MR2785700 (2012d:41026) 41A36 (41A10)
Pop, Ovidiu T.; Fărcaş, Mircea D.; Bărbosu, Dan (R-NBM-CS)
On a general class of linear and positive operators. (English summary)
An. Ştiinţ. Univ. "Ovidius" Constanţa Ser. Mat. 19 (2011), no. 1, 237-254.1844-0835
Starting with the given positive approximation process $\left(L_{m}\right)_{m \geq 1}$ acting on the weighted space $E_{w}(I)$ (I being a real interval and $w: I \rightarrow(0, \infty)$ such that $M \leq w(x)$ for some $M>0$ and for any $x \in I$), the authors construct a new positive approximation process $\left(K_{m}\right)_{m \geq 1}$ for which an asymptotic formula as well as an estimate of the rate of convergence hold.

Namely, for every $m \geq 1$, let $L_{m}: E_{w}(I) \rightarrow F(J)$ be the positive linear operator given by

$$
L_{m}(f)(x):=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(x_{m, k}\right) \quad\left(x \in J, f \in E_{w}(I)\right)
$$

where J is an interval of \mathbf{R} such that $I \cap J \neq \varnothing, x_{m, k} \in I, \varphi_{m, k} \geq 0$ on J and p_{m} can be equal to m or to ∞. Moreover, suppose that

$$
\lim _{m \rightarrow \infty} L_{m}(f)(x)=f(x)
$$

uniformly on every compact $K \subset I \cap J$. Then the m th operator $K_{m}: E_{w}(I) \rightarrow F(J)$ is defined as

$$
K_{m}(f)(x):=\sum_{k=0}^{p_{m}} \varphi_{m, k}(x) f\left(y_{m, k}\right) \quad\left(x \in J, f \in E_{w}(I)\right)
$$

where the new nodes are chosen in the following way: for $m \geq 1$ and $k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbf{N}_{0}$, the nodes $y_{m, k} \in I$ are such that

$$
\beta_{m}:=\sup _{k \in\left\{0,1, \ldots, p_{m}\right\} \cap \mathbf{N}_{0}}\left|x_{m, k}-y_{m, k}\right|<\infty
$$

for every $m \geq 1$, and

$$
\lim _{m \rightarrow \infty} m^{2-\alpha_{2}} \beta_{m}=0
$$

where $0<\alpha_{2}<2$ is a suitable constant that depends on L_{m}.
The class of operators K_{m} contains many well-known linear operators such as Bernstein operators, Stancu operators, Mirak'yan-Favard-Szász operators, Bleimann-Butzer-Hahn operators, Meyer-König-Zeller operators and Ismail-May operators. The authors end the paper with an application of their construction to all these operators, obtaining new positive approximation processes, the relevant Voronovskaja-type formulas and estimates of the rate of convergence by means of the first-order modulus of smoothness.

