MathSciNet Mathematical Reviews on the Web

Previous Up Next Article

AMERICAN MATHEMATICAL SOCIETY

MR2785700 (2012d:41026) 41A36 (41A10) Pop, Ovidiu T.; Fărcaş, Mircea D.; Bărbosu, Dan (R-NBM-CS)

On a general class of linear and positive operators. (English summary) *An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat.* **19** (2011), *no. 1*, 237–254.1844-0835

Starting with the given positive approximation process $(L_m)_{m\geq 1}$ acting on the weighted space $E_w(I)$ (I being a real interval and $w: I \to (0, \infty)$ such that $M \leq w(x)$ for some M > 0 and for any $x \in I$), the authors construct a new positive approximation process $(K_m)_{m\geq 1}$ for which an asymptotic formula as well as an estimate of the rate of convergence hold.

Namely, for every $m \ge 1$, let $L_m: E_w(I) \to F(J)$ be the positive linear operator given by

$$L_m(f)(x) := \sum_{k=0}^{p_m} \varphi_{m,k}(x) f(x_{m,k}) \quad (x \in J, \ f \in E_w(I)),$$

where J is an interval of **R** such that $I \cap J \neq \emptyset$, $x_{m,k} \in I$, $\varphi_{m,k} \ge 0$ on J and p_m can be equal to m or to ∞ . Moreover, suppose that

$$\lim_{m \to \infty} L_m(f)(x) = f(x)$$

uniformly on every compact $K \subset I \cap J$. Then the *m*th operator $K_m: E_w(I) \to F(J)$ is defined as

$$K_m(f)(x) := \sum_{k=0}^{p_m} \varphi_{m,k}(x) f(y_{m,k}) \quad (x \in J, \ f \in E_w(I)),$$

where the new nodes are chosen in the following way: for $m \ge 1$ and $k \in \{0, 1, \dots, p_m\} \cap \mathbf{N}_0$, the nodes $y_{m,k} \in I$ are such that

$$\beta_m := \sup_{k \in \{0,1,\ldots,p_m\} \cap \mathbf{N}_0} |x_{m,k} - y_{m,k}| < \infty$$

for every $m \ge 1$, and

$$\lim_{m \to \infty} m^{2-\alpha_2} \beta_m = 0,$$

where $0 < \alpha_2 < 2$ is a suitable constant that depends on L_m .

The class of operators K_m contains many well-known linear operators such as Bernstein operators, Stancu operators, Mirak'yan-Favard-Szász operators, Bleimann-Butzer-Hahn operators, Meyer-König-Zeller operators and Ismail-May operators. The authors end the paper with an application of their construction to all these operators, obtaining new positive approximation processes, the relevant Voronovskaja-type formulas and estimates of the rate of convergence by means of the first-order modulus of smoothness.

Reviewed by Vita Leonessa

© Copyright American Mathematical Society 2012, 2013

Citations