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Polarity is the structural and functional hallmark of epithelia. The apical plasma membrane, facing the organism’s
exterior (the lumen of the gut, renal tubule and glandular duct), differs in many important respects from the
basolateral plasma membrane that is apposed to the interior of the organism. The generation and maintenance
of epithelial polarity require a highly specialized subcellular machinery to bring proteins to their appropriate sites
of action. This is a dynamic process involving the interpretation of sorting signals, vectorial delivery mechanisms,
membrane-specific fusion and retention processes. Here, we will provide a review of the field, highlighting recent
advances within a historically relevant context.

Introduction
The fundamental feature of cell polarity is that the
cell’s plasma membrane is divided into discrete do-
mains. Examples include the membranes of axons and
dendrites in neurons, the growing bud and mating
projection in the yeast Saccharomyces cerevisiae and la-
mellipodia in fibroblasts. However, the best-studied
type of cell polarity is found in epithelia, which is the
most common type of tissue in animals.
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fibrosis transmembrane conductance regulator; CRE, common recycling
endosome; ER, endoplasmic reticulum; FAPP2, PI(4)P
(phosphatidylinositol-4-phosphate) adaptor protein; GABA, γ-aminobutyric
acid; GFP, green fluorescent protein; gp, glycoprotein; GPI,
glycosylphosphatidylinositol; HA, haemagglutinin; KIF5B, kinesin family
member 5B; KIFC3, kinesin family member C3; Kir 2.3, inwardly rectifying
potassium channels 2.3; LDL, low-density lipoprotein; LLCPK-1, Lilly
Laboratories cell porcine kidney cells; LPH, lactase-phlorizin hydrolase; MAL,
myelin and lymphocyte protein (also called VIP17); MCAM, melanoma cell
adhesion molecule; MDCK cell, Madin–Darby canine kidney cell; NaPi-Cap2,
sodium phosphate C-terminal-associated protein 2; NaPiII, sodium phosphate
co-transporter type 2; NCAM, neural cell adhesion molecule; NHERF,
Na+/H+-exchanger regulatory factor; NKCC2, Na-K-2Cl co-transporter type 2;
pIgR, polymeric immunoglobulin receptor; PLAP, placental alkaline
phosphatase; PMCA2, plasma-membrane Ca2+-ATPase 2; p75NTR,
neurotrophin receptor p75; RE, recycling endosome; SAP97, synapse-
associated protein 97; SNAP23, 23 kDa synaptosome-associated protein;
SNARE, soluble N-ethylmaleimide-sensitive fusion protein-attachment protein
receptor; Stx3, syntaxin 3; TGF-β, transforming growth factor-β; TGN, trans-
Golgi network; TeNT, tetanus-neurotoxin, TJ, tight junction; t-SNARE, target
SNARE; VAMP, vesicle-associated membrane protein; VIP36, vesicular integral
protein 36; v-SNARE, vesicle SNARE; VSV-G, vesicular-stomatitis-virus
glycoprotein.

The formation of specialized intercellular adhes-
ive structures, the TJs (tight junctions), initiates the
polarization process by demarcating two biochem-
ically and functionally distinct domains: the apical
and basolateral plasma membranes. The protein and
lipid compositions of these surfaces are tailored to the
particular functions of each domain, which include
protecting against invasion by toxins and pathogens,
absorption or secretion of nutrients, signalling and
ion transport. Once the polarity is established, the
maintenance of this polarity requires a highly spe-
cialized subcellular machinery to bring membrane
proteins to their appropriate sites of action and to
recycle them to one or the other domain.

According to the present understanding, polarized
protein traffic in epithelial cells is governed by signals
embedded within the structures of the proteins them-
selves. These sorting signals are read, interpreted and
acted on by the intracellular trafficking machinery,
which segregates and packages these membrane pro-
teins into specialized membrane transport vesicles
destined for apical and basolateral delivery. A large
number of diseases are now recognized to be asso-
ciated with failure of normal protein recycling from
the membrane, protein mistargeting away from the
correct cell surface compartment or to the wrong in-
tracellular compartment.

Much of what has been learned through the ana-
lysis of the polarized trafficking in epithelial cells
has provided insight into mechanisms operating
during the sorting and trafficking to axonal and
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somato-dendritic membrane domains in neurons.
However, the mechanisms involved in these fascinat-
ing processes are beyond the scope of this review (see
reviews by Kim and Sheng, 2004; Groc and Choquet,
2006; Sann et al., 2009).

Here, we provide a review of the polarized traffick-
ing in epithelial cells, highlighting recent advances
within a historically relevant context.

Trafficking routes in epithelial cells
To date three different routing pathways have been
identified in epithelial cells.

Newly synthesized proteins can follow a direct route
to their final apical or basolateral membrane destina-
tion. In this case, proteins are sorted soon after their
synthesis and before reaching the plasma membrane,
and thus they follow their biosynthetic pathway dir-
ectly to their final destination. The TGN (trans-
Golgi network) is the principal sorting station of
this direct biosynthetic sorting pathway in epithelial
cells. Within or soon after the TGN these apical and
basolateral membrane-destined cargo proteins are se-
gregated and then shipped directly to the appropriate
polarized membrane domains.

This pathway was discovered in MDCK (Madin–
Darby canine kidney) cells, which form a well-
polarized monolayer when cultured on permeable
supports (Cereijido et al., 1978). Pioneering work
showed that viral glycoproteins such as the influ-
enza HA (haemagglutinin) and the VSV-G (vesicular-
stomatitis-virus glycoprotein) are rapidly and directly
transported to their target membranes without any
transitory stops on opposite plasma membrane do-
mains (Rindler et al., 1984; Rodriguez-Boulan et al.,
1984). Most recently, biochemical and live imaging
studies have shown that newly synthesized proteins
segregate into different vesicles on exit from the
TGN and then exit in separate tubulovesicular car-
riers to pursue the direct route to the plasma mem-
brane (Kreitzer et al., 2003; Christiansen et al., 2005;
Paladino et al., 2006).

Although it was initially believed that most of the
protein sorting in the direct route was carried out
in the TGN, this relatively simple model has been
challenged by evidence of sorting in pre-TGN com-
partments and by the observation that biosynthetic
cargo may travel within intermediate compartments
en route from the TGN to the plasma membrane

(Paladino et al., 2004; Alfalah et al., 2005; Tveit
et al., 2005; Vuong et al., 2006; Hein et al., 2009).

For instance, using an assay designed to meas-
ure the meeting of newly synthesized membrane
proteins with endosomal compartments loaded with
horseradish peroxidase, Orzech et al. found that the
biosynthetic road travelled by pIgRs (polymeric im-
munoglobulin receptors) can involve the CREs (com-
mon recycling endosomes), suggesting that the CRE
might also serve as a polarized sorting station on the
direct pathway (Orzech et al., 2000). Evidence accu-
mulated over a decade and consolidated in the most
recent studies (Ang et al., 2004; Cancino et al., 2007;
Cresawn et al., 2007; Gravotta et al., 2007; Cramm-
Behrens et al., 2008) have shown that the biosynthetic
route of at least some proteins includes a post-TGN
transit through REs (recycling endosomes).

Proteins that arrive at the plasma membrane after
either TGN or endosomal sorting may be retained
at the membrane via direct or indirect interaction
with cytoskeletal elements. Alternatively, they can
undergo relatively rapid endocytosis and postendo-
cytic sorting, which can also provide the chief po-
larizing mechanism for protein sorting. In fact, since
nearly 50 % of a typical polarized plasma membrane
is endocytosed per hour, this postendocytic sorting
ensures that internalized proteins are recycled back
to the appropriate plasma membrane.

Most endocytosed proteins are initially found in
two spatially and biochemically distinct populations
of early endosomes: BEEs (basolateral early endo-
somes) and AEEs (apical early endosomes). Each pop-
ulation of early endosomes supports a rapid and
efficient membrane protein recycling to its cog-
nate membrane without passing through interme-
diate compartments (Sheff et al., 1999; Rea et al.,
2004). For instance, the transferrin receptors may
rapidly recycle back to the basolateral plasma mem-
brane through vesicular transport dependent on the
small GTPase Rab4a, a marker of BEE (Maxfield and
McGraw, 2004; Leonard et al., 2008). Most recently,
Hellberg et al. identified protein kinase C as the crit-
ical signalling component, which regulates the sort-
ing of the PDGFβ (platelet-derived growth factor β)
receptor at the level of the early endosomes (Hellberg
et al., 2009).

Proteins internalized in AEEs and BEEs can be dir-
ected to the CRE, which is characterized by a peri-
nuclear localization and tubular morphology. Because
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the CRE compartment recycles internalized proteins
coming from both the apical and basolateral com-
partments, it is generally believed to be a major po-
larized sorting station (Brown et al., 2000; Wang
et al., 2000; Thompson et al., 2007).

For instance, the CFTR (cystic fibrosis transmem-
brane conductance regulator) is rapidly endocytosed
from the plasma membrane into the CRE compart-
ment and undergoes efficient recycling back to the
plasma membrane in human airway epithelial cells,
with >75 % of endocytosed wild-type CFTR recyc-
ling back to the plasma membrane (Picciano et al.,
2003; Bomberger et al., 2009).

In some polarized systems, it has been shown that
resident apical proteins may also be sorted in an ‘in-
direct’ or transcytotic pathway. In this case, they are
first sent from the TGN or endosomal compartment
to the basolateral surface, from where they are endo-
cytosed and subsequently transported to the opposite
apical surface [for a review, see Mostov et al. (2000)].

Hepatocytes had been suggested to lack the direct
route for the apical delivery of apical proteins and to
rely only on the transcytosis pathway for apical pro-
tein delivery. However, a direct pathway for the ap-
ical delivery of the polytopic apical plasma membrane
ABC transporter (ATP-binding-cassette transporter)
proteins, MDR1 (multidrug resistance protein 1) and
SPGS (sister of p-glycoprotein) has been proposed in
liver cells, indicating that there are important ex-
ceptions to the long-standing model of an exclusive
indirect transfer of resident apical proteins in liver
cells (Sai et al., 1999; Kipp and Arias, 2000).

Until recently, it was assumed that the transcytosis
was a typical feature of hepatic and intestinal cells,
whereas the apical proteins were sorted to the ap-
ical surface of MDCK cells only following the direct
route.

However, when expressed by transfection in
MDCK cells, the pIgR and its ligand, IgA, are endo-
cytosed from the basolateral membrane, sorted to ap-
ical endosomes and successively to the apical cell sur-
face (Mostov et al., 1995; Oztan et al., 2007; Verges
et al., 2007).

Interestingly, it has been shown that addition
of tannic acid, a mild fixative, to the basolateral
membrane of live MDCK cells prevented the deliv-
ery of newly synthesized GPI (glycosylphosphatidyl-
inositol)-anchored proteins to the apical surface, sug-
gesting that certain proteins that were thought to be

sorted at the level of the TGN of MDCK cells (e.g.
GPI-associated proteins) are now thought to follow
a transcytotic route via the endosomal compartment
(Polishchuk et al., 2004). In addition, using the same
experimental approach, Chmelar et al. demonstrated
for the first time that a G-protein-coupled receptor
achieves its apical localization in MDCK cells via
transcytosis (Chmelar and Nathanson, 2006), sug-
gesting that the transcytosis pathway might be used
more commonly by a variety of epithelial cells than
was previously believed.

Alternatively, proteins can be randomly targeted to
both membrane domains and achieve their asymmet-
ric distribution by selective stabilization or retention
at one cell surface following the so-called ‘random’
route (Wozniak and Limbird, 1996; Matter, 2000).

For instance, the CFTR is randomly sorted to the
apical and basolateral membranes in MDCK cells and
specifically retained in the apical membrane via inter-
action with a PDZ protein (Swiatecka-Urban et al.,
2002). Like CFTR, when stably transfected in MDCK
cells, the human α5β-1 integrin was integrated into
both cell surface domains following its biosynthesis.
The apical pool of the integrin was subjected to rapid
degradation, whereas the basolateral pool was stabil-
ized, leading to the typical basolateral localization
observed in the steady state (Gut et al., 1998). The
authors suggested the fascinating hypothesis that β1
integrins participate in the determination of the spa-
tial orientation in MDCK cells; thus they are con-
stitutively transported to both cell surface domains
acting as sensors that signal the presence of matrix
to the interior of the cells. Thus selective retention
can add another level of regulation of the polarized
distribution of membrane components (Figure 1).

Sorting information
According to our present understanding, polarized
trafficking is determined by signals contained within
a membrane protein’s structure. They are read, inter-
preted and acted on by the intracellular sorting ma-
chinery, which in turn shuffles, retains, or retrieves
molecules to the appropriate membrane domain.

Direct demonstration of a sorting sequence requires
its inactivation by mutagenesis/deletion. However,
the type of mis-sorting phenotype produced depends
on the presence or absence of other sorting signals that
may be simultaneously contained within the polar-
ized membrane protein. When the protein is devoid
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Figure 1 Trafficking routes in epithelial cells and the SNAREs involved in the membrane-specific fusion events
To date three different routing pathways have been identified in epithelial cells. Newly synthesized proteins can follow a direct

route (red pathways for apical proteins and black pathways for basolateral proteins). In some polarized systems, apical proteins

may also be sorted in a transcytotic route (green pathways). Alternatively, proteins can be randomly targeted to both membrane

domains and achieve their asymmetric distribution by selective stabilization or retention at one cell surface following the so-called

random route (blue pathways). Membrane fusion is the final and irreversible step of each trafficking route and is mediated

by SNARE proteins. Under normal homoeostatic conditions, only the appropriate organelles fuse with the cognate membrane.

SNARE proteins mediating fusion events at the apical (red) and basolateral (black) membrane are depicted. For clarity, this Figure

does not include many other factors that have important roles in trafficking, but whose description is reported in the text and in

Table 1.

of any other sorting information, ablation of the sort-
ing signal will generally result in a non-polarized
expression pattern. In contrast, removal of a basolat-
eral sorting signal can unmask a subordinated apical
sorting signal that drives the apical localization of
the resulting protein. Once a particular sequence is
identified as necessary for the polarized sorting of
a protein, it is instructive to determine whether it
is sufficient to act as an autonomous sorting signal.
The experimental approach to address this issue usu-
ally involves transplanting the sorting sequence of

interest on to a reporter protein that is otherwise
expressed in a non-polarized fashion and examining
whether it confers a polarized sorting phenotype.

Apical sorting signals
The first signal for polarized sorting to be rigorously
established was the GPI, which when added to cer-
tain proteins resulted in the apical localization of
these chimaeric plasma-membrane proteins (Brown
et al., 1989; Lisanti et al., 1989; Powell et al., 1991).
However, in Fisher rat thyroid cells, endogenous
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GPI-anchored proteins are delivered to the basolateral
plasma membrane (Zurzolo et al., 1993) and the typ-
ical GPI-anchored protein, PLAP (placental alkaline
phosphatase), is expressed on the apical membrane by
a GPI-independent mechanism (Lipardi et al., 2000).
Moreover, the addition of a GPI-anchoring motif to
rGH (rat growth hormone), a soluble protein that
is secreted in a non-polarized manner, is not suffi-
cient to ensure its apical targeting (Benting et al.,
1999), confirming that GPI anchoring is not a uni-
versal mechanism for protein targeting to the apical
membrane.

A second group of apical sorting signals comprises
N-glycans and O-glycans. Early indications for an
involvement of N-glycosyl chains in apical protein
targeting came from studies using N-glycosylation
inhibitors. Treatment of MDCK cells with tunicamy-
cin, a GlcNAc analogue that inhibits the first steps of
N-glycosylation, mis-sorts apical gp80 (glycoprotein
80; clusterin) to both membrane domains of MDCK
cells (Urban et al., 1987).

Moreover, mutagenic removal of N-glycosylation
sites in the gastric H+/K+-ATPase β-subunit
(Vagin et al., 2004) or bile salt export pump
(Mochizuki et al., 2007) significantly decreases their
apical content and increases their intracellular accu-
mulation. Conversely, sequential addition of one to
five N-glycans to the basolaterally located Na+/K+-
ATPase β1-subunit caused an increasing fraction of
this subunit to be redirected to the apical membrane
in HGT-1 cells (Vagin et al., 2005). Recent work also
suggests that terminal glycosylation, rather than core
glycosylation, of N-glycans seems to be important for
apical sorting (Potter et al., 2004; Vagin et al., 2004).

O-linked glycosyl chains may also act as apical
targeting signals. The p75NTR (neurotrophin re-
ceptor p75) and the hydrolase SI (sucrase isomaltase)
are characterized by the presence of heavily O-
glycosylated stalk domains in close proximity to the
membrane. Deletion of these domains results in a
shift in the sorting of these proteins from the apical
plasma membrane to both surface domains (Yeaman
et al., 1997; Jacob et al., 2000).

Despite several lines of evidence suggesting that
N-glycans can act as apical sorting signals, this
hypothesis remains controversial primarily because
N-glycans are important for the processes that pre-
cede or follow the actual sorting event such as
protein folding, quality control, ER (endoplasmic

reticulum)-associated degradation, ER trafficking
and retention of glycoproteins in the apical mem-
brane. Moreover, there is a large population of basolat-
eral plasma-membrane proteins that are glycosylated,
demonstrating that the glycosylation is not, in itself,
sufficient to specify selective apical targeting.

A third group of apical sorting signals includes
proteinaceous motifs in transmembrane or cytoplas-
mic domains that can range from a few amino acids to
stretches of up to 30 residues. Indeed, apical sorting
signals of a variety of different compositions have been
located in the cytosolic tails of rhodopsin (Chuang and
Sung, 1998), megalin (Marzolo et al., 2003; Takeda
et al., 2003), receptor guanylate cyclases (Hodson
et al., 2006), M2 muscarinic receptors (Chmelar and
Nathanson, 2006) and the ATP7B copper-ATPase
(Braiterman et al., 2009).

Conformational determinants are essential com-
ponents of these apical sorting signals. For instance,
for the gastric H,K-ATPase it has been suggested
that TM4 (the fourth transmembrane spanning do-
main) and its flanking regions induce conformational
sorting motifs that direct the ion pump exclusively to
the epithelial apical membrane (Dunbar et al., 2000).
Similarly, Grati et al. found that the apical targeting
of the PMCA2 (plasma-membrane Ca2+-ATPase 2)
depends on the size but not on the sequence of an
amino acidic stretch in the first intracellular loop,
suggesting that the conformation of this cytoplas-
mic loop plays a role in apical sorting (Grati et al.,
2006).

More recently, we identified two regions within
the C-terminus of the renal NKCC2 (Na-K-2Cl co-
transporter type 2), which specifically co-operate in
generating a functional apical sorting signal. Our res-
ults suggest that the actual functional apical sorting
signal might arise from a conformational cross-talk
between these sorting motifs and their neighbouring
sequences in the protein’s structure (Carmosino et al.,
2008) (Table 1).

Apical sorting machinery
The most likely hypothesis as to the nature of the ap-
ical sorting machinery postulates that many proteins
are sorted apically because they have an affinity for
microdomains of glycosphingolipids and cholesterol
(lipid rafts) that are assembled in the Golgi complex.

This hypothesis is supported by strong experi-
mental evidence. First, many apical proteins, such
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Table 1 Sorting signals and the elements of the sorting machinery

Signals Examples Elements of the sorting machinery

Apical

Lipid rafts HA, PLAP, GPI-anchored proteins VIP17/MAL, galectin-4, FAPP2,
annexin-13b, annexin-2, kinesin,
KIFC3

Glycosylation Clusterin (gp80), H,K-ATPase β-subunit, P75NTR, LPH,
SI, glycoprotein g114

Lipid rafts, galectin-3, kinesin, KIF5B

Cytoplasmic sequences Rhodopsin, megalin, receptor guanylate cyclase, M2
muscarinic receptors, ATP/B, copper-ATPase, NKCC2,
PMCA2

Dynein light-chain Tctex

Transmembrane sequence H,K-ATPase α-subunit

PDZ motifs CFTR, Na+/H+ exchanger, NaPiII NHERF, NaPi-Cap2

Basolateral

Cytoplasmic YXX� (�-bulky
hydrophobic) motifs

LDL receptor, VSV-G, pIgR, hTfnR (human transferrin
receptor)), TGN38, AQP4

AP-1, AP-4, exocyst

Cytoplasmic [DE]XXXL[LI] motifs E-cadherin, sulfate/bicarbonate/oxalate anion exchanger
sat-1, MCAM, NKCC1 CD147, MHCII, furin

AP-1, exocyst

PDZ motif Kir 2.3, GABA transporter, BGT-1, GABA transporter,
GAT-2, Syndecan-1, α5β-1 integrin

Syntrophin, Lin-7/CASK, PSD-93,
SAP97, Cdc42

Non-canonical sequences Transferrin, NCAM, TGF-β receptor

as GPI-anchored apical proteins and HA, become in-
soluble in non-ionic detergent at 4◦C as they reach the
Golgi complex. Detergent insolubility reflects lipid
raft association since raft lipid components are insol-
uble in non-ionic detergent at 4◦C (Brown and Rose,
1992). Moreover, depletion of glycosphingolipids or
cholesterol results in the mis-sorting of GPI-anchored
apical proteins and influenza HA on the way to the
apical plasma membrane in MDCK cells (Keller and
Simons, 1998).

This simple hypothesis was challenged by sub-
sequent studies. For instance, cholesterol depletion
did not affect the apical sorting of some GPI-anchored
proteins (Lipardi et al., 2000) and lipid raft associ-
ation did not correlate necessarily with apical mem-
brane targeting, since some basolateral proteins can
partition into raft-like compartments (Fujii et al.,
2008; Lebreton et al., 2008). These observations sug-
gest that lipid rafts seem to be necessary but not
sufficient for apical membrane targeting.

Interestingly, Paladino et al. showed that GPI-
anchored GFP (green fluorescent protein) is targeted
to the apical membrane in MDCK cells, but is mis-
sorted to the basolateral membrane when mutations
are introduced to GFP that prevent its natural tend-
ency to oligomerize (Paladino et al., 2004). Parallel
experiments imply that clustering is important in
the general sorting of GPI-associated proteins, sug-

gesting that lipid rafts are converted into functional
apical sorting platforms by a ‘clustering event’.

Until now, a variety of clustering factors or lectin-
raft-associated proteins have been identified. The
VIP36 (vesicular integral protein 36) has been isol-
ated by Simons and co-workers from detergent-
insoluble fractions (Fiedler et al., 1994). This lectin
is present in the Golgi apparatus, at the apical plasma
membrane and in endosomal or vesicular structures,
and has been assigned a putative role in glycoprotein
trafficking from the TGN to the plasma membrane.
Nevertheless, further studies have demonstrated that
VIP36 is in fact involved in early trafficking steps,
e.g. in trafficking from the ER to the Golgi ap-
paratus, and may not represent an essential sort-
ing factor for apical glycoproteins (Fullekrug et al.,
1999; Hara-Kuge et al., 2002). Another candid-
ate, the VIP17/MAL (myelin and lymphocyte pro-
tein) protein is present in lipid microdomains, in-
teracts with GPI-apical proteins and may either
escort its associated proteins to the apical membrane
or retain associated proteins within the apical mem-
brane (Cheong et al., 1999; Puertollano et al., 1999;
Kamsteeg et al., 2007; Ramnarayanan et al., 2007).
Interestingly, overexpression of VIP17/MAL in the
kidney of transgenic mice results in dramatic ampli-
fication of the apical surface and ultimately to cyst
formation in distal nephron structures, consistent
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with the hypothesis that it plays an important role
in apical sorting or in maintaining the stability of
the apical membrane (Frank et al., 2000).

Moreover, recent reports demonstrated that
VIP17/MAL clusters, formed either by spontaneous
clustering of VIP17/MAL or by antibody-mediated
cross-linking of FLAG-tagged VIP17/MAL, laterally
concentrate markers of sphingolipid rafts in COS
cells, placing MAL as a key component in the organiz-
ation of membrane rafts domains (Magal et al., 2009).

Recent results have highlighted the involvement
of a new lectin family, the galectins, in apical protein
trafficking. Depletion of galectin-4 by RNA inter-
ference impairs raft formation and affects apical traf-
ficking in polarized intestinal HT-29 cells (Delacour
et al., 2005; Stechly et al., 2009). However, it should
also be noted that galectin-3, a lectin of 29 kDa,
has been identified in raft-independent apical carrier
vesicles from MDCK cells (Delacour et al., 2006).
Galectin-3 interacts directly with the apical proteins
LPH (lactase-phlorizin hydrolase), the p75NTR and
the sialoglycoprotein gp114 in a glycan-dependent
manner, suggesting that the clustering events are ne-
cessary for the apical sorting regardless of the associ-
ation with lipid rafts (Delacour et al., 2007).

Interestingly, the transport of apical cargo from
the Golgi was shown to be specifically decreased by
RNA interference directed against FAPP2 [PI(4)P
(phosphatidylinositol-4-phosphate) adaptor protein].
By binding to glucosylceramide, which is the only
known glycolipid that is synthesized in the cytoplas-
mic leaflet of the Golgi, FAPP2 could, by oligomer-
ization, contribute to stabilization of the raft cluster.
Moreover, via its proline-rich motif, FAPP2 could
bind to other components of the apical transport ma-
chinery (Vieira et al., 2005). The same authors went
on to show that ciliogenesis, the final stage in the po-
larization process, is defective in FAPP2-knockdown
cells. Furthermore, they demonstrated that FAPP2
depletion impairs the formation of condensed apical
membrane domains, suggesting that FAPP2 is a cru-
cial component of the apical transport machinery and
in cilium formation in epithelial cells (Vieira et al.,
2006).

Some polypeptides of the annexin family also par-
ticipate in apical transport of raft-associated mem-
brane proteins. Annexin-13b has been identified in
post-Golgi vesicles from MDCK cells and associates
with lipid rafts (Lafont et al., 1998). This annexin

recruits the ubiquitin protein ligase Nedd4, which
might modulate the dynamics of membrane micro-
domains (Plant et al., 2000). Antibodies directed
against annexin-13b inhibited the transport of the in-
fluenza HA glycoprotein from the TGN to the apical
plasma membrane (Fiedler et al., 1995). Annexin-2,
another member of the annexin family, interacting
in a heterotetrameric complex with lipid rafts, mod-
ulates the membrane trafficking of several channel
proteins (Girard et al., 2002; van de Graaf et al.,
2003). Moreover, inhibition of annexin II decreases
the apical delivery of proteins that reside in annexin
II-positive vesicles (Danielsen and Hansen, 2006).

Vectorial transport to the apical membrane in-
volves transport along microtubules with both dynein
and kinesin as microtubule motor proteins, whereas
the basolateral surface transport depends on kinesin
alone (for a review, see Musch, 2004). Evidence for a
substantial role of kinesin motors comes from stud-
ies based on microinjection of antibodies against the
KIF5B (kinesin family member 5B), which blocks
the apical sorting of the apical marker p75NTR in
MDCK cells (Jaulin et al., 2007). For lipid raft-
dependent apical transport routes, an involvement of
the minus-end-directed KIFC3 (kinesin family mem-
ber C3) in surface delivery of influenza HA has been
demonstrated. This motor interacts with annexin
13b in Triton X-100-insoluble membrane organelles,
suggesting a mechanism that links membrane raft as-
sociation with an apical membrane-directed delivery
process (Noda et al., 2001).

In contrast, the dynein light-chain Tctex-1 binds
to the cytosolic tail of rhodopsin and mediates trans-
location of this exogenously expressed photopigment
to the apical membrane domain of MDCK cells (Tai
et al., 2001).

PDZ proteins that are resident in the apical mem-
brane may participate in the apical localization
of their interacting partners. The apical expression of
the CFTR protein as well as the Na+/H+ exchanger is
maintained through the interaction with the NHERF
(Na+/H+-exchanger regulatory factor) (Guggino and
Stanton, 2006; Donowitz and Li, 2007; Singh et al.,
2009). The apical localization of the NaPiII (so-
dium phosphate co-transporter type 2) requires an in-
tact PDZ-binding motif for the interaction with the
apical PDZ protein NaPi-Cap2 (sodium phosphate
C-terminal-associated protein 2) (Biber et al., 2004)
as well as NHERF-1 (Capuano et al., 2007) (Table 1).
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Basolateral sorting signals
Basolateral protein delivery is often specified by
minimal amino acid motifs in the cytoplasmic
region of a wide range of membrane proteins.
Although extensive heterogeneity exists, certain
features are commonly found in these amino acid
sequences. Specifically, the targeting of many basolat-
eral proteins, including the LDL (low-density lipo-
protein) receptor and the VSV-G protein, have been
demonstrated to be regulated by tyrosine-based mo-
tifs YXXØ, where X is any amino acid and Ø repres-
ents a large hydrophobic residue (Matter et al., 1992;
Thomas et al., 1993; Sun et al., 2001; Lopez et al.,
2005).

Alternatively, dileucine/hydrophobic signals have
been identified in the C-terminus of the epi-
thelial adhesion molecule E-cadherin (Miranda et al.,
2001), sulfate/bicarbonate/oxalate anion exchange
sat-1 (Regeer and Markovich, 2004), Fc receptors
(Newton et al., 2005), MCAM-l (melanoma cell adhe-
sion molecule-1) (Guezguez et al., 2006) and NKCC1
(Carmosino et al., 2008) which direct each of these
protein’s basolateral sorting behaviours.

The frequent finding that both Y and LL-
dependent basolateral motifs are collinear with
endocytic determinants has led to the long-standing
suggestion that the basolateral and the endocytic-
sorting machineries share some common elements
(Rodriguez-Boulan and Musch, 2005). Studies
involving clathrin adaptors and most recently
clathrin itself in basolateral sorting support this
notion (Deborde et al., 2008).

Bipartite basolateral sorting motifs are not un-
usual. For example, the LDL receptor and the AQP4
(aquaporin 4) water channel each have a tyrosine-
containing element as well as one encompassing a
cluster of acidic residues (Matter et al., 1992; Madrid
et al., 2001). Moreover, basolateral sorting of furin
relies on a cluster of four acidic residues (EEDE)
followed by a separate FI (phenylalanine–isoleucine)
pair (Simmen et al., 1999). Similarly, the basolateral
sorting signal of the cell surface transmembrane
glycoprotein CD147 requires the presence of both
a mono-leucine and an upstream cluster of acidic
residues (Deora et al., 2004).

Basolateral motifs lacking any canonical consensus
sequence have been also described in pIgRs (Casanova
et al., 1991), transferrin (Odorizzi and Trowbridge,
1997), the NCAM (neural cell adhesion molecule) (Le

Gall et al., 1997) and TGF-β (transforming growth
factor-β) receptor (Donoso et al., 2009).

Other basolateral sorting signals, like those in
the Kir 2.3 (inwardly rectifying potassium chan-
nels 2.3) (Le Maout et al., 2001), GAT-2 [GABA
(γ-aminobutyric acid) transporter 2] (Perego et al.,
1999; Brown et al., 2004) and Syndecan-1 (Maday et
al., 2008), are found at the extreme C-terminus and
appear to involve juxtaposed PDZ-binding motifs.

Interestingly, the α-subunit of the Na+/K+-
ATPase contains binding sites for ankyrin; ankyrin
is a component of the ankyrin–spectrin subcortical
cytoskeleton that is linked to the basolateral actin
cytoskeleton, which mediates the selective reten-
tion of Na+/K+-ATPase at the basolateral mem-
brane (Morrow et al., 1989). Moreover, it has been
observed that the expression and basolateral localiz-
ation of Na+/K+-ATPase are also related to plasma
membrane contact or the interaction between sodium
pump molecules in neighbouring cells (Shoshani
et al., 2005), suggesting a novel and more complex
mechanism for this protein’s basolateral sorting.

Little is known about the three-dimensional struc-
ture of basolateral targeting signals. The atypical
basolateral sorting signal of the polyimmunoglobulin
receptor exists as a β-turn and a nascent helix, with
a critical valine residue in the nascent helix (Aroeti
et al., 1993). The two dihydrophobic sorting motifs
of the MHC-associated invariant chain reside in a
nascent helix and a turn with leucine–isoleucine in
the nascent helix and methionine–leucine as part of
a turn (Motta et al., 1997). Most recently, a basolat-
eral sorting signal consisting of a single glutamic
acid residue upstream of a novel FV (phenylalanine–
valine) dihydrophobic motif has been identified in
muscarinic receptor M3. The single glutamic acid
resides in a type IV β-turn, and the dihydrophobic
motif exists in either a type I or IV β-turn (Iverson
et al., 2005), suggesting that type 1 β-turns may
be the conserved feature of at least some basolateral
sorting signals (Table 1).

Basolateral sorting machinery
The resemblance of Y and LL-basolateral sorting
signals to well-established, clathrin-dependent en-
dosomal targeting signals has long suggested the
possibility that the basolateral membrane sorting
machinery might employ a related mechanism. Y and
LL-endosomal sorting signals have been well known
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to be recognized by heterotetrameric clathrin AP (ad-
aptor protein) complexes called adaptins that link
clathrin to membrane proteins. Four adaptins have
been so far identified: AP-1, AP-2, AP-3 and AP-
4. The adaptor proteins AP-1 and AP-2 are major
components of clathrin-coated vesicles originating at
the TGN and plasma membrane respectively. Each of
these adaptors is composed of two large subunits (γ
and β1 for AP-1 and α and β2 for AP-2), a medium
subunit (μ1 and μ2) and a small subunit (δ1 and δ2).
The interactions of AP-1 and AP-2 with transmem-
brane proteins occur mainly via two types of sort-
ing signals: tyrosine-based YXX� (�-bulky hydro-
phobic) and dileucine-based [DE]XXXL[LI] motifs.
Biochemical and structural studies have unequivoc-
ally determined that YXX motifs engage the μ sub-
units of adaptor proteins (Ohno et al., 1995; Owen
and Evans, 1998). However, the binding site for
dileucine-based motifs has been the subject of de-
bate. It has been reported by various groups that this
motif binds to the β-subunits of AP-1 and AP-2
(Bonifacino and Dell’Angelica, 1999; Geyer et al.,
2002; Schmidt et al., 2006), to the μ subunits of AP-
1 and AP-2 (Rodionov and Bakke, 1998; Craig et al.,
2000; Hinners et al., 2003) and, more recently, to the
γ/δ1 hemicomplex of AP-1 (Coleman et al., 2006)
and α/δ2 of AP-2 (Doray et al., 2007; Kelly et al.,
2008). There are two different subtypes of AP-1: AP-
1A and AP-1B, containing a μ-1A subunit or μ-1B
subunit respectively. The μ1A subunit is ubiquitous,
whereas μ1B is specifically expressed in a subset of
epithelial cell types (Ohno et al., 1999).

The first experimental evidence that the μ1B ad-
aptin is involved in the basolateral trafficking in epi-
thelial cells comes from studies that utilized the cell
line LLCPK-1 (Lilly Laboratories cell porcine kid-
ney cells) lacking the endogenous expression of μ-
1B. Roush et al. demonstrated that proteins that de-
pend on Y-based sorting signals for their basolateral
localization in MDCK cells were delivered to the
apical membrane when expressed in LLCPK-1 cells
(Roush et al., 1998). Following these observations,
Folsch et al. developed an LLCPK-1 cell line stably
expressing μ1B and tested whether the expression of
this adaptin was able to rescue the basolateral sorting
defect. Surprisingly, both the LDL and transferrin re-
ceptors, which were mislocalized in LLCPK-1 cells,
were appropriately expressed on the basolateral mem-
brane in μ1B-expressing LLCPK-1 cells (Folsch et al.,

1999). Although these studies clearly demonstrate
the involvement of AP-1B in basolateral sorting, this
protein’s expression is not, however, required for the
basolateral sorting of all proteins that contain a Y-
based motif (Duffield et al., 2004).

The AP-2 complex is ubiquitously expressed and
links cargo proteins with the clathrin coat mediating
the endocytosis of its cargo, whereas AP-3 has been
implicated in an alternative pathway to endosomes
or lysosomes (Robinson and Bonifacino, 2001).

AP-4 is a recently identified member of the clathrin
adaptor family. Simmens et al. have proposed a role
for AP-4 in the basolateral sorting of the LDL, trans-
ferrin and mannose-6-phosphate receptors (Simmen
et al., 2002). Tyrosine-based motifs interact with the
μ-subunit of the AP-4 clathrin adaptor complexes
(Simmen et al., 2002).

As previously described, there is a growing body
of evidence suggesting the role of PDZ-binding
proteins in polarized epithelial sorting processes.
There are examples of PDZ proteins that predom-
inately reside at the basolateral membrane of cer-
tain intestinal and renal epithelia. These include
syntrophyn, Lin-7, ERBIN (Erbb2 interacting pro-
tein), the CASK (calcium/calmodulin-dependent ser-
ine protein kinase), the PSD-93 (postsynaptic dens-
ity protein 93) and the SAP97 (synapse-associated
protein 97) (for reviews, see Brone and Eggermont,
2005). CASK and Lin-7 co-immunoprecipitate and
co-localize on the basolateral membrane of MDCK
and native kidney epithelial cells (Straight et al.,
2000; Olsen et al., 2002). By linking extracellular
matrix receptors and the cytoskeleton, the Lin-7–
CASK complex is able to anchor stably epithelial
BGT-1 (betaine/GABA transporter 1) (Perego et al.,
1999) and Kir 2.3 on the basolateral membrane
(Olsen et al., 2002).

Another protein that can interact with a PDZ do-
main and is associated with basolateral sorting is the
small Rho GTPase Cdc42 (cell division cycle 42).
Interfering with the function of Cdc42 using a con-
stitutively inactive mutant, the basolateral VSV-G
protein is mis-sorted to the apical membrane (Kros-
chewski et al., 1999). The removal of perinuclear
actin and the inhibition of basolateral transport from
the TGN by constitutively activated Cdc42 were
mimicked by actin-disrupting drugs, indicating that
the regulation of basolateral transport by Cdc42 is
mediated by the actin cytoskeleton (Musch et al.,
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2001). Members of the Rab family of small GTPases,
particularly Rab8, have been implicated in basolat-
eral membrane sorting events. Hubert et al. showed
that a Rab8-inhibitory peptide could selectively in-
hibit biosynthetic membrane trafficking of the VSV-
G protein from the TGN to the basolateral membrane
without affecting the apical sorting of the influenza
HA protein to the apical surface (Huber et al., 1993).
Recent findings are consistent with Rab8 controlling
the delivery of basolateral secretory traffic from the
TGN to the REs, rather than functioning later in
the process of delivery to the surface (Henry and
Sheff, 2008). Moreover, Rab8-knockout mice showed
a mis-sorting of apical peptidase and transporters in
the small intestine, suggesting a role of Rab8 in the
localization of apical proteins in intestinal epithelial
cells (Sato et al., 2007).

The exocyst comprises eight subunits (Sec3, Sec5,
Sec6, Sec8, Sec10, Sec15, Exo70 and Exo84) that
govern the delivery to the basolateral surface of cer-
tain proteins as well as normal renal tubulogenesis
(Lipschutz et al., 2000). It was first discovered in yeast
and later shown to be important for basolateral target-
ing of LDL receptors. Addition of function-blocking
antibodies to Sec8 inhibits delivery of newly synthes-
ized LDL receptor from the TGN to the basolateral
membrane. Blocking Sec8 does not interfere with the
delivery of apical proteins in MDCK cells (Grindstaff
et al., 1998). Overexpression of Sec10 stimulates the
synthesis and delivery of basolateral, but not apical
membrane proteins (Lipschutz et al., 2000), whereas
mutations in Sec5 or Sec6 inhibit trafficking of DE-
cadherin (Drosophila epithelial-cadherin) from REs to
the basolateral domain of Drosophila epithelial cells
(Langevin et al., 2005). Furthermore, AP-1B recruits
the exocyst complex to REs (Folsch et al., 2003),
implying that AP-1B vesicles utilize the exocyst for
fusion with the basolateral membrane. As Sec6 and
Sec8 are localized laterally below TJs, it has been sug-
gested that the exocyst specifies the location at the
plasma membrane to which basolateral vesicles are
delivered (Yeaman et al., 2004) (Table 1).

Membrane fusion machinery: SNAREs
(soluble N-ethylmaleimide-sensitive
fusion protein-attachment protein
receptors)
Polarized protein trafficking to the apical and basolat-
eral plasma membranes requires different sets of

SNAREs, a family of proteins specifically involved
in the fusion of vesicles with their target mem-
branes. Functionally, SNAREs can be classified into
v-SNAREs (vesicle SNAREs) that are associated with
the vesicle/container and t-SNAREs (target SNAREs)
that are associated with the plasma membrane. The
formation of a SNARE complex between v-SNAREs
and t-SNAREs mediates the specific recognition and
subsequent fusion of vesicles with their appropriate
target membranes. SNAREs are assisted by several
partners and regulators including the small GTPase
Rab proteins (for a review, see Jahn and Scheller,
2006).

It has been hypothesized that different classes of
transport vesicles and different acceptor membranes
possess distinct isoforms of v- and t-SNARE re-
spectively and that only the pairing of a matching
combination would lead to successful vesicle fusion
(Rothman and Warren, 1994). This so-called
‘SNARE hypothesis’ therefore postulates a proofread-
ing mechanism in which the SNAREs would contrib-
ute to the specificity of vesicular fusion.

It has been shown that the t-SNARE Stx3 (syn-
taxin 3) is primarily expressed at the apical plasma
membrane in MDCK cells, whereas Stx4 is expressed
predominantly at the basolateral membrane domain
of MDCK cells (Low et al., 1996). Moreover, Stx4 is
primarily expressed at the basolateral surface, while
Stx2 and Stx3 are enriched at canicular membranes
in hepatocytes (Fujita et al., 1998), suggesting
that these particular t-SNAREs might underpin
polarized vesicle fusion processes in a variety of
epithelial cell types.

In contrast, SNAP23 (23 kDa synaptosome-
associated protein) [ubiquitously expressed homo-
logue of SNAP25 (25 kDa synaptosome-associated
protein)] and Stx2 are present in both membrane
domains in MDCK cells (Low et al., 1998). Stx3 and
SNAP23 constitute the apical t-SNARE complex,
and they interact with the v-SNARE TI-VAMP
[TeNT (tetanus-neurotoxin)-insensitive VAMP (ve-
sicle-associated membrane protein); also known as
VAMP7] in Caco2 cells (epithelial colorectal adeno-
carcinoma cells) (Galli et al., 1998). The strong inter-
action between VAMP7, Stx3 and SNAP23 has been
further demonstrated by a yeast two-hybrid analysis
(Martinez-Arca et al., 2003). In MDCK cells, overex-
pression of Stx3 inhibits biosynthetic transport from
the TGN to the apical membrane (Low et al., 1998).
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Furthermore, inhibition of VAMP7 with specific
antibodies affects apical delivery of influenza HA
but has no effect on the basolateral route (Lafont
et al., 1999). These results together demonstrate that
Stx3 and VAMP7 are important for apical trans-
port of transmembrane and secretory proteins both
in MDCK and Caco2 cells.

In the renal cortical collecting duct principal cells,
VAMP2 along with SNAP23 is expressed in subapical
AQP2-containing vesicles, suggesting that these pro-
teins play an important role in vasopressin-regulated
trafficking at the apical membrane in principal cells
(Nielsen et al., 1995; Inoue et al., 1998).

Both VAMP2 and VAMP3 are associated with
immunoisolated AQP2 vesicles, whereas Stx3 and
SNAP23 are associated with the apical plasma mem-
brane in MCD4 renal collecting duct cells. Protein
knockdown coupled with apical surface biotinylation
demonstrated that reduced levels of the VAMP2, Stx3
and SNAP23 strongly inhibited AQP2 fusion at the
apical membrane (Procino et al., 2008).

In contrast it has been shown that the ubiquitously
expressed v-SNARE cellubrevin (VAMP3) localizes
to the basolateral membrane and to REs, where it co-
localizes with AP-1B in MDCK cells. Furthermore,
cleavage of VAMP3 with TeNT results in scatter-
ing of AP-1B localization and mis-sorting of AP-1B-
dependent cargos, such as transferrin receptor and
a truncated LDL receptor, LDLR-CT27. These res-
ults suggest that VAMP3 and AP-1B co-operate in
basolateral membrane trafficking (Fields et al., 2007).

In contrast, Syntaxin 1A and SNAP23 are the
t-SNAREs that regulate exocytotic insertion of H+-
ATPase-containing vesicles (Schwartz et al., 2007).

VAMP8 is able to interact both with the basolateral
t-SNARE Stx4 and with the apical t-SNARE Stx3. It
has been shown that VAMP8 and Stx3 can form com-
plexes with SNAP23 (Pombo et al., 2003). Further-
more, it has also been proposed that VAMP8, Stx4
and SNAP23 act together in regulating exocytosis
in the endocrine system (Wang et al., 2007). Finally,
VAMP8, Stx3 and Stx4 were co-immunoprecipitated
in parotid acinar cells (Imai et al., 2003) and VAMP8
participates in endocytosis and apical recycling in
MDCK cells (Steegmaier et al., 2000), but not in ap-
ical direct delivery (Lafont et al., 1999). All of these
results suggest that VAMP8 could operate in the ap-
ical transcytotic pathway. This hypothesis has been
recently confirmed by Pocard et al., who showed that

VAMP8 knockdown had no effect on both the dir-
ect apical and basolateral delivery but deeply affected
the transcytotic apical delivery in FRT (Fischer rat
thyroid) cells (Pocard et al., 2007).

These results suggest that the direct basolateral
delivery and the trancytotic pathway use different
sets of v-SNAREs (Figure 1).

Conclusions and future perspectives
It is now clear that epithelial membrane polarity is
achieved by a combination of intracellular sorting sig-
nals, vectorial movements towards the plasma mem-
brane and membrane-specific retention processes.

Indeed, many proteins contain specific sorting sig-
nals in their cytoplasmatic region such as those based
on Y and LL amino acid motifs, which are recognized
by distinct molecular subunits of adaptor proteins, a
pivotal mechanism in basolateral targeting.

A common requirement for apical sorting seems to
be a clustering of the apical proteins into a specific
membrane domain, perhaps with the help of lectins
that recognize N- or O-linked glycans, or due to the
ability of some apical directed proteins, such as GPI-
anchored proteins, to oligomerize during their pas-
sage through the Golgi complex. Additionally, this
apical clustering could be mediated by either lipid
raft domains or by other non-raft carriers.

Newly synthesized proteins can travel directly from
the TGN to either the apical or the basolateral surface.
Alternatively, proteins can use an indirect pathway
travelling first from the TGN to the basolateral mem-
brane, followed by endocytosis and transcytosis to the
apical surface. Interestingly, a novel class of sorting
signal has been identified that drives the transcytosis
from the basolateral to the apical surface (Luton
et al., 2009).

Membrane fusion is the final and irreversible step
of each trafficking route. Under normal homoeostatic
conditions, only the appropriate organelles fuse with
the cognate membrane. However, in many cases, the
deletion of an individual SNARE does not prevent
fusion, but rather impairs it by diverting the cargo on
to an alternative pathway. These observations indicate
that SNAREs can functionally replace each other to
a certain extent and that further factors need to be
invoked to ensure specificity.

Indeed, significant advances were made in defining
sorting motifs as well as the sorting routes. However,
only a small number of conserved sorting signals have
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been definitively identified so far and even less is
known about how most of these sorting signals are
recognized and acted on.

Thus it would seem that the most pressing matter
in the future research involves developing a complete
inventory of polarized sorting signals and the ma-
chinery that interacts with them. For instance, the
nature of the basolateral sorting signal machineries
that recognize the clathrin-independent signals re-
mains unknown and there is an even larger gap for
apical proteins.

The scenario becomes more complicated with the
observation that diverse epithelial cells have the abil-
ity to sort similar proteins to distinct surface distri-
butions. For example, in MDCK cells, GPI-linked
proteins are sorted to the apical membrane (Lisanti
et al., 1989), whereas members of this family are dir-
ected to the basolateral domain in Fisher rat thyroid
epithelial cells (Zurzolo et al., 1993). Additionally,
both the Na+/K+-ATPase ion pump and NKCC1
reside in the basolateral membrane of most epithelial
cells, but are localized to the apical membrane do-
main in cells of the choroid plexus (Masuzawa et
al., 1984; Wu et al., 1998). The H+/K+-ATPase β-
subunit, which contains a tyrosine-based motif in
its cytoplasmic tail, was expressed at the basolateral
membrane in MDCK cells, but was localized to the
apical membrane in LLCPK-1 cells (Roush et al.,
1998). It would appear, therefore, that principles of
apical and basolateral sorting pathways are used to
build up two different circuits in epithelial cells. As
the signals directing proteins into different circuits
function hierarchically, proteins can be then switched
from one to the other pathway to meet the require-
ments imposed by their physiological functions.

Thus it will be equally important to elucidate how
epithelial trafficking processes are regulated in con-
cert with physiological demands. In this regard, it is
important to underline that almost all of the present
study has utilized epithelial cells cultured on per-
meable support where they constitute a simple mono-
layer. In real life, however, epithelial cells are found
in more complex structures like cysts and tubules,
which are the basic building blocks of most organs.
During the development of such structures, epithelial
cells must undergo alteration in shape, polarity and
membrane trafficking. Related changes also occur in
many diseases, such as cancer and polycystic kid-
ney disease. Therefore studies should be extended to

models in which proteins are ideally expressed in a
physiological environment such as 3D cell cultures,
isolated organs and animal models. In this respect,
important technological advances in cellular imaging
and transgenic organisms should be applied in this
field.
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