (,5)!, and5 is a contact form on 0. Also 3 is a contact Riemannian
manifold and in particular an almost CR manifold (of CR
codimension 1).

A moment’s thought reveals the augmented difculties
such a theory may present. For instance, if0 and3 are two
strictly pseudoconvex CR manifolds endowed, respectively,
with contact forms 5 and 7, then the pseudohermitian analog
of the notion of a harmonic morphism (among Riemannian

manifolds) is quite obvious: one may consider continuous
maps % : 0 → 3 such that the pullback V ∘ % of any
local solution V : ;' ⊆ 3 → R to Δ() V = 0 in @
satishes Δ )(V ∘ %) = 0 in ; = %−1(;') in distribution sense.

Here Δ ) and Δ() are the sublaplacians of (0, 5) and (3, 7),
respectively. Unlike the situation in [2] (where the target
manifold 3 is Riemannian and % pulls back local harmonic
functions on3 to distribution solutions of Δ )A = 0) such %
is not necessarily smooth (since it is unknown whether local

coordinate systems (;', B'*) on 3 such that Δ() B'* = 0 in;' might be produced). To give another example, should one
look for a pseudohermitian analog to the Fluglede-Ishihara
theorem (cf. [3] when 0 is CR and 3 is Riemannian), one
would face the lack of an Ishihara type lemma (cf. [11]) as it

is unknown whether Δ() V = 0 admits local solutions whose
(horizontal) gradient and hessian have prescribed values at a
point. Moreover, what would be the appropriate notion of a
hessian (cf. [12] for a possible choice)?

A third example, discussed at some length in this paper,
is that of the “degeneracy” of the Euler-Lagrange equations

[(E2)*+ ∘ %]
× {div [*(%)(.−2)/2∇&%+]
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+*(%)(.−2)/2 2!∑
3=1
(Γ'+4ℓ ∘ %)M3 (%4)M3 (%ℓ)} = 0,

1 ≤ P ≤ 2Q − 1,
(2)

associated to the variational principle

S∫*(%)./2,V = 0, (3)

when3 is a Sasakianmanifold. Indeed the (2Q−1)×(2Q−1)
matrix (E2)*+ = −S*+ +T*7+ has but rank 2Q−2 at each point (a
well-known phenomenon in contact Riemannian geometry,
cf., e.g., [13]. See also [14]). Consequently, in general one may
not expect regularity of weak solutions to (2). For instance, if3 = H"−1 is the Heisenberg group and % = (%', %2"−1) : ; ⊆0 → H"−1 is a solution to (2), then %' : ; → R

2"−2 is
subject to

2!∑
3=1
M∗3 (VVVVVM%'VVVVV.−2M3 (%*)) = 0, 1 ≤ P ≤ 2Q − 2, (4)

yet %2"−1 is an arbitrary function (cf. Section 3). For themore
appealing case, where0 = H! is the Heisenberg group and3 = "2"−1 is the sphere, (2) may be written as

M∗ ⋅ @7 = *(%)./2%7, 1 ≤ Y ≤ 2Q, (5)

(cf. Proposition 15) which is indeed the form assumed by the
Euler-Lagrange equations in [7], yet unlike the situation thereM∗ ⋅ #7,8 ̸= 0 in general (cf. Proposition 16 for the notations).
Although M∗ ⋅ #7,8 has a quite explicit form (yielding—for a

class of weak solutions % : H! → "2"−1 which are close to
being horizontal maps—simple estimates onM∗ ⋅ #7,8), only
a weaker form of the duality inequality lemma in [7] may be
proved (cf. Lemma 17) leading nevertheless (together with a
hole hlling argument) to Caccioppoli type estimates

∫
8"(9,:)

VVVVM%VVVV2!+2,V ≤ /[<, (6)

for some / > 0 and 0 < ^ < 1, which are known (cf., e.g., [7]
for a very general argument based on work in [15]) to imply
the local Hölder continuity of the given weak solution.

Se paper is organized as follows. In Section 2 we recall a
few conventions and basic results obtained in [10]. Sections
3 and 4 are devoted to the study of the local properties of
weak contact _-harmonic maps. We show that weak contact(2! + 2)-maps % : ; ⊂ H! → "2"−1 are locally Hölder
continuous (cf. Corollary 21) provided they are close to being
horizontal maps; that is, the assumptions (96) are satished.
Se relevance of the number _ = 2! + 2 stems from the

facts that ∫$ ‖(,%)&,&!‖2!+2,V is a CR invariant and 2! + 2
is the homogeneous dimension of H!. Se authors believe
that subelliptic theory should play within CR geometry, as a
branch of complex analysis in several complex variables, the
strong role played by elliptic theory in Riemannian geometry,
and the present paper is a step in this direction.

2. Basic Conventions and Results

For all notions of CR and pseudohermitian geometry we
adopt the conventions and notations in the monograph [9].
For the approach to contact structures within Riemannian
geometry we rely on the presentation in Blair [13], (cf.
also Tanno [16]). Given a real (2! + 1)-dimensional /∞
diperentiable manifold 0, an almost CR structure is a
complex subbundle b1,0(0) ⊂ b(0) ⊗C of the complexihed
tangent bundle, of complex rank !, such that b1,0(0)9 ∩b0,1(0)9 = (0) for any B ∈ 0. Here b0,1(0) = b1,0(0) and
overbars indicate complex conjugates.Se integer ! is the CR
dimension of the almost CR manifold (0, b1,0(0)). Almost
CR structures are a bundle theoretic recast of the tangential

Cauchy-Riemann operator e) : /∞(0,C) → /∞(b0,1(0)∗)
given by (e)f)g = g(f) for any f ∈ /∞(0,C) and any g ∈b1,0(0). An almost CR structure is ( formally or Frobenius)
integrable if [g,i] ∈ /∞(;, b1,0(0)) for any g,i ∈/∞(;, b1,0(0)) and any open set; ⊂ 0. Se tangential C-R
operator may be extended to arbitrary (0, k)-forms on0 and

the resulting pseudocomplex e) : Ω0,?(0) → Ω0,?+1(0),k ≥ 0, is a complex (i.e., e2) = 0) if and only if the given
almost CR structure is integrable (cf. [9]). Integrable almost
CR structures are commonly referred to as CR structures and
appear mainly on real hypersurfaces of complex manifolds,
as induced by the complex structure of the ambient space;
that is, for any complexmanifold@ and any real hypersurface0 ⊂ @
b1,0(0)9 = [b9 (0) ⊗RC] ∩ b1,0(@)9, B ∈ 0, (7)

is a CR structure on 0. Here b1,0(@) → @ is the
holomorphic tangent bundle over @ (locally the span of{e/eq+ : 1 ≤ r ≤ 3} for any local system of complex

coordinates (q+) on @). Also 3 is the complex dimension
of @, and then the CR dimension of 0 is ! = 3 − 1.
Integrability of (7) follows from the Nijenhuis integrability

of the complex structure on @. A solution f to e)f = 0
(the tangential C-R equations) is a CR function on 0 and,
in the context of real hypersurfaces carrying the induced
CR structure (7), CR functions appear as traces on 0 of
holomorphic functions dehned on a neighborhood of0 in@. Hence to say that the CR structure is given by (7) is to say
that the tangential C-R equations are induced by the ordinary
Cauchy-Riemann system on @. CR functions which are not
traces of holomorphic functions may exist (cf., e.g., [17]). CR
structures which are not given by (7), and for which there
is not any embedding of 0 into some complex manifold @
yielding (7), do exist as well (cf. again [17, page 172]). An array
of geometric objects, such as pseudohermitian structures, the
Levi form (cf. [9, 18]) and successively (in the nondegenerate
case) contact structures, the Tanaka-Webster connection (cf.
[18, 19]), the sublaplacian Δ ) and the Feperman metric (cf.
[9, 20]), springs from the given CR structure very much the
way the complex structure determines the metric structure
(up to a conformal invariant) on a Riemann surface and are
thought of as geometric tools whose use will ultimately shed
light on the properties of solutions, local and global, to the
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tangential C-R equations. Integrability of b1,0(0) appears as
a built-in ingredient of objects such as the Tanaka-Webster
connection or the Feperman metric, yet it is believed to
lack the geometric meaning of involutivity of real smooth
distributions on manifolds (cf., e.g., [21, page 16]). On the
other hand nonintegrable examples of almost CR structures
occur frequently, either on real hypersurfaces of almost
complex manifolds or on contact Riemannian manifolds (cf.
[13, 16]). A remedy was indicated by Tanno [16], showing
that the wealth of additional structure (E, T, 7, s) on a given
contact Riemannian manifold3 compensates for the lack of
integrability of b1,0(3) = {M − PEM : M ∈ Ker(7)} and
specihcally providing a generalization of the Tanaka-Webster
connection to the nonintegrable context.

Given a CRmanifold (0, b1,0(0)), lett = Re{b1,0(0)⊕b0,1(0)} be the Levi, ormaximally complex, distribution andv(g + g) = P(g − g), g ∈ b1,0(0), its complex structure. Lett⊥9 = {w ∈ b∗9 (0) : Ker(w) ⊇ t9}, B ∈ 0, be the conormal
bundle associated to t, a real line bundle over0. Since0
is assumed to be connected and orientable, the conormal
bundlet⊥ → 0 is trivial. A globally dehned nowhere zero
section 5 ∈ Γ∞(t⊥) is a pseudohermitian structure on0. For
each pseudohermitian structure 5 on0 the Levi form is

yA (M, z) = (,5) (M, vz) , M, z ∈ t. (8)

Two pseudohermitian structures 5, 5̂ ∈ Γ∞(t⊥) are related
by 5̂ = �5 for some /∞ function � : 0 → R \ {0}. If this is
the case, then yÂ = �yA. A CR manifold0 is nondegenerate
(resp., strictly pseudoconvex) if yA is nondegenerate (resp.,
positive dehnite) for some 5. If 0 is a nondegenerate CR
manifold, of CR dimension !, then each pseudohermitian
structure 5 is a contact form; that is, 5 ∧ (,5)! is a volume
form on0. If0 is nondegenerate and 5 is a contact form on0, there is a unique globally dehned, nowhere zero, tangent
vector held b ∈ X∞(0) (the Reeb vector held of (0, 5)) such
that 5(b) = 1 and (,5)(b, ⋅) = 0. Se Webster metric is the
semi-Riemannian metric sA on0 given by

sA (M, z) = yA (M, z) , sA (M, b) = 0, sA (b, b) = 1,
(9)

for any M,z ∈ t. If 0 is strictly pseudoconvex and 5
is chosen such that yA is positive dehnite, then sA is a
Riemannian metric on0.

Let3 be a (2Q − 1)-dimensional /∞ manifold (Q ≥ 2).
An almost contact structure on3 is a synthetic object (%, T, 7)
consisting of a (1, 1)-tensor held E, a vector held T ∈ X∞(3),
and a 1-form 7 ∈ Ω1(3) such that

E*4E4+ = −S*+ + 7+T*, 7*E*+ = 0,
E*+T+ = 0, 7*T* = 1, (10)

with respect to any local coordinate system (;', B'*) on3. A
Riemannianmetric s on3 is associated, or compatible, to the
almost contact structure (E, T, 7) (and (E, T, 7, s) is an almost
contact metric structure on3) if

s*+E*4E+ℓ = s4ℓ − 747ℓ, s*+T+ = 7*. (11)

Associated metrics always exist (cf. [13]). A contact metric
structure is an almost contactmetric structure (E, T, 7, s) such
that Ω = ,7, where Ω ∈ Ω2(3) is the 2-form given byΩ*+ = s*4E4+ .

Let % : 0 → 3 be a /∞ map from a strictly
pseudoconvex CR manifold 0 of CR dimension ! into
a contact Riemannian manifold (3, E, T, 7, s). Let 5 be a
contact form on 0 such that the Levi form yA is positive
dehnite. Let t' = Ker(7) and let us consider the vector

bundle valued form (,%)&,&! ∈ Γ∞(t∗ ⊗ %−1t') given by

((,%)&,&!)9 = Π&! ,C(9) ∘ (,9%) : t9 �→ t'C(9), B ∈ 0,
(12)

whereΠ&! : b(3) → t' is the natural projection associated
to the decomposition b(3) = t' ⊕ RT. Let B ∈ 0 and let{M3 : 1 ≤ � ≤ 2!} be a local yA-orthonormal frame of t
dehned on an open neighborhood ; ⊆ 0 of B ∈ ;. We set

*(%)9
= �����(,%)&,&!�����29
= 2!∑
3=1
sC(9) (((,%)&,&!)9M3,9, ((,%)&,&!)9M3,9) .

(13)

Note that

* (%) = traceD# {Π& (%∗s)} − ����Π& %∗7����2. (14)

DeXnition 1. Let _ ∈ (0, +∞). A /∞ map % : 0 → 3 is said
to be contact _-harmonic if % is a critical point of the energy
functional

#Ω,. (%) = ∫
Ω

�����(,%)&,&!�����.5 ∧ (,5)! (15)

for any relatively compact domain Ω ⊆ 0. Contact 2-
harmonic maps are called contact harmonic maps.

Let ∇ be the Tanaka-Webster connection of (0, 5) that
is the unique linear connection on0 obeying to (i) t is ∇-
parallel (i.e., ∇Fz ∈ t for any M ∈ X∞(0) and any z ∈ t),
(ii) ∇v = 0 and ∇sA = 0, and (iii) the torsion tensor held b∇
of ∇ is pure (i.e., b∇(g,i) = 0, b∇(g,i) = 2PyA(g,i)b
for any g,i ∈ b1,0(0) and � ∘ v + v ∘ � = 0, where�(M) = b∇(b,M) for any M ∈ X∞(0) (cf. Seorem 1.3 and
Dehnition 1.25 in [9, pages 25-26]).Se vector valued 1-form� is the pseudohermitian torsion of∇. Let∇' be the generalized
Tanaka-Webster connection of (3, 7, s) given locally by

Γ'*+4 = Γ*+4 + 7+E*4 − 74∇+T* + T*∇+74, (16)

(cf., e.g., [16]), where Γ*+4 are the Christopel symbols of s*+.
Covariant derivatives are meant with respect to the Levi-
Civita connection of (0, s). For each M ∈ X

∞(0) we
consider %∗M ∈ Γ∞(%−1b3) given by

(%∗M) (B) = (,9%)M9 ∈ bC(9) (3) = (%−1b3)9, B ∈ 0.
(17)
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Let ∇C = %−1∇' be the connection induced by ∇' in the

pullback bundle %−1b3 → 0. We set

�C (M, z) = ∇CF%∗z − %∗∇Fz, M, z ∈ X∞ (0) . (18)

Let B ∈ 0 and let {M3 : 1 ≤ � ≤ 2!} be a local yA-
orthonormal frame oft dehned on an open neighborhood;
of B. We dehne a/∞ section Γ(%) in %−1b3 → 0 by setting

Γ(%)9 = traceD#{Π&�C}9 = 2!∑
3=1
�C(M3, M3)9, (19)

where Π&�C denotes the restriction of �C to t ⊗ t. By a
result in [10] the Euler-Lagrange equations associated to the
variational principle S#Ω,.(%) = 0 are
*(%)−(.−2)/2 [(E2)*+ ∘ %] div (*(%)(.−2)/2∇&%+)
= traceD# {Π&%∗ (7 ⊗ �()}
− 2!∑
3=1
[(E2)*+ ∘ %] (Γ'+4ℓ ∘ %)M3 (%4)M3 (%ℓ) ,
traceD# {Π& %∗Y(} = 0,

(20)

here E2 = −� + 7 ⊗ T (cf., e.g., [13]). Also �( is the
pseudohermitian torsion of (3, E, T, 7, s); that is, �((M) =b∇!(T, M), andY((M, z) = s(�(M,z) for anyM,z ∈ X∞(3).Γ'*+4 are again the local coefcients of ∇' with respect to(;', B'*). In particular if s is a Sasakianmetric, then % : 0 →3 is contact _-harmonic if and only if

[(E2)*+ ∘ %]
× {div (*(%)(.−2)/2∇&%+)
+*(%)(.−2)/2 2!∑

3=1
(Γ'+4ℓ ∘ %)M3 (%4)M3 (%ℓ)} = 0,

1 ≤ P ≤ 2Q − 1.
(21)

3. Weak Contact Harmonic Maps

Sections 3 and 4 are devoted to the study of local properties
of weak critical points of the functional (15). A study of the
regularity of weak solutions to subelliptic systems (such as
(53)) was started by Wang [8], and Capogna and Garofalo
[22], thoughonly formaps fromCarnot groups, (cf. alsoZhou
[23]).

Let 0 be a strictly pseudoconvex CR manifold and 5 a
contact form on 0. Let {M3 : 1 ≤ � ≤ 2!} be a local yA-
orthonormal frame oft dehned on the open set ; ⊆ 0 andM∗3 the formal adjoint ofM3; that is,

M∗3A = −M3A − f3A, A ∈ /10 (;) , (22)

where f3 = e�73 /eB7 + �83 Γ778 and M3 = �73 e/eB7. Also ΓH78
are the local coefcients of the Tanaka-Webster connection
of (0, 5) with respect to the local coordinate system (;, B7)
on0. Clearly (M∗3A, V) = (A,M3V) for any A ∈ /10(;), where(A, V) = ∫I AV ,V.
Proposition 2. Let % : 0 → 3 be a smooth map and s
a Sasakian metric on 3. [en % is contact _-harmonic if and
only if

[(E2)*+ ∘ %]
× 2!∑
3=1
{−M∗3 (*(%)(.−2)/2M3%+)
+ *(%)(.−2)/2 (Γ'+4ℓ ∘ %)M3 (%4)M3 (%ℓ)} = 0

(23)

for any local orthonormal frame {M3 : 1 ≤ � ≤ 2!} oft.
Proof. Let us note that div(M3) = trace{e7 �→ ∇J$M3} = f3,
where e7 = e/eB7. Sus (by (22))

div (*(%)(.−2)/2∇&%*) = − 2!∑
3=1
M∗3 (*(%)(.−2)/2M3%*) (24)

on ;. Sen (23) follows from (21).

Example 3 (contact _-harmonic maps into the Heisenberg
group). Let 3 = H"−1, Q ≥ 2, be the Heisenberg group
(cf., e.g., [9, pages 11–14]). Let (BK, �K, �) be the Cartesian

coordinates on R
2"−1 and let

MK = eeBK + 2�K ee� , zK = ee�K − 2BK ee� ,
1 ≤ � ≤ Q − 1. (25)

Let E be the (1, 1)-tensor held on H"−1 determined by

E (MK) = zK, E (zK) = −MK, E (T) = 0, (26)

where T = −e/e�. Next the diperential 1-form 7 ∈ Ω1(H"−1)
given by

7 = 22"−2∑
K=1
(�K,BK − BK,�K) − ,� (27)

is a contact form on H"−1; that is, 7 ∧ (,7)"−1 is a volume
form. Lett = Ker(7). Finally we shall need the Riemannian
metric s onH"−1 given by s = −,7(⋅, E⋅ ) ont⊗t, s(⋅, T) =0 ont, and s(T, T) = 1. Sen s is a Sasakian metric on H"−1
(and actually (H"−1, s) is a Sasakian space formofE-sectional−3; cf., e.g., [13]). A calculation shows that

E2 : ( −S
K
L 0 00 −SKL 0−2�L 2BL 0) , (28)
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where BK = BK and �K = �K. Let bK = MK − PzK and letb1,0(H"−1)9 be the span of {bK(B) : 1 ≤ � ≤ Q − 1} over C.
Sen b1,0(H"−1) is a strictly pseudoconvex CR structure on
H"−1 and 5 = −7 is a contact form such that the Levi formyA
is positive dehnite. Let ∇' be the Tanaka-Webster connection
of (H"−1, 5). A calculation shows that

∇'J%eL = 0, ∇'J%eL+"−1 = −2SKLT,
∇'J%+&−1eL = 2SKLT, ∇J%+&−1eL+"−1 = 0, (29)

where eK = e/eBK and eK+"−1 = e/e�K for simplicity. Hence

Γ'2"−1K,L+"−1 = −Γ2"−1K+"−1,L = 2SKL (30)

and the remaining connection coefcients vanish. Se Web-
ster metric s of (H"−1, 5) is given by

s : (2SKL + 4�K�L −4�KBL −2�K−4BK�L 2SKL + 4BKBL 2BK−2�L 2BL 1 ) , (31)

hence (by a straightforward calculation)

* (%) = 2 2!∑
3=1

2"−2∑
*=1

VVVVVM3 (%*)VVVVV2 = 2VVVVVM%'VVVVV2, (32)

where % = (%', %2"−1) : 0 → H"−1 and %' = (%1, . . . ,%2"−2). Let us substitute (28)–(32) into (23) so that to obtain
2!∑
3=1
M∗3 (VVVVVM%'VVVVV.−2M3 (%*)) = 0, 1 ≤ P ≤ 2Q − 2. (33)

Hence if % : 0 → H2"−1 is a contact _-harmonic map,

then %' is subject to (33) while %2"−1 is an arbitrary function.
Serefore, in general onemaynot expect regularity for a given
(weak) contact _-harmonic map.

Se identity (23) in Proposition 2 leads naturally to the
notion of a weak solution to the contact _-harmonic map
system. Indeed we may establish the following.

Lemma 4. A smooth map % : 0 → 3 of a strictly
pseudoconvex CR manifold0 into a Sasakian manifold 3 is
contact _-harmonic if and only if

2!∑
3=1
{M∗3 (*(%)(.−2)/2 [(E2)*+ ∘ %]M3 (%+))
−*(%)(.−2)/2 [(E2)+4 ∘ %] (Γ'*+ℓ ∘ %)M3 (%4)M3 (%ℓ)}
= 0

(34)

for any local orthonormal frame {M3 : 1 ≤ � ≤ 2!} of t
on ; and any local coordinate system (;', B'*) on3 such that%−1(;') ⊇ ;.

Proof. Let us multiply (23) by a test function � ∈ /∞0 (;) and
integrate by parts

∫*(%)(.−2)/2∑
3
M3 (%+)M3 ((E2)*+�),V

= ∫*(%)(.−2)/2∑
3
(E2)*+Γ'+4ℓM3 (%4)M3 (%ℓ) � ,V.

(35)

On the other hand (as both T and 7 are parallel with respect
to ∇')

eT*eB'4 = −Γ'*4ℓTℓ,
e7+eB'4 = Γ

!ℓ
4+7ℓ, (36)

e(E2)*+eB'4 = T*7ℓΓ
!ℓ
4+ − 7+TℓΓ'*4ℓ, (37)

(E2)*+Γ'*4ℓ + 7ℓT+Γ'*+4 − T*7+Γ'+4ℓ = (E2)+ℓΓ'*+4 − b*4ℓ, (38)

where b*4ℓ are the coefcients of b∇! with respect to (;', B'*).
Serefore (35) may be written as

∫*(%)(.−2)/2
×∑
3
{(E2)*+M3 (%+)M3 (�)
−(E2)+4Γ'*+ℓM3 (%4)M3 (%ℓ) �} ,V = 0

(39)

and Lemma 4 is proved.

Let us consider the function spaces

i1,.F (;) = {A ∈ �. (;) : M3A ∈ �. (;) , 1 ≤ � ≤ 2!} ,
(40)

whereM3A are understood as weak derivatives. If 1 ≤ _ < ∞,
theni1,.F (;) are separable Banach spaces with the norms

‖A‖M1,(" (I) = (‖A‖.N((I) + 2!∑3=1����M3A����.N((I))
1/.. (41)

Also i1,.F (;) is reuexive provided that 1 < _ < ∞. Se
central concept of this section may be introduced as follows.
Let {M3 : 1 ≤ � ≤ 2!} be a yA-orthonormal frame oft dehned on the open set ; ⊆ 0. Let ;' ⊆ 3 be an
open set which is relatively compact in a larger coordinate
neighborhood in3.
DeXnition 5. Amap % : ; → ;' is said to beweak contact _-
harmonic if it is a weak solution to (34); that is, %+ ∈ i1,.F (;)
for any 1 ≤ r ≤ 2Q − 1 and the identities (39) are satished for
any test function � ∈ /∞0 (;).

Let % : ; → ;' be a weak contact _-harmonic map. By
(14)

* (%) = ∑
3
{M3 (%*)M3 (%+) (s*+ ∘ %) − [M3(%*)(7* ∘ %)]2}

(42)
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on ;, hence VVVV* (%)VVVV ≤ /VVVVM%VVVV2 a.e. in ;,
VVVVM%VVVV2 = 2!∑

3=1

2"−1∑
*=1

VVVVVM3 (%*)VVVVV2, (43)

where / = max{supI! |s*+|, supI! |7*| : 1 ≤ P, r ≤ 2Q − 1}.
Sen both integrals in (39) are convergent and the adopted
dehnition is legitimate.

Example 6 (Example 3 continued). A weak solution to (33)
is a map % = (%', %2"−1) : ; → ;' ⊂⊂ H"−1 such that%' ∈ i1,.F (;,R2"−2) and
2!∑
3=1
∫
I

VVVVVM%'VVVVV.−2M3 (%*)M3 (�) ,V = 0, 1 ≤ P ≤ 2Q − 2,
(44)

for any � ∈ /∞0 (;). We need to recall the following general
result, due to Xu and Zuily [24]. Let M = {M1, . . . , M"} be
a Hörmander system on an open set ; ⊆ R

(, 3 ≥ 2, andΩ ⊂ R
( a domain such that ; ⊃ Ω. Let �*+(B, �) be a

symmetric and positive dehnite matrix dehned in Ω × R
].

If |f(B, �, _)| ≤ �|_|2 + � for any (B, �, _) ∈ Ω × R] × R"],
then any continuous solution % = (%1, . . . , %]) to
"∑
*,+=1
M∗+ (�*+ (B, % (B))M*%K (B)) = fK (B, % (B) , M% (B)) ,

1 ≤ � ≤ ],
(45)

in Ω is actually smooth. Let us assume that ; is a domain

such that; is contained in a coordinate neighborhood in0.
By the result in [24] quoted above.

Proposition 7. For any weak solution % = (%', %2") : ; →;' ⊂ H"−1 to the contact _-harmonic map system (33) if %' ∈/0(;,R2"−2), then %' ∈ /∞(;,R2"−2).
Of course in the particular case _ = 2 any distribution

solution %' is/∞ (as the operator∑2!3=1M∗3M3 is hypoelliptic).
Example 8 (contact _-harmonic maps into the sphere). Let3 = "2"−1 ⊂ R

2" and let s be the canonical Sasakian

metric on "2"−1. Sen a /∞ contact _-harmonic map % =(%1, . . . , %2") : 0 → "2"−1 is a solution to

[(E2)*+ ∘ %] 2!∑
3=1
M∗3 (*(%)(.−2)/2 M3%+)

= *(%)(.−2)/2
× {[(E2)*+ ∘ %] VVVVM%VVVV2%+
+2 2!∑
3=1
(%∗7) (M3) (E*+ ∘ %)M3 (%+)} ,

(46)

for any 1 ≤ P ≤ 2Q − 1. Here |M%|2 = ∑2"L=1∑2!3=1 |M3%L|2 and∑2"L=1 %2L = 1with %L = %L, 1 ≤ � ≤ 2Q. Equation (46) follows
from (23) by computing the Christopel symbols of "2"−1 with
respect to the local coordinate system

¡' : ;' → R
2"−1, ¡' (B) = B', B = (B', B2") ∈ ;',

;' = "2"−1 ∩ {B2" > 0} , B' = (B1, . . . , B2"−1) ,
(47)

that is

VVVVVVVV Pr¢
VVVVVVVV = B*s+4, s+4 = S+4 +

B+B41 − VVVVB'VVVV2 , (48)

so that

2!∑
3=1
(VVVVVVVV Pr¢
VVVVVVVV ∘ %)M3 (%+)M3 (%4) = VVVVM%VVVV2 %*,

1 ≤ P ≤ 2Q − 1.
(49)

On the other hand (cf. [9])

VVVVVVVV Pr¢
VVVVVVVV = Γ'*+4 + w+4T* + 7+E*4 + 74E*+ (50)

so that

(VVVVVVVV Pr¢
VVVVVVVV ∘ %)M3 (%+)M3 (%4)
= (Γ'*+4 ∘ %)M3 (%+)M3 (%4)
+ 2 (%∗7) (M3) (E*+ ∘ %)M3 (%+)

(51)

for any Sasakian metric s. When 3 = "2"−1, the identities
(49)–(51) lead to

2!∑
3=1
(Γ'*+4 ∘ %)M3 (%+)M3 (%4)
= VVVVM%VVVV2%* − 2!∑

3=1
2 (%∗7) (M3) (E*+ ∘ %)M3 (%+)

(52)

and then to (46) by taking into account that E is an f-
structure on "2"−1; that is, E3 + E = 0. Our next purpose in
this example is to prove the following result.
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Proposition 9. Let % : H! → "2"−1 be a horizontal map.
[en % is contact _-harmonic if and only if % is subelliptic _-
harmonic with respect to the canonical Hörmander systemM ={M<, z< : 1 ≤ ^ ≤ !} on H!.

According to [7] given a Hörmander system of vector

helds {M3} dehned on an open set ¥ ⊆ R(, one may adopt
the following.

DeXnition 10. A subelliptic _-harmonicmap is a/∞ solution% : ¥ → R
2" to the system (the formal adjoint of M3

in [7] is −M∗3 under the conventions adopted in the present
paper)

∑
3
M∗3 (VVVVM%VVVV.−2M3%K) = VVVVM%VVVV.%K, 1 ≤ � ≤ 2Q, (53)

such that ∑2"K=1 %2K = 1.
A horizontal map is a smooth map % : H! → "2"−1 such

that

M3 (%*) (7* ∘ %) = 0, 1 ≤ � ≤ 2!. (54)

One may dehne weak solutions % : H! → ;' to (54) by

requiring that %* ∈ i1,.F (;) for some 1 ≤ _ < ∞ and
that (54) holds a.e. in;. Sen the statement in Proposition 9
holds for weak solutions of the relevant equations as well. In
particular, by a result in [7], any weak horizontal contact _-
harmonic map % : H! → ;' is locally Hölder continuous
provided that _ ≥ 2! + 2.

Se proof of Proposition 9 is to write (46) in the form
(53). We need the following.

Lemma 11. Let0 be a strictly pseudoconvex CR manifold. A

smooth map % : 0 → "2"−1 is contact _-harmonic if and
only if

− 2!∑
3=1
M∗3 (*(%)(.−2)/2 [(E2)*+ ∘ %]M3 (%+)) = *(%)./2%*,

(55)

for any 1 ≤ P ≤ 2Q − 1 and any local orthonormal frame {M3 :1 ≤ � ≤ 2!} oft.
By (14) if % : 0 → "2"−1 is a horizontal map, then*(%) = |M%|2 and one may readily check that (55) is

equivalent to (53) for any 1 ≤ P ≤ 2Q − 1. Of course the
component %2" will satisfy (53) as well (as a consequence

of the constraint ∑2!K=1 %2K = 1). To prove Lemma 11, let us
multiply (46) by a test function � ∈ /∞0 (;) and integrate
over ;. Se lev-hand side of the resulting equation is

∑
3
∫
I
(E2)*+M∗3 (¦M3 (%+)) �,V
= ∑
3
∫¦M3 (%+)M3 ((E2)*+�),V

= ∑
3
∫¦ {M3 (%+) (E2)*+M3 (�)
+�M3 (%+)M3 ((E2)*+ ∘ %)} ,V

= ∑
3
∫{{{{{
M∗3 (¦ [(E2)*+ ∘ %]M3 (%+))�

+¦�M3 (%+)M3 (%4) e(E
2)*+eB'4
}}}}}
,V,

(56)

where ¦ = *(%)(.−2)/2. Sen (by (37))

∑
3
M3 (%+)M3 (%4) e(E

2)*+eB'4
= ∑
3
M3 (%+)M3 (%4) (T*7ℓΓ!ℓ4+ − 7+TℓΓ'*4ℓ)

= (by (52) and (50))
= T*7ℓ (VVVVM%VVVV2%ℓ − 2∑

3
7+M3 (%+) Eℓ4M3 (%4))

−∑
3
M3 (%+)M3 (%4) 7+ (VVVVVVVV P¢ℓ

VVVVVVVV Tℓ − E*4)
= T*7ℓ%ℓVVVVM%VVVV2
+∑
3
{7+M3 (%+) E*4M3 (%4) − M3 (%+)M3 (%4) 7+74%*} ,

(57)

hence (46) implies

∑
3
M∗3 (*(%)(.−2)/2 [(E2)*+ ∘ %]M3 (%+))
= *(%)(.−2)/2 (−VVVVM%VVVV2 +∑

3
[M3 (%+) (7+ ∘ %)]2)%*

(58)

which yields (55) because on the sphere

* (%) = VVVVM%VVVV2 − ����Π& %∗7����2. (59)

Lemma 11 is proved.
Senotion of aweak contact harmonicmap as introduced

above is conhned to maps % : 0 → 3 such that the target
contact Riemannianmanifold3 is covered by a single coordi-
nate neighborhood. Another natural approach (customary in
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the theory of harmonic maps among Riemannian manifolds,
cf., e.g., [4, page 38]) is to use Nash’s embedding theorem (cf.
[25]) in order to embed isometrically the target manifold 3
into some Euclidean space R

P and produce an alternative
hrst variation formula (cf. Seorem 2.22 in [26, page 139])

depending however on the embedding3 ³→ R
P.

A generalization of Nash’s embedding theorem to the
context of contact Riemannian geometry has been obtained

by D’Ambra [27]. Let HN ≈ CN × R be the Heisenberg group
equipped with the standard Sasakian structure (E0, T0, 70, s0).
Let (3, (E, T, 7, s)) be a contact Riemannian manifold. By a
result in [27], if3 is compact and � ≥ dim(3) + 1, there is a/1-embedding µ : 3 → HN which is both horizontal, that is,µ∗t' ⊂ µ−1 Ker(70), and isometric in the sense that µ preserves
the Levi formss. (V, ¶) = s0,Q(.) ((,.µ) V, (,.µ) ¶) , V, ¶ ∈ t'., _ ∈ 3.

(60)

Any contact Riemannian manifold 3 is in particular a
sub-Riemannian manifold (in the sense of [28]); hence 3
carries the Carnot-Carathéodory metric ,( : 3 × 3 →[0, +∞) associated to the sub-Riemannian structure (t', s).
In particular µ is an isometry among themetric spaces (3, ,()
and (HN, ,F) (cf. Section 7 for the dehnition of the distance
function ,F : HN × HN × [0, +∞)). As HN also possesses
a linear space structure, the methods in [29] (methods of
direct inXnitesimal geometry) become available on a contact
Riemannian manifold (e.g., one may merely use the balls
with respect to ,( and the linear structure of the ambient
space HN to reformulate on 3 Dehnition 2.1 in [29, page
280]) and we conjecture that the arguments in [29] may be
recovered to study the equation Δ )A = 0 on a strictly pseu-
doconvex CR manifold (the theory in [29] only deals with
second order degenerate elliptic equations on domains in

R
!). Unfortunately the existence of /1-embeddings of given

contact structures is not sufcient for diperential geometric
purposes, as long as Gauss and Weingarten formulae (which
require two derivatives of µ) are involved. Se problem of
improving D’Ambra’s proof (to get a horizontal embedding

of class at least /2) is open.
4. Contact Harmonic Maps into Spheres

Let Ω ⊂ R( be a bounded open set and M = {M1, . . . , M"}
a Hörmander system of vector helds M3 = �73 (B)e/eB7 ∈
X(R() such that �73 ∈ /∞(R() ∩ Lip(R(). We recall (cf.,
e.g., [9, page 261]) the following.

DeXnition 12. A number · is a homogeneous dimension
relative to Ω with respect to M if there is a constant / > 0
such that VVVV¸F (B, [)VVVVVVVV¸F (B0, [0)VVVV ≥ /( [[0)

R
(61)

for any Carnot-Carathéodory ball ¸0 = ¸F(B0, [0) of centerB0 ∈ Ω and radius 0 < [0 ≤ diam(Ω) and any Carnot-
Carathéodory ball ¸ = ¸F(B, [) of center B ∈ ¸0 and radius0 < [ ≤ [0.

Se diameter of Ω is meant with respect to the Carnot-
Carathéodory metric associated to M. Hajłasz and Strzelecki
[7] studied local properties of weak solutions to the system
(53). Seir main hnding is that every weak subelliptic ·-
harmonic map % ∈ i1,RF (Ω, "]) (i.e., every weak solution to
(53) with_ = ·) is locally Hölder continuous.Maps % : Ω →"] with values in a unit sphere "] ⊂ R]+1 have a special status
due to the fact that the subelliptic harmonicmap system (here
(53)) may be written in a simple form using an approach
commonly referred to as the Frédéric Hélein trick (cf. [7, page
353], see also Hélein [30]). Se purpose of this section is to
start a study of weak solutions to the system (55) following

the ideas in [7] though conhned to maps % : H! → "2"−1
which are “close to horizontal” in a sense to be made precise
in the sequel.

Let H! be the Heisenberg group equipped with the
standard contact form 5 = ,� + P∑!<=1(q<,q< − q<,q<). Let; ⊆ H! be a bounded domain. Let {M3 : 1 ≤ � ≤ 2!} ={M<, z< : 1 ≤ ^ ≤ !} be the yA-orthonormal frame given

by M< = e/eB< + 2�<b and z< = e/e�< − 2B<b, whereb = e/e� as in Example 3. Clearly the coefcients of the M3’s
lie in /∞(R2!+1) ∩ Lip(R2!+1). We recall that an absolutely
continuous curve ^ : [0, �] → H! is admissible if

,^,� (�) =
2!∑
3=1
A3 (�) M3 (^ (�)) (62)

for some functions A3(�) such that ∑2!3=1 A3(�)2 ≤ 1.
DeXnition 13. Se Carnot-Carathéodory distance ,F(B, �)
among two points B, � ∈ H! is the inhmum of all � > 0
for which there exists an admissible curve ^ : [0, �] → H!
such that ^(0) = B and ^(�) = �. Balls with respect to,F : H! × H! → [0, +∞) are denoted by ¸F(B, [) = {� ∈
H! : ,F(B, �) < [} and referred to as Carnot-Carathéodory
balls.

We shall characterize horizontal maps in terms of the hrst
order diperential operator

�3A = A"+KM3 (AK) − AKM3 (A"+K) (63)

dehned for A = (A1, . . . , A2") ∈ i1,.F (;,R2").
Proposition 14. Let % : ; → ;' = "2"−1 ∩ {B2" > 0} ⊂ R2"
be a map such that %7 ∈ i1,.F (;) for any 1 ≤ Y ≤ 2Q. [en% : ; → ;' is a (weak) horizontal map if and only if �3% = 0
for any 1 ≤ � ≤ 2!.

Let (q1, . . . , q") be the natural complex coordinates
on C

" and set qK = BK + P�K and (B1, . . . , B2") =(B1, . . . , B", �1, . . . , �"). Se following conventions are
adopted as to the range of indices:

1 ≤ Y, ¸, ⋅ ⋅ ⋅ ≤ 2Q, 1 ≤ P, r, ⋅ ⋅ ⋅ ≤ 2Q − 1,
1 ≤ �, �, ⋅ ⋅ ⋅ ≤ Q, 1 ≤ [, ¹, ⋅ ⋅ ⋅ ≤ Q − 1. (64)

Let ] = BKe/eBK+�Ke/e�K ∈ X∞(R2") so that the pointwise
restriction of ] to "2"−1 is a unit normal held on "2"−1. Let v0
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be the complex structure on C
". Sen T ∈ X∞("2"−1) given

by (,9µ)T9 = v0,9]9 for any B ∈ "2"−1 is the Reeb vector held

on "2"−1. Here µ : "2"−1 → R
2" is the inclusion.With respect

to the local chart ¡' = (B1, . . . , B2"−1) in Example 8 the Reeb
vector T is given by

TK = −�K, T"+: = B:. (65)

Sen 7* = s*+T+ together with (48) in Example 8 leads to

7K = −�K − B"�" BK, 7"+: = B: − B"�" �:. (66)

Finally (66) implies thatM3(%*)(7*∘%) = −�3%. Proposition 14
is proved. In particular *(%)may be written as

* (%) = VVVVM%VVVV2 − 2!∑
3=1

VVVV�3%VVVV2. (67)

Our next task is to put (55) into a more tractable form.

Proposition 15. Let % = (%1, . . . , %2") : ; → ;' such that%7 ∈ i1,.F (;). Let us consider the functions
@K,3 = *(%)(.−2)/2 {M3 (%K) − %"+K�3%} ,
@!+K,3 = *(%)(.−2)/2 {M3 (%"+K) + %K�3%} , (68)

with 1 ≤ � ≤ Q. Let @7 = (@7,1, . . . , @7,2!) for any 1 ≤ Y ≤2Q. [en % : ; → ;' is a contact _-harmonic map if and
only if

M∗ ⋅ @7 = *(%)./2%7, 1 ≤ Y ≤ 2Q. (69)

Here the dot product means M∗ ⋅ @7 = ∑2!3=1M∗3 (@7,3).
Using E2 = −� + 7 ⊗ T and (65) and (66), one obtains

[(E2)*+]1≤*,+≤2"−1
= [[[[
−SKL + �K (�L + B"�" BL) −�K (B: − B"�" �:)−BT (�L + B"�" BL) −ST: + BT (B: − B"�" �:)

]]]]
.

(70)

Sen substitution into (55) leads to

2!∑
3=1
M∗3 [*(%)(.−2)/2 (M3 (%K) − %"+K�3%)] = *(%)./2%K,

(71)

2!∑
3=1
M∗3 [*(%)(.−2)/2 (M3 (%"+T) + %T�3%)] = *(%)./2%"+T.

(72)

It remains to be shown that (71) and (72) imply

2!∑
3=1
M∗3 [*(%)(.−2)/2 (M3 (%2") + %"�3%)] = *(%)./2%2".

(73)

Let us multiply (71) by %L�, where � ∈ /∞0 (;) is an arbitrary
test function, and integrate over ; so that to obtain (aver
integration by parts)

∑
3
M∗3 [*(%)(.−2)/2 (M3 (%K) − %"+K�3%) %L]
= *(%)(.−2)/2
× {* (%) %K%L −∑

3
M3 (%K)M3 (%L)

+∑
3
%"+KM3 (%L) �3%} .

(74)

Similarly let us multiply (72) by %"+:� so that to obtain
∑
3
M∗3 [*(%)(.−2)/2 (M3%"+T + %T�3%) %"+:]
= *(%)(.−2)/2
× {* (%) %"+T%"+: −∑

3
M3 (%"+T)M3 (%"+:)

−∑
3
%TM3 (%"+:) �3%} .

(75)

Let us contract the indices � and � in (74) (resp., [ and ¹ in
(75)), add the resulting equations, and use the identities

M3 (%K) %K + M3 (%"+:) %"+: = −M3 (%2") %2",
−%"+K%K + %:%"+: = −%"%2",
%K%K + %"+:%"+: = 1 − %22",

%"+KM3 (%K) − %:M3 (%"+:) = �3% + %"M3 (%2") .
(76)

We get

−∑
3
M∗3 [*(%)(.−2)/2 (M3 (%2") + %"�3%) %2"]
= *(%)(.−2)/2 {* (%) (1 − %22") −∑

3
M3 (%*)M3 (%*)

+∑
3
[�3% + %"M3 (%2")] �3%} .

(77)

Let us use *(%) − ∑3M3(%*)M3(%*) + ∑3(�3%)2 = M3(%2")2
(a consequence of (67)). Finally

∑
3
M∗3 [*(%)(.−2)/2 (M3 (%2") + %"�3%) %2"]
= *(%)(.−2)/2
× {* (%) %22" −∑

3
M3(%2")2 −∑

3
%"M3 (%2") �3%} .

(78)
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Now the identity (73) follows from (78) and M∗3 = −M3 − f3.
Proposition 15 is proved.

Se crucial manner of exploiting the constraint∑2"7=1 %27 = 1 is contained in the following.

Proposition 16. Let ; ⊂ H! be a bounded domain and % :; → "2"−1 ⊂ R2", % = (%1, . . . , %2"), a map such that %7 ∈i1,.F (;). [en

@7 = 2"∑
8=1
%8#7,8, (79)

where one has set #7,8 = %8@7 − %7@8. Moreover if % is a
contact _-harmonic map, then

M∗ ⋅ #7,8
= *(%)(.−2)/2 {Â8%8+"M(%7) − Â7%7+"M(%8)} �%, (80)

where Â7 = 1 if 1 ≤ Y ≤ Q, Â7 = −1 if Q + 1 ≤ Y ≤ 2Q, and
the range of the indices in (80) is meant mod Q.

Se identity (79) is a consequence of the constraint alone.
Se identity (80) for Y = � and ¸ = � follows from
(74) (interchange � and � in (74) and subtract the resulting
identity from (74)). In general, for any � ∈ /∞0 (;)
∫
I
M∗ ⋅ (%7@8) � ,V
= ∫
I
@8 ⋅ [M (�%7) − �M (%7)] ,V

= ∫
I
(M∗ ⋅ @8) %7�,V − ∫

I
[@8 ⋅ M (%7)] � ,V,

(81)

hence (by (69))

∫
I
M∗ ⋅ (%7@8) � ,V
= ∫
I
{*(%)./2%8%7 − *(%)(.−2)/2M(%8) ⋅ M (%7)} �
− ∫
I
*(%)(.−2)/2Â8%8+" [(�%) ⋅ M (%7)] � ,V.

(82)

Now let us interchange Y and ¸ in (82) to produce another
identity of the sort and subtract it from (82). Sis yields (80).
Proposition 16 is proved.

Although regularity of contact _-harmonic maps cannot
be expected in general (cf. Example 3), a few fundamental
questionsmay be asked. For instance, what is the the outcome
of the ordinary hole hlling argument (cf., e.g., [31, pages 38–
40]) and of Moser’s iteration technique in regularity theory?
our hnding in this direction isSeorem 20.We shall need the
following.

Lemma 17. Let ; ⊂ H! be a bounded domain. Let Ã0 > 0
and ;1 ⊂⊂ ; such that ¸F(B, 400Ã0) ⊂ ; for any B ∈ ;1. Let

B = ¸F(B0, [) with B0 ∈ ;1 be a Carnot-Carathéodory ball

such that 0 < [ ≤ Ã0 and let � ∈ i1,2!+2F (B) be a function of
compact support. [en for any contact (2! + 2)-harmonic map% : H! → "2"−1 satisfying (96) for some 0 < Ä < 1 and some0 < S < 1
VVVVVVV∫B [M∗ ⋅ (%8#7,8)] � ,V

VVVVVVV
≤ /����M�����N)(B) {����M%����RN)(100B) + ����M%����(1−U)RN)(100B)}

(83)

for some constant / = /(;1, !, Ã0) > 0, where Å = (1 − S)/·
and · = 2! + 2.

Sis is similar to Lemma 3.2 (the duality inequality) in [7,
page 354] and will be proved later on in this section.

Let ;1 ⊂⊂ ; and Ã0 > 0 as in Lemma 17. Also let B ∈ ;1
and 0 < [ < Ã0 and set B = ¸F(B, [) and 2B = ¸F(B, 2[). Let� ∈ /∞0 (;) be a test function such that 0 ≤ � ≤ 1, � = 1 on
B, � = 0 on;\2B, and |M�| ≤ //[ for some constant / > 0.
Next let us set

�7 = [%7 − (%7)2B] �. (84)

Sroughout if (M, Æ) is a measurable space and Y ⊂ M a
measurable set with Æ(Y) > 0, we adopt the notation A7 =(1/Æ(Y)) ∫7 A,Æ. Let us take the dot product of (79) withM∗,
multiply the resulting equation by �7, integrate over 2B, and
sum over Y

2"∑
7=1
∫
2B
(M∗ ⋅ @7) �7,V
= 2"∑
7,8=1
∫
2B
[M∗ ⋅ (%8#7,8)] �7,V.

(85)

Se hrst line of (85) may be computed as follows:

∫
2B
(M∗ ⋅ @7) �7,V
= ∫
2B
@7 ⋅ M (�7) ,V

= ∫
2B
@7 ⋅ {M (�) [%7 − (%7)2B] + �M (%7)} ,V

(86)

and summed over Y
∑
7
@7 ⋅ M (%7)
= ∑
3
{@K,3M3 (�K) + @"+K,3M3 (%"+K)}

= *(%)(.−2)/2 {VVVVM%VVVV2 −∑
3
(�3%)2}

= *(%)./2
(87)
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by the very dehnition of@7 (cf. Lemma 22) and by (67).Sus
(85) becomes

∫
2B
�*(%)./2,V +∑

7
∫
2B
[%7 − (%7)2B] @7 ⋅ M (�) ,V

= ∑
7,8
∫
2B
[M∗ ⋅ (%8#7,8)] �7,V. (88)

For simplicity let �7,8 = ∫2B[M∗ ⋅ (%8#7,8)]�7,V and /0 =∑7,8 |�7,8|. Using (88), we may perform the estimates

∫
B

*(%)./2,V ≤ ∫
2B
�*(%)./2,V

≤ /0 +∑
7
∫
2B

VVVV%7 − (%7)2BVVVV VVVV@7VVVV VVVVM�VVVV ,V.
(89)

Lemma 18. Let one set |�%|2 = ∑2!3=1 |�3%|2. [en |�M| ≤√2|M%| a.e. in ; and consequentlyVVVV@7VVVV ≤ √6*(%)(.−2)/2 VVVVM%VVVV (90)

a.e. in ;, for any 1 ≤ Y ≤ 2Q.
Se inequalities in Lemma 18 follow easily from |%7| ≤ 1

and |M%7| ≤ |M%|. Using (90), we may write (89) as

∫
B

*(%)./2,V
≤ /0 + √6∑

7
∫
2B
*(%)(.−2)/. VVVV%7 − (%7)2BVVVV VVVVM%VVVV VVVVM�VVVV ,V.

(91)

In the following estimates / denotes some positive constant,
not necessarily the same in all formulae. By Hölder’s inequal-
ity

∫
2B
*(%)(.−2)/2 VVVV%7 − (%7)2BVVVV VVVVM%VVVV VVVVM�VVVV ,V
≤ (∫
2B

VVVV%7 − (%7)2BVVVV.,V)1/.

× (∫
2B\B
(*(%)(.−2)/2 VVVVM%VVVV VVVVM�VVVV)./(.−1),V)(.−1)/.

≤ /(∫
2B

VVVVM%7VVVV.,V)1/.

× (∫
2B\B
*(%).(.−2)/2(.−1)VVVVM%VVVV./(.−1))(.−1)/.,

(92)

by the Poincaré inequality

(∫
2B

VVVV%7 − (%7)2BVVVV.,V)1/. ≤ /[(∫2B VVVVM%7VVVV.,V)
1/.

(93)

and by |M�| ≤ //[. Let us observe that *(%) ≤ |M%|2 yields
(∫
2B\B
*(%).(.−2)/2(.−1)VVVVM%VVVV./(.−1))(.−1)/.

≤ (∫
2B\B

VVVVM%VVVV.,V)(.−1)/..
(94)

Hence (by (91))

∫
B

*(%)./2,V ≤ /0 + /(∫
2B

VVVVM%VVVV.,V)1/.

× (∫
2B\B

VVVVM%VVVV.,V)(.−1)/..
(95)

Let us set �.([) = ∫8"(9,:) |M%|.,V. Also let us restrict our

considerations to maps % : H! → "2"−1 for which one may
control *(%) from below. We adopt the following.

DeXnition 19. A map % : H! → "2"−1 is said to be close to a
horizontalmap if there exist constants 0 < Ä < 1 and 0 < S <1 such that

VVVV�%VVVV ≤ ÄVVVVM%VVVVV a.e. in {B ∈ H! : VVVVM%VVVV (B) ≥ 1} ,VVVV�%VVVV ≤ Ä VVVVM%VVVV a.e. in {B ∈ H! : VVVVM%VVVV (B) < 1} . (96)

If % : H! → "2"−1 is close to horizontal, then (by (96))

* (%) ≥ �VVVVM%VVVV2, � = 1 − Ä2 > 0. (97)

Our main result in this section is the following.

6eorem 20. Let ; ⊂ H! be a bounded domain in the

Heisenberg group and gK = e/eqK − PqKe/e�, 1 ≤ � ≤ !,
the Lewy operators. LetM = {gK +gK, P(gK −gK) : 1 ≤ � ≤ !}
and ;1 ⊂⊂ ;. Let % ∈ i1,2!+2F (;, "2"−1) be a map obeying to

(96) for some 0 < Ä < 1 and 0 < S < 1. If % : ; → "2"−1 is a
weak contact (2!+2)-harmonic map, then there exist constants[0 > 0, / > 0 and 0 < ^ < 1 such that

∫
8"(9,:)

VVVVM%VVVV2!+2,V ≤ /[< (98)

for any B ∈ ;1 and any 0 < [ ≤ [0.
As a consequence of Seorem 20 (by applying a version

of the Dirichlet growth theorem due to Mac̀ıas and Segovia
[15]).

Corollary 21. Let ; ⊂ H! be a bounded domain. Any weak

contact (2!+2)-harmonic map % : ; → "2"−1 satisfying (96)
is locally Hölder continuous.

To prove Seorem 20, we use a hole hlling technique
essentially due toWidman [32], (cf. also Bensoussan et al. [31,
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page 38–40]). By (95)with_ = · = 2!+2 and Lemma 17with� = �7, we have
∫
B

*(%)R/2,V
≤ /{�R(2[)1/R(�R (2[) − �R ([))(R−1)/R
+ [�R (200[) + �R/(R+1)(200[)1/(R+1)]
× 2"∑
7=1

����M�7����N)(2B)} .

(99)

On the other hand, by the very dehnition of �7, we may use
the Poincaré inequality to estimate

2"∑
7=1

����M�7����N)(2B)
≤ ∑
3
{����(M�)[%7 − (%7)2B]����N)(2B) + �����M%7����N)(2B)}

= ∑
7
(∫
2B

VVVVM�VVVVRVVVV%7 − (%7)2BVVVVR,V)1/R

+∑
7
(∫
2B

VVVV�VVVVRVVVVM%7VVVVR,V)1/R

≤ /[ ∑7 (∫2B VVVV%7 − (%7)2BVVVVR,V)
1/R

+∑
7
(∫
2B

VVVVM%7VVVVR,V)1/R,
(100)

that is,

2"∑
7=1

����M�7����N)(2B) ≤ /�R(2[)1/R. (101)

Using (97) and (101), the inequality (120) yields

��R ([)
≤ / {�R(2[)1/R(�R (2[) − �R ([))(R−1)/R
+ [�R (200[) + �R(200[)1−U] �R(2[)1/R} .

(102)

By the Vitali absolute continuity of the integral �R(200[),
there is ['0 > 0 such that �R(200[) < 1 for any 0 < [ ≤ ['0.
As a consequence of (102) we may establish the following.

Lemma 22. [ere exist 0 < [0 ≤ ['0 and 1/2 ≤ � < 1 such that
�R ([) ≤ ��R(200[)1−U (103)

for any 0 < [ ≤ [0.

Proof. Se proof is by contradiction. Let us assume that for
any 0 < [0 ≤ ['0 and any 1/2 ≤ � < 1, there is 0 < [ ≤ [0
such that �([) > ��(200[)1−U, where � is short for �R. Note
that �(200[) ≤ �(200[)1−U. Sen (by (102))

��(200[)1−U < � ([)
≤ / {� (200[) (1 − �)(R−1)/R
+ [� (200[) + �(200[)1−U] �(2[)1/R}

≤ /�(200[)1−U {(1 − �)(R−1)/R + �(2[)1/R} .
(104)

Serefore

12 ≤ � < / {(1 − �)(R−1)/R + �(2[)1/R} . (105)

Se inequality (105) leads to

( 12/)
R ≤ ∫
2B

VVVVM%VVVVR,V. (106)

Indeed, by the contradiction assumption, we may pick a
sequence �+ ∈ [1/2, 1) such that �+ → 1 as r → ∞ and
consider the corresponding radii 0 < [+ ≤ [0. By passing to a
subsequence, if necessary, one may assume that lim+→∞[+ =[∞ for some [∞ ∈ [0, [0]. Let r → ∞ in

12 ≤ �+ < /{(1 − �+)(R−1)/R + �(2[+)1/R} (107)

and use the absolute continuity of the integral. Sen either[∞ > 0 (yielding (106)) or [∞ = 0 and then 1/2 ≤ 0, a
contradiction. Finally (106) may be exploited as follows. Let[0 = 1/¢. By the contradiction assumption there is 0 < [ ≤1/¢ such that (by (106))

( 12/)
R ≤ � (2[) ≤ ∫

8"(9,2/4)

VVVVM%VVVVR,V (108)

and the last integral tends to 0 as ¢ → ∞, a contradiction.
Lemma 22 is proved.

Now we may prove the Caccioppoli type estimate (98).
Let � = 1/200 so that (103) may be written as

�R (�[) ≤ ��R([)1−U. (109)

Sen (by (109) and induction overQ)
�R (�"[) ≤ �[1−(1−U)&]/U�R([)(1−U)& (110)

for anyQ ∈ Z,Q ≥ 1. Let us consider the family of intervals{(�", �"−1] : Q ∈ Z, Q ≥ 1}. It is a cover of (0, 1], hence for
each 0 < [ ≤ [0 there isQ ∈ Z,Q ≥ 1, such that �" < [/[0 ≤�"−1. Now the inequality [ ≤ �"−1[0 implies (by (110))

�R ([) ≤ �R (�"−1[0) ≤ �[1−(1−U)&−1]/U�R([0)(1−U)&−1 . (111)
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On the other hand let us set ^ = (log �)/(log �) (so that 0 <^ < 1) and observe that the inequality [/[0 ≥ �" implies

( [[0)
< > �"< = �(logX&)/(log Y) = �", (112)

that is, �" < ([/[0)<. One may choose [0 > 0 from the very
beginning such that �R([0) < � for any B ∈ ;1. Note that0 < Å ≤ 1/2 (by the very dehnition of Å). Sen [1 − (1 −Å)"]/Å = ∑"−1+=0 (1 − Å)+ ≥ 1 + (Q − 1)(1/2) = (Q + 1)/2,
hence �[1−(1−U)&]/U ≤ / [</2, where / = [−</20 √�. Seorem 20
is proved.

It remains that we prove Lemma 17. It sufces to prove the
inequality (83) for any � ∈ /∞0 (B). Let us consider

¶ (B) = ( 14�0) |B|−2!, B ∈ H!, (113)

where �0 = (22−2!Í!+1/Γ(!/2))2 and |B| = (|q|4 + �2)1/4 is
the Heisenberg norm of B = (q, �). By a classical result of

Folland, [33], y(B, �) = ¶(B�−1) is a fundamental solution

for the Hörmander operator ∑2!3=1M23. In particular for any
bounded domain; ⊂ H! one has the representation formula

A (B) = ∫
I
M^y (�, B) ⋅ MA (�) ,V (�) (114)

for any A ∈ /∞0 (;) and any B ∈ ;. By a result of Citti
et al., [34], we may consider a smooth cut-op function 0 ≤�0 ≤ 1 such that �0 = 1 on 2B, �0 = 0 on ; \ 4B, and|M�0| ≤ // diam(B) (the diameter is meant with respect
to the Carnot-Carathéodory metric on H!). Using (114) forA = �, one may write

∫
B

[M∗ ⋅ (%8#7,8)] � ,V
= ∫

B

M∗ ⋅ (%8#7,8) (B) � (B) �0 (B) ,V (B)
= ∫

B

,V (B) [M∗ ⋅ (%8#7,8)] (B) �0 (B)
× ∫

B

M^y (�, B) ⋅ M� (�) ,V (�)
= ∫

B

A7,8 ⋅ (M�) ,V,

(115)

where we have set

A7,8 (�) = ∫
B

[M∗ ⋅ (%8#7,8)] (B) �0 (B)M^y (�, B) ,V (B) .
(116)

We wish to prove an estimate on |A(�)|, whereA = A7,8 for
simplicity. As it is well known, |¸F(B, [)| = /[2!+2 for some
constant / > 0 and any B ∈ H! and [ > 0. Here |Y| denotes
the Lebesguemeasure of the setY. In particular the Lebesgue
measure on (H!, ,F) has the doubling property.Sus wemay

apply a result by Mac̀ıas and Segovia, [15], to pick a Whitney
decomposition of;^ = ;\ {�}. Precisely let � ∈ B, and givenB ∈ ;^, let us set [9 = ,F(B,H! \;^)/1000. Next let us choose
among {¸F(B, [9)}9∈I* a maximal family of mutually disjoint

balls {¸F(BK, [K)}K∈`. Sen ;^ = ⋃K∈` ¸F(BK, 3[K) (the
Whitney decomposition of ;^) and there is3 ≥ 1 such that
each B ∈ ; belongs to at most3 balls ¸F(BK, 6[K). Moreover,
again by a result in [15], we may associate a partition of unity
to theWhitney decomposition of;^; that is, wemay consider
a family of smooth functions {5K}K∈` such that 0 ≤ 5K ≤ 1,∑K∈` 5K = 1 on ;^, Supp(5K) ⊂ BK = ¸F(BK, 6[K), and|M5K| ≤ //[K. Se bounds on the gradients actually follow
from the work by Citti et al., [34], quoted above. Sen

A3 (�)
= ∑
K∈`
∫
B%

[M∗ ⋅ (%8#7,8)] (B) �0 (B)
× 5K (B)M3,^y (�, B) ,V (B)

= ∑
K∈`
∫
B%

[M∗ ⋅ (%8 − (%8)B%) #7,8] (B) �0 (B)
× 5K (B)M3,^y (�, B) ,V (B)

+ ∑
K∈`
(%8)B% ∫

B%

(M∗ ⋅ #7,8) (B) �0 (B)
× 5K (B)M3,^y (�, B) ,V (B)

= A'3 (�) +A''3 (�) .

(117)

Se presence of term A
''
3 (�) represents of course the main

diperence with respect to the proof of the so called duality
inequality in [7] (thereM∗ ⋅ #7,8 = 0). Integrating by parts,

A
'
3 (�)
= ∑
K∈`
∫
B%
(%8 (B) − (%8)B%)
× #7,8 (B) ⋅ M9 [�0 (B) 5K (B)M3,^y (�, B)] ,V (B) .

(118)

Due to the explicit form of the fundamental solution y(B, �),
one may easily check thatVVVVM3y (B, �)VVVV ≤ /,F(B, �)−2!−1, (119)

VVVVM3M)y (B, �)VVVV ≤ /,F(B, �)−2!−2, (120)

for any B, � ∈ ;. Here it is irrelevant whether diperentiation
is performed in B or �. Estimates of the sort in the case of
an arbitrary Hörmander system of vector helds have been
obtained by Sánchez-Calle [35]. Estimates ony(B, �) itself are
available, yet only estimates on the derivatives are needed for
the following calculations. Using (119)-(120) andVVVVM�0 (B)VVVV ≤ /,F(B, �)−1,VVVV5K (B)VVVV ≤ /,F(B, �)−1, � ∈ �, (121)
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one has

VVVVVM),9 [�0 (B) 5K (B)M3,^y (�, B)]VVVVV ≤ /,F(B, �)−2!−2,
(122)

hence

VVVVVA'K (�)VVVVV ≤ /∑
K∈`
∫
Γ%

VVVVV%8 (B) − (%8)B% VVVVV VVVV#7,8 (B)VVVV,F(B, �)2!+2 ,V (B) ,
(123)

where ΓK = Supp(5K). Let B ∈ BK = ¸F(BK, 6[K). As � ∈
H! \ ;^, the very dehnition of [K yields ,F(�, BK) ≥ 1000[K;
hence

1000[K ≤ ,F (�, BK)
≤ ,F (�, B) + ,F (B, BK)
≤ ,F (B, �) + 6[K

(124)

and in particular 6[K ≤ ,F(B, �). Sus |BK| = /[2!+2K ≤/',F(B, �)2!+2, where/' = /6−2!−2; hence there is a constant/ > 0 such that

,F(B, �)2!+2 ≥ / VVVVBKVVVV , B ∈ BK. (125)

Let us set v = {� ∈ � : ΓK ∩ 4B ̸= 0}. Let us apply (123) and
(125) and Hölder’s inequality to perform the estimates

VVVVVA'3 (�)VVVVV ≤ /∑
K∈b

1VVVVBKVVVV ∫B% VVVVV%8 (B) − (%8)B% VVVVV VVVV#7,8 (B)VVVV ,V (B)
≤ /∑
K∈b
( 1VVVVBKVVVV ∫B% VVVVV%8 − (%8)B% VVVVV

R2,V)1/R2

× ( 1VVVVBKVVVV ∫B% VVVV#7,8VVVVR
2/(R2−1),V)(R2−1)/R2 ,

(126)

where we have set · = 2! + 2 for simplicity. By (90) in

Lemma 18 and * ≤ |M%|2, one has |#7,8| ≤ 2√6|M%|R−1;
hence

( 1VVVVBKVVVV ∫B% VVVV#7,8VVVVR
2/(R2−1),V)(R2−1)/R2

≤ /( 1VVVVBKVVVV VVVVM%VVVVR
2/(R+1),V)(R2−1)/R2 .

(127)

At this point we need to apply a version of the Sobolev
inequality due to Franchi et al. [36]. Precisely, for any

1 ≤ _ < 2! + 2 there is a constant / > 0 such that for any ball¸F(B, [) with B ∈ ; and 0 < [ ≤ diam(;)
( 1VVVV¸F (B, [)VVVV ∫8"(9,:) VVVVVA − A8"(9,:)VVVVV

.∗,V)1/.∗

≤ /[( 1VVVV¸F (B, [)VVVV ∫8"(9,:) |MA|.,V)
1/.,

_∗ = 2 (! + 1) _2! + 2 − _ .
(128)

By the assumption in Seorem 20 one has M3%8 ∈ �2!+2(;);
henceM3%8 ∈ �](;) for any 0 < ] ≤ 2!+2. Serefore (by the
Sobolev inequality above)

( 1VVVVBKVVVV VVVVV%8 − (%8)B% VVVVV
R2,V)1/R2

≤ /[K( 1VVVVBKVVVV ∫B% VVVVM%VVVVc
2/(R+1),V)(R+1)/R2 .

(129)

Collecting the information in (127) and (129),

VVVVVA'3 (�)VVVVV ≤ /∑
K∈b
[K( 1VVVVBKVVVV ∫B% VVVVM%VVVVR

2/(R+1),V)(R+1)/R. (130)
In the sequel we write brieuy � ≈ � whenever �// ≤ � ≤/� for some constant / ≥ 1. Let � ∈ v. If there is ¢ ∈ Z

such that BK ∈ ¸F(�, 24−1) \ ¸F(�, 24−2), then [K ≈ 24 and
BK ⊂ ¸F(�, 24) (our arguments follow closely those in [7,
page 356]). MoreoverVVVVBKVVVVVVVV¸F (�, 24)VVVV = (

6[K24 )
2!+2, (131)

hence |BK| ≈ |¸F(�, 24)|. Consequently
[K( 1VVVVBKVVVV ∫B% VVVVM%VVVVR

2/(R+1),V)(R+1)/R

≤ /24( 1VVVV¸F (�, 24)VVVV ∫8"(^,2.) VVVVM%VVVVR
2/(R+1),V)(R+1)/R.

(132)

Also {� ∈ v : BK ∈ ¸F(�, 24−1) \ ¸F(BK, 24−2)} = 0 whenever24−2 ≥ diam(8B) and the estimate (130) may be written asVVVVVA'3 (�)VVVVV
≤ / ∑
2.≤4 diam(8B)

24( 1VVVV¸F (�, 24)VVVV ∫8"(^,2.) VVVVM%VVVVR
2/(R+1),V)(R+1)/R.

(133)

Next we shall express the estimate on |A'3(�)| in terms of
Riesz potentials and then use the general estimates on �.
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norms of Riesz potentials as obtained by Hàjlasz and Koskela
[37]. To recall the needed result, let (M, ¦) be a metric space
endowed with a Borel measure Æ such that Æ(¸) > 0 for any
ball ¸ ⊂ M. Let Y ⊂ M be a bounded open set and let us
consider the numbers k > 0, Â ≥ 1, and ℎ > 0.
DeXnition 23. An (abstract) Riesz potential operator ve,7ℎ,? is

given by

(ve,7ℎ,? s) (B)
= ∑
2.≤2e diam(7)

24ℎ( 1VVVV¸ (B, 24)VVVV ∫8(9,2.) VVVVs (q)VVVV? ,Æ(q))
1/?.
(134)

Se estimate (133) implies

VVVVVA'3 (�)VVVVV ≤ / (v2,8B1,? VVVVM%VVVV) (�) , k = ·· + 1 . (135)

Se needed result in [37] holds for an arbitrary metric space(M, ¦) endowed with a Borel measure Æ such that Æ(¸) > 0 for
any ball ¸ ⊂ M. Let Y ⊂ M be a bounded open set such that Æ
is doubling on

@ = {B ∈ M : dist (B, Y) < 2Â diam (Y)} . (136)

Let us assume that there are constants � > 0 and · > 0 such
that

Æ (¸ (B, Ã)) ≥ �( Ã
diam(Y))

RÆ (Y) (137)

for any B ∈ Y and any 0 < Ã ≤ 2Â diam(Y). Moreover letℎ > 0 and 0 < k ≤ ¹ < ·/ℎ. Sen (cf. [37])

�����ve,7ℎ,? s�����N/∗ (7,g) ≤ /(diam (Y)Æ(Y)1/R )
ℎ����s����N/(h,g), (138)

where ¹∗ = ¹·/(· − ℎ¹) and the constant / > 0 depends
only on ℎ, Â, k, ¹, �, ·, and the doubling constant. Sen (by
Hölder’s inequality with 1/(2! + 2) + 1/·' = 1, resp., with1/Æ + 1/Æ' = 1)
VVVVVVV∫B [M∗ ⋅ (%8#7,8)] �,V

VVVVVVV
≤ 2!∑
3=1

����M�����N20+2(B)
× (∫

B

VVVVVA'3 (�)VVVVV2(!+1)/(2!+1),V(�))(2!+1)/[2(!+1)]

+∑
3

����M�����N3(B)(∫
B

VVVVVA''3 (�)VVVVVg!,V(�))1/g
!

(139)

with 1 < Æ < · to be determined later on. At this point
we need an estimate on |A''3 (�)|. By (80) in Proposition 16 if

% : H! → "2"−1 is a contact (2! + 2)-harmonic map obeying
to our assumptions (96), thenVVVVM∗ ⋅ #7,8VVVV ≤ 2*(%)(R−2)/2 VVVVM%VVVV VVVV�%VVVV ≤ VVVV2ÄM%VVVVR−1+V, (140)
hence (by (119))VVVVVA''3 (�)VVVVV

≤ ∑
K∈`
∫
B%

VVVV(M∗ ⋅ #7,8) (B)VVVV VVVV�0 (B)VVVV
× VVVV5K (B)VVVV VVVVVM3,^y (�, B)VVVVV ,V (B)

≤ /∑
K∈`
∫
Γ%

VVVVM%VVVV],F(B, �)2!+1 ,V (B) ,
(141)

where ] = · − 1 + S and 0 < ] < ·. By ,F(B, �)2!+1 ≥/|BK|/[K for any B ∈ BK one obtainsVVVVVA''3 (�)VVVVV ≤ /∑
K∈b
[K 1VVVVBKVVVV ∫B% VVVVM%VVVV],V

≤ /∑
K∈b

[KVVVVBKVVVV(∫B% VVVVM%VVVVR)
]/RVVVVBKVVVV(R−])/R,

(142)

that is,VVVVVA''3 (�)VVVVV
≤ / ∑
2.≤4 diam(8B)

24( 1VVVV¸F (�, 24)VVVV ∫8"(^,2.) VVVVM%VVVVR,V)
]/R,
(143)

hence VVVVVA''3 (�)VVVVV ≤ / (v2,8B1,R/]VVVVM%VVVV]) (�) . (144)

Serefore (by (135) and (144))

(∫
B

VVVVVA'3VVVVVR/(R−1),V)(R−1)/R
≤ /�����v2,8B1,R/(R+1)VVVVM%VVVVR�����N)/()−1)(8B)
≤ /diam (8B)|8B|1/R �����VVVVM%VVVVR�����N1(h),

(145)

that is,

(∫
B

VVVVVA'3VVVVVR/(R−1),V)(R−1)/R ≤ /����M%����RN)(100B), (146)

where@ = {B ∈ H! : dist(B, 8B) ≤ 4 diam(8B)}, respectively,
(∫

B

VVVVVA''3 VVVVVg/(g−1),V)(g−1)/g
≤ /�����v2,8B1,R/]VVVVM%VVVV]�����N3/(3−1)(8B)
≤ /diam (8B)|8B|1/R �����VVVVM%VVVV]�����N/(h)
≤ /�����VVVVM%VVVV]�����N/(100B),

(147)
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where

0 < ·
]

≤ ¹ < ·, ÆÆ − 1 = ¹∗ = ¹·· − ¹ . (148)

Serefore it must be that

1 < Æ ≤ ·2 − S , ¹ = Æ·(· + 1) Æ − ·. (149)

On the other hand�����VVVVM%VVVV]�����N/(100B)
= (∫
100B
(VVVVM%VVVVR)]g/[(R+1)g−R],V)[(R+1)g−R]/(gR)

(150)

and we may choose Æ such that ]Æ/[(· + 1)Æ − ·] = 1; that
is, Æ = ·/(2 − S). Consequently

(· + 1) Æ − ·Æ· = 1 − Å, Å = 1 − S· ,
�����VVVVM%VVVV]�����N/(100B) = (∫100B VVVVM%VVVVR,V)

1−U,
(∫

B

VVVVVA''3 VVVVVg/(g−1),V)(g−1)/g ≤ /(∫100B VVVVM%VVVVR,V)
1−U.

(151)

Also����M�����gN3(B) = ∫
B

VVVVM�VVVVg,V
≤ (∫

B

VVVVM�VVVVg(2−V),V)1/(2−V)|B|(1−V)/(2−V)
≤ /(∫

B

VVVVM�VVVVR,V)1/(2−V),
(152)

that is, ‖M�‖N3(B) ≤ /‖M�‖N)(B). Summing up (by (139) and
(146) and (151)),VVVVVVV∫B [M∗ ⋅ (%8#7,8)] � ,V

VVVVVVV
≤ ����M�����N)(B) {����M%����RN)(100B) + ����M%����(1−U)RN)(100B)}

(153)

which is (83). Lemma 17 is proved.
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