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A phenomenological model for thermal relaxation and wave
propagation in ideal polyatomic gases is developed by intro-
ducing a dynamical non-equilibrium temperature. The sys-
tem of equations governing the evolution of the gas is de-
rived and the speeds of propagation of thermo-mechanical
disturbances together with the Rankine-Hugoniot jump
conditions for shock waves are calculated. The hyperbolic
theories of heat propagation in incompressible fluids and
rigid solids are recovered as particular cases. For rigid solids,
the well posedness of the Cauchy problem is proved by a
classical method.

1 Introduction

The field equations of the inviscid gas dynamics are
derived under the assumption that the heat flux is
zero. Thus, wave propagation through the fluid may oc-
cur. Relaxing this hypothesis by the Fourier constitutive
equation, waves are damped and the theory becomes
parabolic. On the other hand, for several systems as, for
instance, ideal polyatomic gases, a time lag in the tem-
perature, due to the adjustment of the internal degrees
of freedom, is expected [1]. Several different proposals
for modeling this memory effect may be found in the lit-
erature [2]. Among them, the most celebrated one is the
Maxwell-Cattaneo-Vernotte (MCV) equation [3]

τ q̇i + qi = −κϑ,i , (1)

where τ is a suitable relaxation time, κ is the heat con-
ductivity, qi are the components of the heat flux, and ϑ is
the absolute temperature.

In gas dynamics, the equation above is needed to
achieve a satisfactory analysis of shock wave profile
within the frame of the Navier-Stokes models with strong
anisotropy in the temperature, which predict a shock
width greater than expected [4]. Thus, additional dissi-
pation is required. Eq. (1) is capable to provide such a
dissipation and, meantime, allows the description to re-

main at a macroscopic level, with recourse neither to
higher-order expansions of the fluxes nor to more com-
plex methods of solution of the Boltzmann equation [4].
The results agree with non equilibrium molecular dy-
namics simulations in the ideal gas regime, that goes be-
yond Navier-Stokes and improves the prediction of the
shockwave thickness [4].

In earlier and recent works [6–12], heat conduction
with finite speed has been modeled by introducing a
dynamical temperature as internal variable, related to
the absolute temperature by a suitable evolution equa-
tion. The material functions relative to the model are
determined through second sound measurements [7, 8].
Two different experiments allowing to measure this dy-
namical temperature and to compare it with the classi-
cal absolute temperature, have been designed and pro-
posed in [9, 12]. Indeed, the temperature represents a
basic concept in thermodynamics, and it is the topic
of several discussions, since its definition and mea-
surement in non-equilibrium situations is not yet fully
understood. In steady states it is different from the local-
equilibrium temperature ϑ and, in ideal gases, it cor-
responds to the kinetic temperature in the directions
perpendicular to the heat flux [13, 14]. The reason for
introducing a non-equilibrium temperature is that the
local-equilibrium temperature loses its validity in situa-
tions where the deviation from equilibrium ensemble is
not negligible. Therefore, for a better understanding of
temperature in non-equilibrium states, the exploration
of the consequences of the introduction of dynamical
temperatures in heat transport may be very useful. Let’s
refer the reader to Refs. [13, 14] for an extensive analysis
of the concept of temperature in non-equilibrium situa-
tions.

The present paper is concerned with the thermo-
dynamic modeling of ideal polyatomic gases, with spe-
cial attention to the heat conduction phenomenon with
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finite thermal wave speed. For the sake of simplicity, we
suppose that the mechanical relaxation effects are neg-
ligible, limiting ourselves to take into account only the
thermal ones.

In Sec. 2, a non-equilibrium temperature is defined
by phenomenological considerations on the motion of
the molecules constituting the gas. A differential equa-
tion governing its evolution is derived as well. That way,
we obtain a mapping between the material parameters
entering the kinetic theory of gases and those entering
the macroscopic Cattaneo theory. In this paper we will
be content to this connection, although more sophis-
ticated relations between different theories may be es-
tablished. For a detailed discussion of the connections
between Peierls kinetic theory of phonons, Cattaneo-
like extensions of the Fourier theory, Fourier theory,
and the equilibrium theory, let’s refer the reader to
Ref. [15].

At a first sight our approach could appear unusual,
since classical kinetic theory expansions [5] or phe-
nomenological methods [2] give rather similar results
in the framework of a uniform approach. However, the
first ones, although rigorous, are not immediately intu-
itive, and require complex mathematical tools. The sec-
ond ones, instead, although more close to the experi-
mental evidence, often disregard the mechanism of heat
conduction at a molecular level. Thus, the present ap-
proach aims to analyze the problem from a mesoscopic
point of view, giving a deeper insight at the molecular
level but still obtaining manageable model equations at
the macroscopic level.

In Sec. 3, a constitutive theory is developed in the
framework of weakly nonlocal thermodynamics. The re-
sponse functions are permitted to depend on the gradi-
ents of the unknown fields [16]. As result, we show that
the free energy can be decoupled in the sum of a classical
equilibrium part, which represents the free energy in the
absence of heat flux, and a nonequilibrium one, which
depends on the heat flux too. The same decomposition
is true for entropy, stress and internal energy.

In Sec. 4, the complete set of field equations govern-
ing the evolution of mass density, gas velocity and non-
equilibrium temperature is carried out. To engage our
equations to the experimental data, we use typical fitting
curves modeling the specific heat of polyatomic gases at
constant pressure.

In Sec. 5, the propagation of thermo-mechanical dis-
turbances is studied. It is proved that the theory is hy-
perbolic for arbitrary values of the temperature. The
Rankine-Hugoniot jump conditions on a shock front are

derived as well and the fields behind the shock are ob-
tained as functions of those ahead the shock.

In Sec. 6, heat wave propagation in a fluid at rest is an-
alyzed. The theory of rigid heat conductors is recovered
as a particular case and the well posedness of the Cauchy
problem is proved by a classical method, which consists
in proving that the system of governing equations can be
put in symmetric hyperbolic form.

In Sec. 7 we append some concluding remarks on the
results obtained and on the possible developments of the
present theory.

2 Dynamical non-equilibrium temperature

In this section, in order to define a non equilibrium dy-
namical temperature, we apply the method introduced
by Cattaneo [3] for the analysis of the heat flux in gases.
Thus, following the path paved in [3], let us consider a
moving gas not in thermodynamic equilibrium and let
Q the kinetic energy carried by each molecule of the gas
and G the average of Q in a point P of the gas. For the
sake of simplicity, let us assume G constant with respect
to its spatial variables on each of the planes which are or-
thogonal to a given direction x. Hence

G = G(x, t).

Finally, we explicitly suppose that the thermodynamic
state of the gas is not far from the equilibrium.

Let dNc mean the number of molecules per unit of
volume passing in the time interval dt across the unit
area ω of the plane x = x0, whose velocity is in the inter-
val [c, c + dc]. Moreover, let us denote by dnc� the frac-
tion of dNc of molecules moving along a given direction r
forming with x a solid angle �. It is easily seen that these
molecules are contained in an oblique cylinder having
base ω, inclination � and length cdt, so that

dnc� = c
2

sin� cos� d� dt dNc. (2)

Let us focus our attention on a single molecule running
a free path of length � under an angle � with respect to x
and crossing ω at the instant t′ ∈ [t, t + dt], with velocity
ν ∈ [c, c + dc]. The function G+(x, t), where the up-script
+ means that the molecule runs along the positive direc-
tion of x, can be expressed as a power series of x − x0 and
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t − t′. Up to the second-order approximation we have

G+(x, t) = G(x0, t′) + ∂G
∂x

(x0, t′)(x − x0)

+∂G
∂t

(x0, t′)(t − t′) + ν
∂G
∂x

(x0, t′)(t − t′)

+1
2

∂2G
∂x2

(x0, t′)(x − x0)2 + 1
2

∂2G
∂t2

(x0, t′)(t − t′)2

+ ∂2G
∂x∂t

(x0, t′)(x − x0)(t − t′)

+ν
∂2G
∂x2

(x0, t′)(t − t′)(x − x0)

+ ∂ν

∂x
∂G
∂x

(x0, t′)(t − t′)(x − x0)

+ν
∂2G
∂x∂t

(x0, t′)(t − t′)2 + ∂ν

∂t
∂G
∂x

(x0, t′)(t − t′)2

+ν2 ∂2G
∂x2

(x0, t′)(t − t′)2. (3)

A similar expression may be obtained for G−(x, t), once
we take into account that, in this case, the spatial deriva-
tives of G and ν change their sign. Thus we get

G−(x, t) = G(x0, t′) − ∂G
∂x

(x0, t′)(x − x0)

+∂G
∂t

(x0, t′)(t − t′) − ν
∂G
∂x

(x0, t′)(t − t′)

+1
2

∂2G
∂x2

(x0, t′)(x − x0)2 + 1
2

∂2G
∂t2

(x0, t′)(t − t′)2

− ∂2G
∂x∂t

(x0, t′)(x − x0)(t − t′)

+ν
∂2G
∂x2

(x0, t′)(t − t′)(x − x0)

+ ∂ν

∂x
∂G
∂x

(x0, t′)(t − t′)(x − x0)

−ν
∂2G
∂x∂t

(x0, t′)(t − t′)2 − ∂ν

∂t
∂G
∂x

(x0, t′)(t − t′)2

+ν2 ∂2G
∂x2

(x0, t′)(t − t′)2. (4)

In order to obtain meaningful expressions for the rela-
tions above, one should take into account that for the
molecules running in the positive direction the last colli-
sion has taken place on the plane

x = x0 − �cos� − ν
�

c
,

at the time

t = t′ − �

c
,

while the molecules running along the negative direction
undergo the last collision at the same time but on the
plane

x = x0 + �cos� − ν
�

c
.

Then we get

G+(x, t) = G(x0, t′) − ∂G
∂x

(x0, t′)
(
�cos� + ν

�

c

)

−∂G
∂t

(x0, t′)
�

c
− ν

∂G
∂x

(x0, t′)
�

c

+1
2

∂2G
∂x2

(x0, t′)
(
�cos� + ν

�

c

)2

+1
2

∂2G
∂t2

(x0, t′)
(�

c

)2

+ ∂2G
∂x∂t

(x0, t′)
(�2cos�

c2
+ ν

�2

c2

)

+ν
∂2G
∂x2

(x0, t′)
(�2cos�

c2
+ ν

�2

c2

)

+ ∂ν

∂x
∂G
∂x

(x0, t′)
(�2cos�

c2
+ ν

�2

c2

)

+ν
∂2G
∂x∂t

(x0, t′)
(�

c

)2
+ ∂ν

∂t
∂G
∂x

(x0, t′)
(�

c

)2

+ν2 ∂2G
∂x2

(x0, t′)
(�

c

)2
, (5)

G−(x, t) = G(x0, t′) − ∂G
∂x

(x0, t′)
(
�cos� − ν

�

c

)

−∂G
∂t

(x0, t′)
�

c
− ν

∂G
∂x

(x0, t′)
�

c

+1
2

∂2G
∂x2

(x0, t′)
(
�cos� − ν

�

c

)2

+1
2

∂2G
∂t2

(x0, t′)
(�

c

)2

+ ∂2G
∂x∂t

(x0, t′)
(

− �2cos�
c2

+ ν
�2

c2

)

+ν
∂2G
∂x2

(x0, t′)
(

− �2cos�
c2

+ ν
�2

c2

)

+ ∂ν

∂x
∂G
∂x

(x0, t′)
(

− �2cos�
c2

+ ν
�2

c2

)

+ν
∂2G
∂x∂t

(x0, t′)
(�

c

)2
+ ∂ν

∂t
∂G
∂x

(x0, t′)
(�

c

)2

+ν2 ∂2G
∂x2

(x0, t′)
(�

c

)2
. (6)

The net amount of G carried by all the molecules
of the type considered is given by the difference
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∑′ G+(x, t) − ∑′ G−(x, t), where the prime indicates that
the sum is extended to the molecules of the type con-
sidered above, only. To calculate such a sum we use
a result by Boltzmann [17], namely

∑′
� ≈ λcdnc� and∑′

�2 ≈ �2
c dnc�, where λc and �2

c are the mean free path
and the squared mean free path of the molecules, respec-
tively. Finally, we obtain

∑ ′G+(x, t) −
∑ ′G−(x, t)

=
[

2
∂G
∂x

(x0, t′)λccos� + ∂2G
∂x∂t

(x0, t′)
(�2

c

)
cos�

+ 2vc
∂2G
∂x2

(x0, t′)
(�2

c

)
cos� + 2vc

∂2G
∂x∂t

(x0, t′)
(�

c

)2

+ 2
∂vc

∂t
∂G
∂x

(x0, t′)
(�

c

)2
+ 2v2

c
∂2G
∂x2

(x0, t′)
(�

c

)2
]

dnc�,

(7)

where vc denotes the mean speed of the molecules hav-
ing velocity in the interval [c, c + dc].

In order to derive from (7) the flux of Q across ω, let
call it dqc, we must divide Eq. (7) by dt and then integrate
the obtained expression on the interval [0, π

2 ]. It is imme-
diately seen that the last three terms in (7) do not con-
tribute to dqc, due to the form (1) of dnc�. The first three
terms, instead, may be easily integrated and yield

dqc =
[(

−c
λc

3

)∂G
∂x

+
(�2

c

3

) ∂2G
∂x∂t

+
(

vc
�2

c

3

)∂2G
∂x2

]
dNc. (8)

Let us observe that, being (x0, t′) arbitrary, we have omit-
ted such a dependency in (8). Integration of (8) in the
interval [c = 0, c = ∞] yields the total flux of Q across
ω as

q = −κ
∂ϑ

∂x
+ σ

∂2ϑ

∂x∂t
+ vσ

∂2ϑ

∂x2
, (9)

with G = 3
2

kBϑ ,

κ =
∫ ∞

0

λcckB

2
dNc, (10)

σ =
∫ ∞

0

l2
c kB

2
dNc, (11)

and v as the mean speed of all the molecules passing
across the plane x at the time t, which may be identified
with the velocity of the fluid in the point (x, t).

Eq. (9) may be also written as

q = −κ
∂

∂x

(
ϑ − σ

κ
ϑ̇

)
, (12)

where ϑ̇ = ∂ϑ

∂t
+ v

∂ϑ

∂x
denotes the convective time

derivative. Thus, if we define a dynamical temperature
β as

β = ϑ − σ

κ
ϑ̇, (13)

Eq. (12) takes the Fourier’s form

q = −κ
∂β

∂x
. (14)

The second term in the RHS of Eq. (13) is a viscous term
due to the Van der Waals forces between the molecules. It
results in a delay in the propagation of temperature dis-
turbances, allowing for finite speed. To prove that, let’s
observe that the combination of (12) with its time deriva-
tive yields

τ β̇ + β = ϑ − τ 2ϑ̈, (15)

with τ = σ

κ
. In order to evaluate the last term in the RHS

of (15), let’s recall that;

� the gas is in quasi-equilibrium;
� as first recognized by Cattaneo [3], τ is very small.

From the mathematical point of view, both the cir-
cumstances above may be expressed by admitting that,
if f is a physical quantity related to the heat conduction,
the ratio |τ ḟ / f | is a first-order quantity and the second-
order quantities are negligible [3]. Under the previous hy-
pothesis, we may compare the order of magnitude of τ 2ϑ̈

with that of ϑ by observing that [3]

|τ 2ϑ̈/ϑ | = |τ ϑ̈/ϑ̇ ||τ ϑ̇/ϑ |,

which proves that τ 2ϑ̈ is a second-order quantity. Ne-
glecting it, the evolution of β is governed by the linear
differential equation

τ β̇ + β = ϑ, (16)

where τ may be interpreted as a relaxation time. For van-
ishing τ the dynamical temperature reduces to the ab-
solute one. Taking the spatial derivative of Eq. (16), and
multiplying it by −κ, one obtains the following evolution
equation for the heat flux

τ q̇ + q
(

1 + τ
∂v
∂x

)
= −κ

∂ϑ

∂x
. (17)

It reduces to the classical Cattaneo’s equation (1) for
fluids at rest.
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3 Constitutive theory

Let B be a continuous body occupying a compact and
simply connected region C of a Euclidean point space E 3.
B will be supposed to be endowed with some internal
properties, described by a scalar β ∈ R whose evolution
is governed by the differential equation (16).

Beside Eq. (16), we need to consider the equations
governing the balance of mass, linear momentum and
energy, namely

ρ̇ + ρdivv = 0, (18)

ρv̇ − divT = 0, (19)

ρε̇ − T : L + divq = 0, (20)

where ρ is the mass density, ε is the specific internal en-
ergy, T the Cauchy stress, L = gradv and q the the heat
flux. Moreover, hereafter, a double dot between two ten-
sors denotes the full saturation, giving a scalar as result.
For the sake of simplicity, we have assumed that body
force and heat supply are zero. The entropy inequality is
postulated in the form

ρ ṡ + div
q
ϑ

≥ 0, (21)

where s denotes the specific entropy. Note that the en-
tropy flux has been taken in the classical form postulated

in rational thermodynamics [18], namely
q
ϑ

. Although

more general expressions for the entropy flux are possi-
ble in nonlocal theories [2,16], we will show that this sim-
ple constitutive hypothesis allows to obtain a satisfactory
modeling of thermal relaxation.

By the Legendre transformation

ψ = ε − ϑs, (22)

with ψ as the Helmholtz free energy, once the balance of
energy (20) has been taken into account, the inequality
(21) can be rearranged as follows

− ρψ̇ − ρsϑ̇ + T : L − 1
ϑ

q · gradϑ ≥ 0. (23)

Second Law of Thermodynamics demands that the
inequality above is satisfied along arbitrary thermody-
namic processes [19, 20]. To exploit this unilateral dif-
ferential constraint, we have to define the state space.
To this end let us recall that we are modelling a rarefied

gas, where the mechanical relaxation effects are negli-
gible but not the thermal ones. Hence, since both vis-
cous and nonlocal mechanical effects are negligible, it is
not necessary that the gradients of the mass density and
of the fluid velocity enter the state space. On the other
hand, the results in Sec. 2 show that the nonlocal thermal
effects are important and that the vectorial internal vari-
able gradβ is suitable to represent them. Thus, we postu-
late the following state space

Z = {ρ, ϑ, gradβ}. (24)

It is worth observing that the substitution of gradϑ by a
vectorial internal variable proportional to the heat flux
is very common in hyperbolic heat conduction theory
[2]. The difference of this approach with respect to the
other ones is that we provide a physical interpretation of
this new variable, as the gradient of the non equilibrium
temperature. The relation between this non equilibrium
temperature and the classical absolute temperature has
been pointed out in [10], while two experiments which
could allow to measure the difference between abso-
lute and dynamical temperature have been proposed in
[9, 12]. In order to engage our model to the experiments,
in the present paper we will limit to consider the simpler
case in which only ϑ enters the state space. In fact, as it
will be shown in the next section, the experimental data
for the transport coefficients are all expressed as func-
tions of ϑ . It is worth noticing that a state space spanned
by the dynamical temperature and a renormalized flux
variable has been studied in Ref. [12], with the scope of
designing an experiment for the comparison of the dy-
namical temperature with the absolute one. On the other
hand, if Z would contain gradϑ too, then the theory of
representation of isotropic vector functions depending
on scalars and vectors [21], would lead to the following
constitutive equation for the heat flux

q = −κ1gradβ − κ2gradϑ, (25)

with κ1 and κ2 depending on ρ, ϑ , and on the modulus of
both gradients. The consequences of Eq. (25) have been
studied in [22], where it is showed that the model would
be still parabolic. The system (16) and (18)–(20) may be
closed by assigning suitable constitutive equations for ε,
T and q, as functions of the elements of Z. Moreover,
an additional constitutive equation for ψ is necessary
to carry out the consequences of the entropy inequality

C© 2013 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 925www.ann-phys.org
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(23). In this way, Eq. (23) reads

− ρ
(∂ψ

∂ϑ
+ s

)
ϑ̇ − ρ

∂ψ

∂ρ
ρ̇ − ρ

∂ψ

∂gradβ
˙ ˙gradβ

+ T : L − 1
ϑ

q · gradϑ ≥ 0. (26)

The inequality above, often referred to as Clausius-
Duhem inequality [23], will be exploited by a general-
ization of the classical Coleman-Noll procedure, which
has been proposed by Cimmelli and co-workers in re-
cent papers [24, 25]. This technique for the exploitation
of the Entropy Principle is based on the observation that
the less restrictive conditions ensuring the fulfillment
of Second Law of Thermodynamics are obtained when
the number of equations constraining the entropy in-
equality and that of the independent variables entering
the state space coincide [26]. The technique can be ap-
plied by substituting into the entropy inequality the field
equations and the equations governing the evolution of
the spatial gradients entering the state space, hereafter
called extended balance equations. That way, one obtains
an extended Coleman-Noll inequality, which is linear in
the time derivatives which can not be expressed as func-
tions of the elements of the state space and in the gra-
dients which are two orders higher than the gradients
in the state space. These time and space derivatives are
called highest derivatives.

Note that, in deriving (26), the local balance of energy
has been already taken into account, so that we must
only consider the local balance of mass and the govern-
ing equation of gradβ, which reads

˙gradβ = 1
τ

gradϑ − 1
τ

gradβ − gradβ L. (27)

Such an equation may be inserted into Eq. (26), so
that the gradient of ϑ therein can be eliminated.

Thus, if we use the constitutive equation

q = −κgradβ, (28)

proved in Sec. 2, once the Eqs. (18) and (27) have been
taken into account, the Clausius-Duhem inequality takes
the form

− ρ
(∂ψ

∂ϑ
+ s

)
ϑ̇ +

(
ρ2 ∂ψ

∂ρ
I + κτ

ϑ
gradβ ⊗ gradβ + T

)
: L

−
(
ρ

∂ψ

∂gradβ
− κτ

ϑ
gradβ

)
· ˙gradβ

+ κ

ϑ
gradβ2 ≥ 0. (29)

The expression above is linear in the highest derivatives
{ϑ̇, L, ˙gradβ}. These quantities are independent of their
coefficients which, instead, depend on the elements of
the state space only. Moreover, they may assume arbi-
trary and uncontrollable values. Hence, their coefficients
must vanish, otherwise the inequality could be easily vi-
olated. Thus, we are led to the following set of thermody-
namic restrictions

s = −∂ψ

∂ϑ
, (30)

T = −ρ2 ∂ψ

∂ρ
I − κτ

ϑ
gradβ ⊗ gradβ, (31)

∂ψ

∂gradβ
= κτ

ρϑ
gradβ, (32)

κ

ϑ
gradβ2 ≥ 0. (33)

Since for perfect gases the heat conduction coefficient
depends on the temperature only, from the relationship
(32) we get

ψ = ψ0(ρ, ϑ) + τ

2ρκϑ
q · q. (34)

Eq. (34) shows that the free energy can be decoupled in
the sum of a classical equilibrium part, namely ψ0(ρ, ϑ),
which represents the free energy in the absence of heat
flux, and a nonequilibrium one, which depends on the
heat flux too. The same decomposition is true for en-
tropy, stress and internal energy, since the relationships
(30), (31), and (22) yield

s = −∂ψ0

∂ϑ
+

( τ

2ρκϑ2
+

dκ
dϑ

τ

2ρκ2ϑ

)
q · q, (35)

T = −ρ2 ∂ψ

∂ρ
I − τ

κϑ
q ⊗ q, (36)

ε = ε0(ρ, θ) + 1
2
ε1(ρ, θ)q · q, (37)

with

ε0 = ψ0 − θ
∂ψ0

∂θ
, (38)

and

ε1 = 2τ

ρκϑ
+

dκ
dϑ

τ

ρκ2
. (39)
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4 Governing equations

The present section is devoted to derive the field equa-
tions governing the evolution of a moving gas in the pres-
ence of heat conduction. For the sake of simplicity, let us
assume that the gas is polyatomic [27]. Experiments at
pressure below 2 atm. show a marked dependence of the
specific heat on temperature [27]. Typical fitting curves
yield the specific heat at constant pressure cp in the
form

cp = Rc0 + 2bϑ + 3cϑ2, (40)

with R as the universal constant of gases and c0, b, c
as positive material constants, with c0 > 1 [27]. From
Meyer’s equation cv = cp − R with cv as the specific heat
at a constant volume, we get

cv = a + 2bϑ + 3cϑ2, (41)

with a = R(c0 − 1).
Since the specific heat is measured in quasi-static sit-

uations, we may suppose that in such a situation the
heat flux is zero while the internal energy reduces to its

equilibrium part ε0 = ψ0 − ϑ
∂ψ0

∂ϑ
. Then, from the rela-

tion cv = ∂ε0

∂ϑ
we get

ε0 = aϑ + bϑ2 + cϑ3 + ε0(ρ), (42)

where ε0(ρ) can be put equal to zero by imposing that the
equilibrium internal energy vanishes at 0 K 0. This consti-
tutive equation has nontrivial consequences on the form
of the free energy. To see that, let us observe that the first
term in Eq. (36) is the spherical part of the stress tensor

with ρ2 ∂ψ0

∂ρ
as the equilibrium pressure p0(ρ, ϑ). If we

assume for p0 the Clapeyron’s constitutive equation

p0 = αρϑ, (43)

with α = R/m, and m molecular weight, we are led to the
differential equation

∂ψ0

∂ρ
= αϑ

ρ
, (44)

which yields

ψ0(ρ, ϑ) = αϑlogρ + ϕ0(ϑ). (45)

Finally, by (22), (42) and (45) it follows

ϕ0 − ϑ
dϕ0

dϑ
= aϑ + bϑ2 + cϑ3, (46)

so that

ϕ0 = −aϑlogϑ − bϑ2 − 1
2

cϑ3. (47)

Thus, owing to the results in Eqs. (28), (36) and (37), the
balances of linear momentum and energy take the form

ρv̇ + αϑ gradρ + αρ gradϑ − λ′τ (gradβ)2gradϑ

+ 2λτ gradβ · grad2β

+ 2λ′ τ (gradϑ · gradβ)gradβ = 0, (48)

ρcvϑ̇ + 1
2

ρ
∂ε1

∂ρ
ρ̇ (gradβ)2 + 1

2
ρ

∂ε1

∂ϑ
ϑ̇ (gradβ)2

+ ρε1gradβ · ˙gradβ − κ ′ gradϑ · gradβ − κ �β

+ αρϑ divv − λτ (gradβ)2divv

+ 2λτ (gradβ ⊗ gradβ) : gradv = 0, (49)

wherein cv takes the form (41), ε1 is given by (39), λ = κ

2ϑ
,

and a prime denotes the derivative with respect to ϑ .
The quantities {ϑ, ϑ̇, gradϑ} in the equations above

can be eliminated owing to Eqs. (16) and (27). Then the
system of Eqs. (18), (48) and (49) allows to determine, in
principle, the unknown fields ρ, v and β. Finally, the ab-
solute temperature ϑ may be determined by Eq. (16). Al-
ternatively, one can use Eqs. (27) and (28) to obtain an
evolution equation for the heat flux and to express in the
system above gradβ and its time and space derivatives
as functions of the heat flux and its temporal and spatial
derivatives. That way, one obtains a system of govern-
ing equations for the four interacting fields ρ, v, ϑ , and
q, expressing the perturbations of mass-momentum and
temperature-heat flux densities.

5 Wave propagation

In continuum physics the systems of governing equa-
tions my be put in the first-order quasi-linear form

A0(u)
∂u
∂t

+ Ai(u)
∂u
∂xi

= f (u), (50)

with the unknown N-column vector
u(x, t) = (u1, u2, . . . uN)T , where A0 and Ai are real
N × N matrices and f is a N-column vector too. The
most important consequence of nonlinearity is that non
regular solutions may occur and propagate through the
medium as waves.
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A wave is a moving surface � represented mathemat-
ically by the equation

�(xi, t) = 0, (51)

which defines the wave front. The unit normal n on �

and the normal speed V of �, are given by

n = grad �

|grad �| , V = −
∂�
∂t

|grad �| . (52)

Weak waves have a continuous velocity across the front
but a jump of the acceleration. Meantime, the unknown
fields uα, α = 1, . . . N, are continuous across the front
but their gradients are discontinuous, with the jump
pointing in the normal direction. The symbols F + and
F − will denote the limits of F on the side of � with
positive and negative normal, respectively. The quanti-

ties �α =
[∂uα

∂xi

]
ni , where [F ] = F + − F − is the jump of

F along the normal, are called amplitudes of the accel-
eration wave, and their evolution is ruled by a Bernoulli
equation. The wave speeds and the amplitudes of the ac-
celeration waves are given, respectively, by the eigenval-
ues λ and the eigenvectors r of the following eigenvalue
problem

( Aini − λA0)r = 0. (53)

The system (50) is said hyperbolic if detA0 
= 0, and the
problem (53) has only real eigenvalues (characteristic
speeds) and N independent eigenvectors. The system
(50) is said symmetric if A0 is positive definite and Ai =
Ai

T . Any symmetric system is hyperbolic.

A remarkable consequence of the symmetry is the
well-posedness of the Cauchy problem under very gen-
eral conditions. In fact, for any symmetric system, the
Cauchy problem with initial data in a Sobolev space W p,2

with p ≥ 4, has a unique solution u ∈ Wp,2 in the neigh-
borhood of the initial manifold [28].

For the sake of simplicity, let us evaluate the system
(18), (48),(49) and (27) in the one-dimensional case, un-
der the hypothesis that the heat conductivity can be ap-
proximated by a constant. Experimental results for some
of the most common polyatomic gases show that such
an hypothesiss is allowed on a wide range of tempera-
tures [29, 30].

It reads

ρt + vρx + ρvx = 0, (54)

ρvt + αϑρx + ρvvx + αρϑx − τq2

2κθ2
ϑx + τq

κθ
qx = 0, (55)

ρcvϑt + ρcvvϑx + ρε1qqt + ρε1qvqx + 1
2
ρ

∂ε1

∂ϑ
q2ϑt

+ 1
2
ρ

∂ε1

∂ϑ
q2vϑx + 1

2
ρ

∂ε1

∂ρ
q2ρt + 1

2
ρ

∂ε1

∂ρ
q2vρx

+
(3τq2

2ϑκ
+ αρϑ

)
vx + qx = 0, (56)

τqt + τqvx + κϑx + τvqx = −q. (57)

In the equations above the coordinate x denotes the po-
sition of the points of the gas. Moreover, the symbols Fx

and Ft denote the partial derivatives of F with respect to
x and t, respectively.

The system (54)–(57) can be re-arranged in the form
(50), with u = (ρ, v, ϑ, q)T , f = (0, 0, 0, −q)T and

A0 =

⎡
⎢⎢⎢⎣

1 0 0 0
0 ρ 0 0

1
2 ρ ∂ε1

∂ρ
q2 0

(
ρcv + 1

2 ρ ∂ε1
∂ϑ

q2
)

ρε1q

0 0 0 τ

⎤
⎥⎥⎥⎦,

A1 =

⎡
⎢⎢⎢⎢⎣

v ρ 0 0

αϑ ρv
(
αρ − τq2

2κϑ2

)
τq
κϑ

1
2 ρ ∂ε1

∂ρ
q2v

(
3τq2

κϑ
+ αρϑ

) (
ρcvv + 1

2 ρ ∂ε1
∂ϑ

q2v
) (

ρε1qv + 1
)

0 τq κ τv

⎤
⎥⎥⎥⎥⎦

.
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The characteristic speeds � are given by the solutions
of the following fourth-grade algebraic equation

det

⎡
⎢⎢⎢⎢⎣

v − � ρ 0 0

αϑ ρ(v − �)
(
αρ − τq2

2κϑ2

)
τq
κϑ

1
2 ρ ∂ε1

∂ρ
q2(v − �)

(
3τq2

2κϑ
+ αρϑ

) (
ρcv + 1

2 ρ ∂ε1
∂ϑ

q2
)

(v − �) ρε1q(v − �) + 1

0 τq κ τ (v − �)

⎤
⎥⎥⎥⎥⎦

= 0.

For the sake of simplicity, let us restrict to the case
ε1 = 0 and a wave traveling into a thermally unperturbed
state, i.e. with q = 0. By straightforward calculations we
obtain the characteristic equation

ρ2τcv(v − �)4 − (
αρ2cvτϑ + ρκ

)
(v − �)2 + αρϑκ = 0.

(58)
Eq. (58) admits four real solutions, given by

v − � = ±
√

U, (59)

with

U = (αρ2cvτϑ + ρκ) ± (αρ2cvτϑ − ρκ)
2ρ2τcv

. (60)

It is easily seen that by Eq. (60) it follows that the the-
ory is hyperbolic whatever the temperature is.

Moreover, by the combination of Eqs. (59) and (60)
with Eq. (43), it follows that the minimum and maximum
characteristic speeds take the form

�min = v −
√

p0

ρ
, (61)

�max = v +
√

p0

ρ
, (62)

while two further waves propagate with intermediate
speeds

�2 = v −
√

κ

ρτcv
, (63)

�3 = v +
√

κ

ρτcv
. (64)

The relations above give the speeds of propagation
of four thermo-mechanical disturbances (as the number
of unknown fields) generated by the interactions of the
thermal field with mass and momentum transfer. The
fastest and slowest speeds �max and �min are the veloc-
ities of propagation of two pressure waves, due to per-
turbations of mass-momentum density, and their form is
the same of that arising in isentropic gas dynamics, with
the sole difference that p0 depends now on the temper-
ature too, as expected, being the fluid not in thermody-
namic equilibrium. The two intermediate speeds �2 and

�3, instead, are the velocities of two heat waves, due to
perturbations in the temperature-heat flux density, de-
pending on the classical parameters which characterize
hyperbolic heat conduction, i.e. heat conductivity, spe-
cific heat and relaxation time. For constant temperature
�max and �min reproduce exactly the pressure waves of
isentropic gas dynamics, while for a fluid at rest, and
constant thermo-physical quantities, �2 and �3 yield the
classical thermal wave speeds calculated by Cattaneo in
his pioneering paper [3].

Shock waves have discontinuous velocity across
the wavefront. Meantime, the unknown fields
uα, α = 1, . . . N, are discontinuous, too. If we still
consider a one-dimensional system and shocks propa-
gating into an unperturbed state, (v+ = q+ = 0), then the
system (54)–(57) leads to the following set of Rankine-
Hugoniot jump conditions across the shock

ρ+S = ρ−(S − v−), (65)

− ρ−(S − v−)v− = −αρ+ϑ+ + αρ−ϑ− + τq−2

2κθ− , (66)

ρ+ε+
0 S − ρ−(S − v−)

(
ε−

0 + ε1
−q−2

2
+ 1

2
v−2

)

= −
(

αρ−ϑ− + τq−2

2κθ−

)
v− + q−, (67)

q−(S − v−) = κ

τ
(ϑ+ − ϑ−), (68)

where S denotes the shock velocity. We can eliminate it
from the previous expressions, getting so

−ρ−v−

ρ+ − ρ− =
αρ+ϑ+ − αρ−ϑ− − τq−2

2κθ−
ρ+v−

=
−v−

(
αρ−ϑ− + τq−2

2κθ−
)

− q−

ρ+
(
ε+

0 − ε−
0 − ε1

−q−2

2

)
− ρ+v−2

2

= κ(ϑ+ − ϑ−) + q−v−

q− . (69)
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In this way, the field u− = (ρ−, v−, ϑ−, q−) ahead the
shock may be determined, provided that the field
u+ = (ρ+, 0, ϑ+, 0) behind the shock is known. For
shocks traveling through an unperturbed state along the
positive direction, S is proved to satisfy the inequalities
[31]

v −
√

p0

ρ
≤ S ≤ v +

√
p0

ρ
, (70)

referred to as ”Lax conditions”. It is known that the Lax
conditions for a fluid imply the growth of the entropy
production across the shock [31]. This is the reason why
they are known in the literature as ”entropy growth con-
ditions”. In practice, the constraints (70) select the physi-
cal shocks among the solutions of the Rankine-Hugoniot
equations (65)–(68).

6 Incompressible fluids

In the previous section, under the hypothesis q = 0 and
ε  ε0, we have calculated the speeds of propagation of
thermo-mechanical disturbances. It turns out that the
theory is hyperbolic, whatever is the value of the temper-
ature.

Let’s now remove the hypotheses q = 0 and ε  ε0,
and assume that the fluid is at rest, namely v = 0. The
system (54)–(57) gets now

ρt = 0, (71)

(
αρϑ + τq2

2κθ

)
x

= 0, (72)

ρcvϑt + ρε1qqt + 1
2
ρ

∂ε1

∂ϑ
q2ϑt + qx = 0, (73)

τqt + κϑx = −q. (74)

Eq. (71) proves that the fluid is now incompressible,
while Eq. (72), which represents the condition of me-
chanical equilibrium, shows that the total pressure is
uniform. Eqs. (73)-(74) instead, govern the evolution of
the unknown fields ϑ and q. They can be put in the form
(50), with u = (ϑ, q)T , f = (0, −q)T and

A0 =
[(

ρcv + 1
2 ρ ∂ε1

∂ϑ
q2

)
ρε1q

0 τ

]
, A1 =

[
0 1
κ 0

]
.

Once the expression of ε1 in Eq. (38) is taken into ac-
count, we get the characteristic speeds

U =
−τq

ϑ
± √

κρτcv

ρτcv − τ 2q2

κϑ2

. (75)

Thus, also in this case the theory is hyperbolic for arbi-
trary values of q. For q = 0 Eq. (75) yields

U = ±
√

κ

ρτcv
, (76)

which represent the well-known second sound speeds in
solids [3, 7, 8].

Further important properties of the system may be
derived under the additional hypotheses cv = a, and
ε1 = 0. Then, Eqs. (73) and (74) read

ρaϑt + qx = 0, (77)

τqt + κϑx = −q, (78)

while the matrices A0 and A1 become

A0 =
[

ρa 0
0 τ

]
, A1 =

[
0 1
κ 0

]
.

The system above is representative of the linear hy-
perbolic heat conduction in solids at low temperatures,
with the free energy and the entropy depending on tem-
perature and heat flux, and the internal energy which,
according to the experimental observations, depends on
the temperature only. It is easily seen that the vectors

w = (ϑ, q)T , F = (ρaϑ, τq), G = (κq, ϑ), (79)

are such that

A0 = ∂ F
∂w

, A1 = ∂G
∂w

. (80)

That way, the system (77)-(78) my be put in the conser-
vative form [32]

∂ F
∂t

+ ∂G
∂x

= f . (81)

Thus, by introducing the new field u = F = (u1, u2), with
u1 = ρaθ and u2 = τq, from Eq. (81) we get

∂u
∂t

+ ∂ Ḡ(u)
∂x

= f̄ , (82)

with

Ḡ(u) = (κu2/τ, u1/ρa), f̄ (u) = (0, u2/τ )T . (83)
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Moreover, the specific entropy takes the form

s = −αlogρ + alog u1 − alog (ρa) + ρa2

2k
u2

2

u2
1

. (84)

By straightforward calculations, it is easily proved that
the condition

|u2| ≤
√

2k
3ρa

u1, (85)

is necessary and sufficient to ensure that s(u1, u2)
is concave. Such a property, which allows to satisfy
the principle of maximum entropy at the equilibrium,
has important consequences from the mathematical
point of view. First of all, it ensures that the function
h0(u1, u2) = −ρs(u1, u2) is convex. Moreover, making use
of the entropy balance (21), and taking into account the
thermodynamic restrictions (30)–(33), one attains the
following additional balance law

h0
t + h1

x = g (u1, u2), (86)

with

h1(u1, u2) = −ρau2

τu1
, g (u1, u2) = −ρau2

2

τ 2u2
1

≤ 0. (87)

The conditions above ensure that there exists a 2 × 2 ma-
trix H (u) such that the system

H (u)
(∂u

∂t
+ ∂ Ḡ(u)

∂x
− f̄

)
= 0, (88)

is symmetric [32, 33]. Then, by the results referred in
Sec. 5 for symmetric systems, we infer that the Cauchy
problem for the system (77)-(78) is well posed.

7 Concluding remarks

In the present paper we have proposed a mesoscopic
model of ideal polyatomic gases, with thermal lag and
finite thermal wave speed. To account for the thermal
relaxation effect, we have defined a non-equilibrium dy-
namical temperature starting by phenomenological con-
siderations on the motion of the molecules constituting
the gas. That way, we have built a bridge between the
kinetic theory of gases and the macroscopic Cattaneo
theory. Although classical kinetic theory expansions [5]
or phenomenological methods [2] give rather similar re-
sults, in the present paper we have analyzed the prob-
lem from a mesoscopic point of view, giving a more deep
insight at the molecular level but still obtaining man-
ageable model equations at the macroscopic level. Our

main hypothesis was a Fourier’s type constitutive equa-
tion for the heat flux, where the absolute temperature
has been substituted by the dynamical one. By design,
at the equilibrium the dynamical temperature coincides
with the classical absolute temperature, otherwise it fol-
lows the absolute temperature after a certain delay, con-
trolled by a small parameter, playing the role of relax-
ation time. This delay introduces propagation with finite
speed and, if chosen small, controls the passage to the
diffusive regime.

The constitutive theory was developed by allowing
the response functions to depend on the gradients of the
unknown fields [16]. As result, entropy, free energy, in-
ternal energy and Cauchy stress can be decoupled in the
sum of a classical equilibrium part and a nonequilibrium
one, which depends on the heat flux too.

The system of field equations governing the evolution
of mass density, gas velocity and non-equilibrium tem-
perature has been engaged to the experimental data by
the use of typical fitting curves modeling the specific heat
of polyatomic gases at constant pressure.

The propagation of thermo-mechanical disturbances
has been studied as well. In the case of one dimen-
sional system we obtained four thermo-mechanical dis-
turbances (as the number of unknown fields), gener-
ated by the interactions of the thermal field with mass
and momentum transfer. The fastest and slowest speeds
are the velocities of propagation of two pressure waves,
while the two intermediate speeds are the velocities of
two heat waves, due to perturbations in the temperature-
heat flux density. The Rankine-Hugoniot jump condi-
tions on a shock front are derived as well and the fields
behind the shock are obtained as functions of those
ahead the shock.

In the case of a fluid at rest, the theory of rigid heat
conductors is recovered as a particular case. It is proved
that the system of governing equations can be put in
symmetric hyperbolic form, so that the well posedness
of the Cauchy problem is ensured [32].

The proposed model could be easily validated by
measurements of the speeds of propagation of thermo-
mechanical disturbances in some of the most common
polyatomic gases. The calculated wave speeds could be
obtained by the results in Sec. 5, with the experimental
values of specific heat, thermal conductivity and trans-
port coefficients taken by [27,29,30,34,35]. As further de-
velopment of the theory, we plan to extend the results of
Sec. 5 to the case of temperature dependent heat con-
ductivity and thermal relaxation. Moreover, we aim to
calculate the interval of temperatures in which the uni-
lateral constraints in Eq. (70) are satisfied, in order to
determine the range of temperature in which physical
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shocks may occur. Finally, from the mathematical point
of view, the methodology applied in Sec. 6 could be used
to study the well posedness of the Cauchy problem for
moving gases.
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