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Abstract

We develop a mesoscopic model of thermoelectric coupling in nanosys-
tems, allowing for different phonon and electron temperatures, and mutual
energy exchange. Its compatibility with the second law of thermodynamics
is proved. By comparisons with other theoretical proposals, the different
coefficients involved in the model are identified. We consider two illus-
trations: (a) for systems where the electron mean-free path is considerably
shorter than the phonon mean-free path, the non-equilibrium phonon tem-
perature may be different with respect to the local-equilibrium temperature
of electrons; (b) for systems with large electron mean-free path, one may
have the so-called “hot electrons,” namely, electrons having a higher tem-
perature than that of the phonons.

1 Introduction

In the past decades the need for more efficient materials for electronic re-
frigeration and power generation has driven a heightening interest in the
field of thermoelectricity [1]. The cooling of the processors sets a funda-
mental limit to the electronic-system performances, and the thermoelectric
refrigeration is actually viewed as an environmentally “green” method of
small-scale localized cooling in computers, infrared detectors, electronics,
and optoelectronics, as well as many other applications. An increasing
number of the electronic and optoelectronic technologies typically requires
only small-scale, or localized spot, cooling of small components that do
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not impose a large heat load. Furthermore, high-efficiency thermoelectric
materials are important for power-generation devices to convert waste heat
into electrical energy, which may play an important role in developing al-
ternative energy technologies.

Novel applications of thermoelectric materials include biothermal batter-
ies to power heart pacemakers, or power generation for deep-space probes
via radioisotope thermoelectric generators. Different thermoelectric mate-
rials are currently under investigation by many research groups. Some of
them are focusing their efforts on minimizing the lattice thermal conduc-
tivity, and others on getting large power factors.

Usually, the analysis is especially focused on computer simulations, or
statistical mechanical computations [2], while scant attention is paid to
continuous models which may give strong physical grounds to practical
research and investigate new frontiers.

In the present paper we develop a mesoscopic model leading to a system
of enhanced thermoelectric equations, accounting for different phonon and
electron temperatures, and mutual energy exchanges. In particular, follow-
ing the way drawn in recent papers [3, 4], we assume that the overall heat
flux q has two different contributions: the phonon heat flux q.p/ and the
electron heat flux q.e/, such that q D q.p/ C q.e/. We omit the hole contri-
bution to the heat and electric current only for the sake of formal simplicity,
as the corresponding equations would be formally analogous to those of the
electrons, but would make the analysis more cumbersome.

We regard the phonons and the electrons as a mixture of gases flowing
through the crystal lattice [3–8], each of which is endowed with its own
temperature. Accounting for two different temperatures may be important,
for instance, in:

(a) Time-dependent situations: fast laser pulses. When a laser pulse hits
the surface of a system, initially the electrons capture the main amount
of the incoming energy with respect to the phonons. Subsequently,
through the electron–phonon collisions, they give a part of it to the
phonons. This may be of interest, for example, in the Raman ther-
mometry (which is often utilized to measure the temperature in small
electronic devices) or in information recording on optical discs (CD,
DVD, Blu-Ray).

(b) Steady-state situations: non-equilibrium temperatures. As the electron
mean-free path `e is usually shorter than the phonon mean-free path

p̀, in heat propagation and when the longitudinal distance z is such
that `e < z < p̀, a very high number of electron collisions, and only
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Phonon temperature and electron temperature 3

scant phonon collisions, are expected. Thus the electron temperature
may reach its local-equilibrium value, whereas the phonon temperature
is still far from its own local-equilibrium value.

(c) Hot electrons. When the electron mean-free path corresponding to
electron–phonon collisions is long, one may have the so-called “hot
electrons,” namely, a population of electrons whose average kinetic en-
ergy (i.e., the kinetic temperature) is considerably higher than that of
the phonons.

Therefore, it seems interesting to allow the electron temperature to be
different from the phonon temperature. To this end, we take advantage of
the theory of mixtures of fluids with different temperatures proposed by
Ruggeri et al. [9–11]. In that theory the mixture is supposed to be com-
posed of different media, co-existing in the physical space. Each con-
stituent obeys the same balance laws as a single fluid, and it is supposed
to have its own temperature. The average temperature of the mixture is in-
troduced by the consideration that the internal energy of the mixture is the
same as in the case of a single-temperature mixture [10].

Our goal will be pursued in the framework of Extended Irreversible
Thermodynamics (EIT) [12–14], i.e., a thermodynamic theory regarding
the dissipative fluxes as independent thermodynamic variables. Therefore,
we suppose that the state space † is spanned by the phonon temperature
T .p/, the electron temperature T .e/, the phonon heat flux q.p/, the electron
heat flux q.e/, the electric-current density I, and their first-order gradients
in view of a weakly nonlocal description [3, 15], i.e.,

† D
®
T .p/
I rT .p/

IT .e/
I rT .e/

Iq.p/
I rq.p/

Iq.e/
I rq.e/

I II rI
¯
: (1)

Indeed, our belief is that weakly nonlocal constitutive equations are nec-
essary in systems whose physical dimension is comparable to the mean-free
path of the heat carriers.

Going a bit deeper into the contents of the present paper, let us briefly
outline its layout. In Section 2 we set up a mesoscopic theoretical model
describing thermoelectric effects and accounting for the different tempera-
tures of the different heat carriers. The physical admissibility of that model
is proved by the exploitation of the second law of thermodynamics, the
main results of which are only sketched in Section 2.1, whereas readers
are referred to the Appendix for the detailed thermodynamic analysis of
the constitutive equations. Then we give a more manageable form to our
model equations by the identification of the different model’s coefficients
in Section 2.2 by comparisons with other theoretical proposals.
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In Section 3, we analyze two situations in which accounting for different
temperatures may lead to interesting results. In particular, in Section 3.1
we provide an explicit expression for the non-equilibrium phonon temper-
ature, which depends on the value of the heat flux [16–19], in systems with
`e considerably shorter than p̀, in order to give an estimation of the dif-
ference between the phonon temperature and the electron one in a practical
application. In Section 3.2, instead, we briefly analyze the case of hot elec-
trons which are characterized by `e � p̀. Final comments are given in
Section 4.

2 Model equations

In the realm of EIT [12, 13], in the present section we set up a mesoscopic
theoretical model allowing a description of the heat transport in a rigid
body, whenever the heat carriers are both phonons and electrons, including
the contribution of the latter to the electric current. Our approach rests
on the idea that the heat carriers form a gas-like mixture flowing through
the crystal lattice [3–8], with each component obeying the same balance
equations as a single heat carrier [9–11], namely:

Pu.p/
Cr � q.p/

D C.T .e/
� T .p//; (2a)

Pu.e/
Cr � q.e/

D �C.T .e/
� T .p//C E � I; (2b)

where u.p/ and u.e/ are the partial internal energies (of phonons and elec-
trons, respectively), and E is the electric field. The term E � I in Eq. (2b)
represents the power expended by the Joule effect, while C.T .e/ � T .p//,
with C being an electron–phonon coupling factor, accounts for the rate of
energy exchange between electrons and phonons. The coupling factor C
was first analyzed within the free-electron gas model by Kaganov et al.
[20]. For a detailed analysis of that coefficient, see Ref. [21].

The summation of Eqs. (2) yields

PuCr � q D E � I; (3)

with u D u.p/ C u.e/ as the total internal energy of the system, which is
just the balance of energy derived in Ref. [22] in the absence of a magnetic
field.

As we are assuming that each heat carrier has its own temperature, we
postulate the following constitutive equations for the partial internal ener-
gies appearing in Eqs. (2):

u.p/
D c.p/

v T .p/; u.e/
D c.e/

v T .e/; (4)
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Phonon temperature and electron temperature 5

with c.p/
v and c.e/

v as the phonon- and the electron-specific heats at con-
stant volume [21], respectively. In order to emphasize the essential physi-
cal ideas, here we deal only with the simplest situation in which c.p/

v and
c

.e/
v are constant. Incorporation of additional effects, as, for instance, the

temperature dependence of the specific heats, would be straightforward.
Recalling that the average internal energy of the system may be ex-

pressed through the average temperature T as u D cvT , being

cv D c
.p/
v C c.e/

v (5)

the specific heat at constant volume of the whole system [23], from Eqs. (4)
we have

T D
c

.p/
v T .p/ C c

.e/
v T .e/

cv

: (6)

Note that, from the practical point of view, c.e/
v is comparable to c.p/

v

only at very low temperatures. Thus, in the usual applications one ex-
pects that the phonon heat capacity is dominant with respect to the electron
heat capacity, and consequently the average temperature defined in Eq. (6)
would be practically equal to the phonon gas temperature. Nevertheless,
in Section 3 we show that in some cases our theoretical model allows an
estimation of the difference between T .p/ and T .e/.

The rate of the electric charge density %.e/ obeys the charge conservation
law, i.e.,

P%.e/
Cr � I D 0; (7)

which, together with Eqs. (2), determines the evolution of u.p/, u.e/, and
%.e/, once the evolution of the corresponding fluxes q.p/, q.e/, and I is
known. According to the basic principles of EIT [12, 13], we postulate for
them the following balance equations:

Pq.p/
D �r �ˆ.p/

C r.p/; (8a)

Pq.e/
D �r �ˆ.e/

C r.e/; (8b)

PI D �r �ˆ.I /
C r.I /; (8c)

wherein ˆ.p/, ˆ.e/, and ˆ.I / denote the fluxes of the corresponding state
variables, and r.p/, r.e/, and r.I / are their productions.

EIT requires that suitable constitutive equations should be assigned to
both fluxes and productions [12, 13]. Thus, in order to obtain a simple
model accounting for nonlocal and nonlinear effects, for the sake of sim-
plicity and along with the approach used in Refs. [3, 4], in the present sec-
tion we assume the following constitutive relations:
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ˆ.p/
D �.�

.p/
0 r � q

.p//U � �
.p/
2 q.p/

˝ q.p/
� �

.p/
1 rq.p/; (9a)

ˆ.e/
D �.�

.e/
0 r � q

.e//U � �
.e/
2 q.e/

˝ q.e/
� �

.e/
1 rq.e/; (9b)

ˆ.I /
D �.�

.I /
0 r � I/U � �

.I /
2 I ˝ I � �

.I /
1 rI; (9c)

where U is the second-order unit tensor, and the symbol ˝ means the
dyadic product between two vectors (i.e., a ˝ b D aibj once the index
notation is used). Moreover, in Eqs. (9) �.p/

i , �.e/
i , and �.I /

i (i D 0; 1; 2)
are phenomenological scalar coefficients which will be identified later on
by comparison with other theoretical proposals.

It seems important to emphasize that the constitutive assumptions (9),
which have been obtained following the way outlined in Refs. [24,25], rest
on both mathematical and physical motivations. In fact, under the hypoth-
esis of isotropy of the heat conductor, ˆ.p/, ˆ.e/, and ˆ.I / have to be
analytically represented by second-order isotropic tensor functions which,
due to the chosen state space, depend on scalars, vectors, and second-order
tensors. The first term in the right-hand side of Eqs. (9) is symmetric and its
form has been chosen according to the representation theorem of isotropic
symmetric second-order tensor functions proved in Ref. [26] (see eqs. (4.4)
and (4.5) therein). Such a general representation has been simplified un-
der the additional physical assumptions that each vectorial flux, due to the
different carriers of heat or of electrical charge, enters its own tensorial
flux only, and that this last is linear in the dyadic composition of the re-
spective vectorial flux. Furthermore, the quantities ˆ.p/, ˆ.e/, and ˆ.I /

are supposed to be linear in the gradients of q.p/, q.e/, and I, respectively.
Thus, the second and third terms in the right-hand side of Eqs. (9) have
been chosen according to the general theorem of representation of linear
isotropic tensor functions (see Ref. [27], p. 235, eq. (22) therein). From the
considerations above, the constitutive equations (9) ensue.

Meanwhile, we also assume that the productions of each flux q.p/, q.e/,
and I are linear both in the thermodynamical force (related to the respective
heat, or electrical-current, carrier), and in the flux itself, but do not depend
on the thermodynamical forces (or fluxes) due to the other carriers. That
way we get

r.p/
D 


.p/
0 rT

.p/
C 


.p/
1 q.p/; (10a)

r.e/
D 


.e/
0 rT

.e/
C 


.e/
1 q.e/

C ı.Ie/E; (10b)

r.I /
D 


.I /
0 rT

.e/
C 


.I /
1 I C ı.eI/E; (10c)
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wherein 
 .p/
i , 
 .e/

i , 
 .I /
i (with i D 0; 1), ı.Ie/, ı.eI/ are further suitable

coefficients. It is easy to check that the equations above constitute a partic-
ular case of the general representation of isotropic vector functions proved
in Ref. [26] (see eqs. (4.2) and (4.3) therein).

Note that r.e/ and r.I / have a term proportional to E, accounting for the
relation between the electric field and the electric charges and allowing a
description of the Seebeck effect and the Peltier effect [12,28,29]. Since E
does not belong to †, a constitutive equation for it must be assigned, too.

The system of equations (2), (7), and (8), together with the constitutive
equations (4), (6), (9), and (10), set up our mesoscopic theoretical model.

2.1 Restrictions placed by the second law of thermodynamics

The constitutive assumptions in Eqs. (9) and (10) have been proposed from
mathematical formal grounds, as the simplest generalizations of nonlocal
and nonlinear constitutive equations previously used for phonons [3, 4]. In
that case, constitutive equations of this kind (with suitable interpretation of
the coefficients) may be obtained from the kinetic theory of phonons up to
the second order in the fluxes [30]. However, to our knowledge, they have
not yet been obtained simultaneously for electrons and phonons, because
most of the kinetic-theory approaches to this problem do not go beyond
first-order solutions.

At this step it is necessary to check their physical admissibility in order
to avoid any possible violation of the basic principles of continuum physics.

The second law of thermodynamics accounts for the natural evolution of
a system in any possible thermodynamic process and constitutes a useful
tool for restricting the form of the constitutive equations [12, 13, 31, 32].
It states that the rate of entropy production per unit volume � .s/ cannot be
negative along any admissible thermodynamic process. Locally it reads

� .s/
D Ps Cr �

� q

T
C k

�
� 0; (11)

where s is the entropy density, the ratio q=T is the classical entropy-density
flux [22,33], and k is an entropy-density extra flux due to long-range inter-
actions [13, 34]. Since the average temperature T may be easily expressed
in terms of the state variables by Eq. (6), it seems natural to introduce the
Helmholtz free energy D u�T s. In terms of , inequality (11) becomes
[22]

P C s PT � E � I C
q � rT

T
� Tr � k � 0; (12)
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8 D. Jou, A. Sellitto and V. A. Cimmelli

once the term r � q has been expressed by means of the local balance of
energy (3).

Referring the reader to the Appendix, wherein the consequences of in-
equality (12) are established, here we only summarize the most relevant
results.

(1) The constitutive assumptions in Eqs. (9) and (10) agree with the second
law of thermodynamics.

(2) The constitutive equation of the Helmholtz free energy  reads

 D  eq.T /C
 p.T /

2
q.p/
�q.p/
C
 e.T /

2
q.e/
�q.e/
C
 I .T /

2
I �I; (13)

where the subscript “eq” refers to the local-equilibrium value (char-
acterized by q.p/ D q.e/ D I D 0). In Eq. (13)  p,  e, and  I

are suitable positive-defined functions of the state variables, so that  
reaches a minimum at equilibrium [12, 13, 31].

(3) The entropy-density extra flux k and the entropy production � .s/ are,
respectively, given by

k D
 p

T

�
.�

.p/
0 r � q

.p//q.p/
C �

.p/
1 r

tq.p/
� q.p/

�
C
 e

T

�
.�

.e/
0 r � q

.e//q.e/
C �

.e/
1 r

tq.e/
� q.e/

�
C
 I

T

�
.�

.I /
0 r � I/I C �

.I /
1 r

tI � I
�
; (14a)

T� .s/
D E � I �

q � rT

T
C f .†/ � 0; (14b)

wherein the superscript “t” means the transposed gradient of the indi-
cated vector, and the scalar function f is a suitable function defined on
the state space, the explicit form of which is given in Eq. (39) of the
Appendix.

2.2 Identification of the phenomenological coefficients

In order to look for possible applications of our model, we have to ex-
press the coefficients entering the different constitutive equations in terms
of well-known material functions. This is the aim of the following analysis,
which will be pursued by comparisons with earlier theoretical mesoscopic
models.
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Phonon temperature and electron temperature 9

Let us put ourself for a while in the semi-linear approximation for the
constitutive equations (9), i.e., let us assume that the terms �.p/

2 q.p/˝q.p/,
�

.e/
2 q.e/ ˝ q.e/, and �.I /

2 I ˝ I are vanishing. Then, once the constitutive
assumptions in Eqs. (9) and (10) have been taken into account, Eqs. (8)
reduce to

Pq.p/
� 


.p/
1 q.p/

D 

.p/
0 rT

.p/
C �

.p/
0 rr � q

.p/
C �

.p/
1 r

2q.p/; (15a)

Pq.e/
� 


.e/
1 q.e/

D 

.e/
0 rT

.e/
C �

.e/
0 rr � q

.e/
C �

.e/
1 r

2q.e/
C ı.Ie/E;

(15b)

PI � 

.I /
1 I D 


.I /
0 rT

.e/
C �

.I /
0 rr � I C �

.I /
1 r

2I C ı.eI/E: (15c)

These equations may be compared with those discussed in Ref. [4] to
analyze the thermoelectric effects and the size dependency of the figure-
of-merit in cylindrical nanowires (see eqs. (5) therein). Those equations, in
fact, have a form which is very similar to the form of Eqs. (15), the only dif-
ference being the presence of the average temperature in the former, while
two different temperatures are introduced in Eqs. (15). Recalling the pre-
viously discussed difference between T .p/ and T .e/ in the usual practical
applications, that comparison allows us the following identifications:8̂̂̂̂
ˆ̂̂̂̂<̂
ˆ̂̂̂̂̂̂
:̂



.p/
1 D ���1

p I 

.e/
1 D ��

�1
e I 


.I /
1 D ���1

I I



.p/
0 D ��p�

�1
p I 


.e/
0 D �.�e C �…�e/�

�1
e I 


.I /
0 D ���e�

�1
I I

�
.p/
1 D `2

p�
�1
p I �

.e/
1 D `

2
e�

�1
e I �

.I /
1 D `2

I �
�1
I I

�
.p/
0 D 2`2

p�
�1
p I �

.e/
0 D 2`

2
e�

�1
e I �

.I /
0 D 2`2

I �
�1
I I

ı.Ie/
D …�e�

�1
e I ı

.eI/
D �e�

�1
I I

(16)
where .�pI p̀/, .�eI `e/ and .�I I `I / are the relaxation time and mean-free
path of phonons, electrons, and electric-current density [3, 4, 35–37], re-
spectively, � is the Seebeck coefficient, �e is the electrical conductivity, �p

and �e are the thermal conductivity due to phonons and electrons, respec-
tively [38], and … is the Peltier coefficient.

Once Eqs. (16) hold, relaxing the hypothesis of semi-linear approxima-
tion for the constitutive equations (9), when the terms proportional to the
second-order spatial derivatives may be neglected (this is the case, for ex-
ample, when the mean-free paths are very short), as well as both the dissi-
pation due to the Joule effects (i.e., the term E � I in the time rate of Pu.e/),
and the coupling between Pu.p/ and Pu.e/ (i.e., the term C.T .e/ � T .p//),
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10 D. Jou, A. Sellitto and V. A. Cimmelli

in steady states, up to the second-order approximation, Eqs. (8) become,
instead,

q.p/

�p
D �

.p/
2 rq.p/

� q.p/
�
�p

�p
rT .p/; (17a)

q.e/

�e

D �
.e/
2 rq.e/

� q.e/
�
�e C �…�e

�e

rT .e/
C
…�e

�e

E; (17b)

I

�I
D �

.I /
2 rI � I C

�e

�I
.E � �rT .e//; (17c)

since from Eqs. (2) and (7) one has r � q.p/ D r � q.e/ D r � I D 0 and,
moreover, the temperature gradients, as well as the fluxes and their spatial
derivatives, have been considered as first-order quantities.

Looking at Eq. (17a), it is easy to recognize that it is very similar to the
nonlinear evolution equation for the phonon contribution to the heat flux
obtained in Ref. [19] (see eq. (27) therein), which has been used to analyze
second-sound propagation in silicon nanowires. Thus, by the analysis of
eq. (27) in Ref. [19], and the very close relation between q.p/ and q.e/, we
may also infer

�
.p/
2 D

2

c
.p/
v T .p/

; �
.e/
2 D

2

c
.e/
v T .e/

: (18)

The physical identification of the coefficient �.I /
2 , instead, is not so di-

rect. Recalling that we only aim to introduce a first simple model of ther-
moelectric coupling in nanosystems, a dimensional analysis, together with
the balance equation (7) for the electric charge, allow the further identifica-
tion,

�
.I /
2 D

1

%.e/
: (19)

Our further step will be to identify on physical grounds the remaining
functions  p,  e, and  I . In particular we are looking for identifications
which, by design, are simple and in accordance with the principles of min-
imum free energy [39] and maximum entropy [13] at the equilibrium. As
will be seen, linking the Helmholtz free energy (13) with well-defined ma-
terial functions allows us to also make a conceptual distinction between
the local-equilibrium temperature (characteristic of slow processes) and the
non-equilibrium temperature (characteristic of fast regimes). Indeed, the
meaning of temperature out of the equilibrium is a fundamental open prob-
lem in modern irreversible thermodynamics and statistical physics [17],
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Phonon temperature and electron temperature 11

and it becomes especially acute in nanosystems experiencing fast processes
[12, 18].

The simplest identifications which comply with the requirements above
are

 p D
�pT

2

�pT
3

ref
;  e D

�eT
2

.�e C �…�e/T
3

ref
;  I D

�IT
2

��eT
3

ref
; (20)

where Tref denotes a given reference temperature, as, for instance, the work-
ing temperature of the system. The introduction of such a temperature is
important, since at nanoscale it influences the thermal properties of the
system. For example, in the analysis of nanosystems, the phonon–wall
interaction must be incorporated in the usual description of phonon hy-
drodynamics, as surface effects become comparable to bulk effects. The
material parameters describing the specular, diffusive, and backscattering
collisions in silicon nanowires have been proved to depend on the working
temperature [8]. This dependence is important because it strongly influ-
ences the temperature dependence of the effective thermal conductivity of
nanosystems [8].

That way, the Helmholtz free energy (13) takes the form

 D  eq.T /C
�pT

2

2�pT
3

ref
q.p/
� q.p/

C
�eT

2

2.�e C �…�e/T
3

ref
q.e/
� q.e/

C
�IT

2

2��eT
3

ref
I � I: (21)

Then, by using the classical thermodynamic relation s D �@ =@T (see
Eqs. (36a) in the Appendix), it follows that

s D seq.T / �
�pT

�pT
3

ref
q.p/
� q.p/

�
�eT

.�e C �…�e/T
3

ref
q.e/
� q.e/

�
�IT

��eT
3

ref
I � I; (22)

wherein seq D �@ eq=@T . From the expression above it is evident that the
entropy takes its maximum at the equilibrium.

According to the local-equilibrium hypothesis, the non-equilibrium tem-
perature may be defined, as in equilibrium, by the relation

1

T
D
@s

@u
; (23)
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12 D. Jou, A. Sellitto and V. A. Cimmelli

whenever the internal energy u replaces the temperature T as state variable
[12, 13, 40]. Thus, from Eqs. (22) and (23) we have the following constitu-
tive equation for the non-equilibrium temperature:

1

T
D

1

Teq
�

�p

�pcvT
3

ref
q.p/
� q.p/

�
�e

.�e C �…�e/cvT
3

ref
q.e/
� q.e/

�
�I

��ecvT
3

ref
I � I; (24)

with T �1
eq D @seq=@u as the local-equilibrium temperature of the mix-

ture of phonons and electrons. Equation (24) clearly shows that the non-
equilibrium temperature may differ from the local-equilibrium tempera-
ture. For a detailed discussion on the different temperatures arising in non-
equilibrium systems, see for instance Ref. [17].

Before going further, it seems important to remark on the following con-
siderations regarding Eq. (24):

(a) In Eq. (24), the non-equilibrium terms are independent of both the non-
equilibrium temperature and the local-equilibrium one, but they depend
on the intensities of the fluxes, as well as on the reference temperature.
This is logical, since the temperature at which a device is working in-
fluences the non-equilibrium states.

(b) The local-equilibrium temperature should not be considered as a con-
stant temperature, but as the temperature following by thermodynamic
restriction s D �@ =@T , with s defined according to the local-equi-
librium hypothesis.

(c) Both T and Teq must be non-negative. Such a problem will be consid-
ered in Section 3.1.

As a conclusive summary, by comparing our model with earlier theoret-
ical models, we have obtained the following nonlocal transport equations
for phonon and electron contributions to the heat flux, and for the elec-
tron contribution to the electric-current density, including thermoelectric
effects:

�p Pq
.p/
�

2�p

c
.p/
v T .p/

�
rq.p/

� q.p/
C q.p/

r � q.p/
�
C q.p/

D ��prT
.p/
C `2

p

�
r

2q.p/
C 2rr � q.p/

�
; (25a)
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�e Pq
.e/
�

2�e

c
.e/
v T .e/

�
rq.e/

� q.e/
C q.e/

r � q.e/
�
C q.e/

D �.�e C �…�e/rT
.e/
C `2

e

�
r

2q.e/
C 2rr � q.e/

�
C…�eE;

(25b)

�I PI �
�I

%.e/
.rI � I C Ir � I/C I

D �e.E � �rT
.e//C `2

I .r
2I C 2rr � I/: (25c)

Equations (25) comply with the experiments since, in the linear case
they are capable of working out interesting results about the figure-of-merit
in metallic nanowires when phonons are the sole heat carriers [3, 4]. In
principle, the nonlinear terms appearing in Eqs. (25) may be used to study
a further way of improving the efficiency of thermoelectric devices.

The first term on the left-hand side of Eqs. (25) describes the finite-time
non-vanishing relaxational effects in the temporal response of the fluxes af-
ter a thermodynamic force is suddenly imposed on the system. The second
and third terms on the left-hand side of Eqs. (25), which are proportional,
respectively, to the gradient and to the divergence of the flux times the flux
itself, are nonlinear terms which have not yet been studied in much detail,
but which may be relevant for instance in conical geometries, where there
are strong gradients of the flux (in contrast to cylindrical devices, where
the gradient of the flux along the axis vanishes). On the right-hand side of
Eqs. (25) the terms containing the square of the mean-free path account for
nonlocal effects, which manifest themselves when some characteristic sys-
tem’s size becomes comparable to (or smaller than) the mean-free path; oth-
erwise, they become negligible. The remaining terms are the usual ones in
thermoelectric phenomena, but with the total heat flux split into the phonon
and the electron contributions, which allows more flexibility in the analy-
sis of nanosystems when the mean-free paths of phonons and electrons are
considerably different.

Note that in the absence of a source, in purely one-dimensional steady-
state situations, the nonclassical terms containing gradients in Eqs. (25)
vanish, because the fluxes must be homogeneous along the system.

Equation (25a), but without the nonlinear terms, has been applied to
phonon heat transport in nanowires, and it describes a reduction in the ther-
mal conductivity [6–8]. This is because nanowires are not strictly a one-
dimensional system, and the heat flux may change from a maximum value
at the center to a small value along the walls. This effect is successfully
described by a linear version of Eqs. (25), see Ref. [4].
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14 D. Jou, A. Sellitto and V. A. Cimmelli

However, a purely one-dimensional case would need a different ap-
proach, taking into account that the probability of collisions after a flight of
length x is of the order of 1�exp�x=`p . Thus, for x � p̀ the regime would
be ballistic, and for x � p̀ it would become diffusive. This behavior is
recovered if one makes the ansatz of a space-dependent effective thermal
conductivity of the form �eff

p .x/ D �p.1 � exp�x=`p/. Indeed, for x � p̀

one recovers the usual thermal conductivity, while for x � p̀ the effective
thermal conductivity takes the form �eff

p D �.x= p̀/. This implies that for
such small distances the heat flux does not depend on temperature gradient,
but on temperature difference, as is usual in ballistic regimes. Of course, it
would be elegant to incorporate this feature in a set of macroscopic equa-
tions for the heat flux, generalizing Eqs. (25), instead of deriving it from a
microscopic ansatz.

For the sake of illustration of the relation of the present model with
other heat conduction theories, let us consider a one-dimensional system in
which the heat flow is drawn by the effective thermal conductivity instead
of the usual one, in the absence of electric field and current circulation, un-
der the hypothesis that the phonons are the sole heat carriers. Moreover, let
us suppose that the terms proportional to the second-order spatial deriva-
tives may be neglected, namely, the mean-free path is very short. Then, the
evolution of the one-dimensional heat flux q is governed by the first of the
Eqs. (25), which takes the form

� Pq � Lqq;x C cvL PT C �
eff
p T;x C q D 0; (26)

where � is the overall relaxation time, and L D 2�q=cvT is said to be the
“characteristic length of the heat conduction” [41].

An enhanced heat-transport equation of the type (26) has been obtained
in the framework of thermomass (TM) theory [41, 42], a thermodynamic
model in which the heat-transfer process is regarded as a gas-like collec-
tion flowing through the medium due to a TM pressure gradient. In that
theory, the heat carriers are the thermons, the mass of which may be calcu-
lated from Einstein’s mass–energy duality. The continuity and momentum
equations for thermons assume the usual forms of fluid mechanics, and
their combination yields an evolution equation for the heat flux similar to
Eq. (26).

If instead the nonlocal effects are not negligible, namely, the mean-free
path is comparable to (or bigger than) the physical dimensions of the sys-
tem, Eq. (25a) yields

� Pq � Lqqx C cvL PT C �
eff
p T;x C q D `

2q;xx
; (27)

Authenticated | vito.cimmelli@unibas.it author's copy
Download Date | 11/14/13 5:12 PM
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already derived as a particular case in the framework of a more general
model of nonlocal and nonlinear anisotropic heat transport [43, 44].

The physical identifications in Eqs. (16), merged with the thermody-
namic restriction in Eq. (14a), also leads to the following form for the
entropy flux J .s/:

J .s/
D

q

T
C
2`2

pT

T 3
ref

h.r � q.p//q.p/ C .r tq.p// � q.p/

�p

i
C
2`2

eT

T 3
ref

h.r � q.e//q.e/ C .r tq.e// � q.e/

�e C �…�e

i
C
2`2

IT

T 3
ref

h.r � I/I Cr tI � I

�e�

i
: (28)

Recalling that the overall entropy flux is defined as J .s/ D q=T C k,
Eq. (28) clearly shows that it has a nonlinear form. A similar result has
been obtained in Ref. [45] (see eqs. (2) and (35) therein), in the case of
phonon transport only. Following the way paved in that paper, Eq. (28)
may be used to study the influence of nonlocal terms on the temperature
profile in thermoelectric devices.

While the application of our theoretical model to the analysis of thermo-
electric phenomena, as well as to a comparison with the quasi-classic mod-
els of thermoelectricity discussed by Ziman [46], will have to be deferred
to future work, in the following we focus our attention on two illustrations
in which it would be interesting to account for different temperatures.

3 Phonon and electron temperature

In this section, for the sake of illustration, we consider two extreme sit-
uations, corresponding to p̀ � `e and `e � p̀, respectively. In the
former case the phonons are out of local equilibrium, whereas electrons are
in local-equilibrium states. The latter situation, instead, is characteristic of
the hot electrons.

3.1 Non-equilibrium phonon temperature and local-equilibrium
electron temperature

The possibility of accounting for two different temperatures (that is, the
phonon temperature and the electron temperature) is one of the main as-
sumptions of our theoretical model. If one would be able to measure both
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16 D. Jou, A. Sellitto and V. A. Cimmelli

of them, then one would also be able to obtain the average temperature T
of the system by Eq. (6). Indeed, in Section 2 we already observed that in
the standard applications T is practically coincident with T .p/. Thus, at this
step a natural question is how it is possible to measure, or to estimate, those
temperatures in situations which may be extreme, but accessible to current
experimental possibilities. We answer that question in the next lines. To
this end, let us restrict ourselves to non-equilibrium situations in which the
electron heat flux and the electric current are negligible with respect to the
phonon heat flux.

In such a case, the non-equilibrium temperature (24) reduces to

1

T
D

1

Teq
�

�p

�pcvT
3

ref
q.p/
� q.p/; (29)

and, consequently, one has

T D Teq

�
1 �

T �p

�pcvT
3

ref
q.p/
� q.p/

�
� Teq

�
1 �

�p

�pcvT
2

ref
q.p/
� q.p/

�
� Tref

�
1 �

�p

�pcvT
2

ref
q.p/
� q.p/

�
; (30)

under the hypothesis of small deviations of T and Teq from Tref. This ap-
proximation is true if we are restricted to values of the heat flux which do
not exceed a given threshold, in such a way that both T and Teq are non-
negative. Such a situation is effectively observed in nonlinear heat conduc-
tion, and in the literature it is referred to as the presence of “flux limiters”
[13, 47, 48].

The electrons generally reach their local-equilibrium temperature ear-
lier with respect to the phonons, since �e � �p and `e � p̀ in several
practical applications. Then, in these situations we may take for T .e/ the
local-equilibrium value Teq, whereas for the phonons we have to introduce a
non-equilibrium value, which can be identified with T . In this way, in view
of Eq. (30), for the non-equilibrium phonon temperature we may assume

T .p/
D Tref

�
1 �

�p

�pc
.p/
v T 2

ref

q.p/
� q.p/

�
: (31)

In principle, Eq. (31) may be used for a first rough estimation for the
phonon temperature in situations wherein both the phonon relaxation time,
and the phonon mean-free path are much larger than the corresponding
electron quantities.
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Figure 1. Non-equilibrium phonon temperature versus local phonon heat flux
in a silicon sample at 50 K: theoretical estimation, as a result of Eq. (31).

As a simple illustration, Eq. (31) is used in Figure 1 to estimate the
non-equilibrium phonon temperature in the case of a silicon sample at
the average reference temperature of 50 K (�p D 2680Wm�1K�1 and

p̀ D 6681 � 10�9 m) as a function of q.p/. For the sake of computation,
we estimate c.p/

v � cv D .12=5/�
4.T=TD/.R�Si=MSi/ (with TD D 645K

being the Debye temperature for silicon, �Si the silicon mass density, R the
gas constant, and MSi the silicon molar mass) and the phonon relaxation
time as �p D p̀=v (with v D 8:43 � 103ms�1 being the phonon speed).

3.2 Hot electrons

The term hot electrons is used to indicate either holes or electrons that have
gained very high kinetic energy, after having been accelerated by a strong
electric field in areas of high field intensities within a semiconductor device
(especially Metal-Oxide-Semiconductors) [49]. Because of their high ki-
netic energy, hot electrons can be injected and trapped in areas of the device
where they should not be, forming a space charge that causes the device to
degrade or become unstable. In the hot electron case, which is character-
ized by `e � p̀, in Eq. (2b), one has jE � Ij � jC.T .e/ � T .p//j, since
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18 D. Jou, A. Sellitto and V. A. Cimmelli

the energy gained by the electrons (between successive collisions under the
action of the electric field) is higher than that communicated to the lattice,
and the electron temperatures will be higher than the phonon temperature
in an amount of

�T '
E � I

nkB

�e D e
E � V

kB

�e; (32)

with kB being the Boltzmann constant, n the electron number density per
unit volume, e the absolute value of the electric charge, and V the electric
potential.

In such a condition, we can suppose that the electron heat flux is pre-
dominant with respect to the others, and that the phonon temperature and
the lattice temperature coincide with the reference temperature, while the
electron temperature is

T .e/
D Tref

h
1 �

�e

.�e C �…�e/c
.e/
v T 2

ref

q.e/
� q.e/

i
: (33)

It is worth observing that �e (or `e) may have two different contributions:
that corresponding to electron–electron interactions, which is very short,
and that corresponding to electron–lattice interaction (or electron–phonon
interaction) which may be considerably large. The time of interest for hot
electrons is the latter one, because it is the time during which the electrons
gain energy under the action of the external electric field before giving it
to the lattice. Having a short electron–electron collision time means that
the electrons will have a distribution close to that of equilibrium, but with
a kinetic temperature higher than that of the lattice.

A good understanding of hot-electron phenomena is very important for
all modern semiconductor devices. In fact, in many occasions, these phe-
nomena are a nuisance that should be avoided, as for example the hot-
electron injection into the gate dielectric in silicon field-effect transistors,
which produces a degradation of the transistor characteristics and may lead
to a failure of the circuit.

4 Conclusions

In the present paper we have proposed a system of enhanced field equa-
tions for thermoelectricity, taking into account the different mean-free path
of phonons and electrons, which leads to different nonlocal contributions,
under the hypothesis that phonons and electrons have different tempera-
tures. Energy exchanges between the phonons and the electrons are also
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possible. In Section 1 we briefly discussed the importance of accounting
for the differences between the phonon temperature and the electron one. It
is worth observing, indeed, that a two-temperature model (TTM) was also
proposed in previous papers [50,51] and, for example, has been widely em-
ployed both in theoretical and/or computational studies of laser interactions
in metals [52]. That model describes the temporal and spatial evolution of
the lattice and electron temperatures in the irradiated target by two coupled
nonlinear differential equations [21], which are very similar to Eqs. (2)
once the constitutive assumptions (4) are taken into account. The TTM re-
lies on the notion of separation of relaxation time-scales in the electron and
phonon distributions.

The model proposed in the present paper, instead, follows from the idea
that the heat carriers (i.e., the electrons and the phonons) behave as a gas-
like collection. In this way, we have taken advantage of a phonon-hydro-
dynamic approach to developing a theoretical model which introduces en-
hanced time rates for the phonon and electron heat flux, as well as for the
electric-current density flux, in view of describing thermoelectric effects.
Although no experimental evidence may be invoked to justify the use of
Eqs. (25), the thermodynamic analysis performed in Section 2 ensures that
they agree with the basic principles of continuum physics.

Note, incidentally, that in Eq. (11) we have taken for the classical part of
the entropy flux the expression q=T , with T being the average temperature
defined by Eq. (6); an alternative possibility worthy of exploration would
be to take q.e/=T .e/ C q.p/=T .p/, instead of the former expression. We
think it is an interesting, albeit academic, point whose discussion would
require a specific paper, and we do not deal with it here.

As a simple illustration of our model, we have considered two different
extreme situations: the situation wherein p̀ � `e, and that characterized
by `e � p̀. In the former case nonlocal effects are neglected for elec-
trons, whose temperature is identified with the local-equilibrium temper-
ature, while nonlocal effects are kept for phonons whose temperature is
different from the local-equilibrium temperature. In the special case of a
silicon sample at very low temperature, we have estimated the difference
between the phonon temperature and the electron one.

In the latter case, instead, which characterizes the hot electrons, the elec-
tron temperature is higher than the phonon temperature.

As a further point of interest, in this paper we have also explicitly related
the several nonlocal contributions in Eqs. (25) to extra terms in the entropy
flux (28), thus proving the relevance of the nonclassical form of the en-
tropy flux in the analysis of nonlocal effects. This is a fundamental topic
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in non-equilibrium thermodynamics, where the entropy flux generally has
not received sufficient attention [45]. These contributions are expected to
play a relevant role in the thermodynamic analysis of generalized transport
equations, which is currently an active field of research.

A Consequences of the entropy inequality

In the inequality (12) both  and k have to be expressed by constitutive
functions, since they do not belong to †. According to the principle of
equipresence, we assume  D  .†/ and k D k.†/. Then, by the chain
rule one may write inequality (12) in the following explicit form:� @ 

@T .p/
C
c

.p/
v

cv

s
�
PT .p/
C

� @ 

@T .e/
C
c

.e/
v

cv

s
�
PT .e/
C

@ 

@rT .p/
� r PT .p/

C
@ 

@rT .e/
� r PT .e/

C
@ 

@q.e/
� Pq.e/

C
@ 

@rq.e/
W r Pq.e/

C
@ 

@q.p/
� Pq.p/

C
@ 

@rq.p/
W r Pq.p/

C
@ 

@I
� PI C

@ 

@rI
W r PI � T

� @k

@T .p/
� rT .p/

C
@k

@T .e/
� rT .e/

C
@k

@q.e/
W rq.e/

C
@k

@q.p/
W rq.p/

C
@k

@I
W rI

C
@k

@rT .p/
W rrT .p/

C
@k

@rT .e/
W rrT .e/

C
@k

@rq.p/
ˇrrq.p/

C
@k

@rq.e/
ˇrrq.e/

C
@k

@rI
ˇrrI

�
� E � I C

q � rT

T
� 0; (34)

wherein the colon stands for the double inner product of two matrices (i.e.,
A W B D AijBij , once Einstein’s summation convention over repeated
indices is used), and the symbol ˇ means the triple inner product of two
third-rank tensors (that is, Aˇ B D AijkBijk).

Our aim here is to determine necessary and sufficient conditions for the
physical consistency of Eqs. (8) (together with the constitutive assumptions
in Eqs. (9) and (10)), which are represented by a set of thermodynamic
restrictions on the constitutive functions of  and k, ensuring that the in-
equality (34) is never violated. To achieve that task, at first it is useful to
rewrite Eqs. (8) in explicit form. Owing to the constitutive equations (9)
and (10), they read

Pq.p/
D 


.p/
0 rT

.p/
C 


.p/
1 q.p/

C �
.p/
0 rr � q

.p/
C �

.p/
1 r

2q.p/

C �
.p/
2

�
rq.p/

� q.p/
C q.p/

r � q.p/
�
; (35a)
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Pq.e/
D 


.e/
0 rT

.e/
C 


.e/
1 q.e/

C �
.e/
0 rr � q

.e/
C �

.e/
1 r

2q.e/

C �
.e/
2

�
rq.e/

� q.e/
C q.e/

r � q.e/
�
C ı.Ie/E; (35b)

PI D 

.I /
0 rT

.e/
C 


.I /
1 I C �

.I /
0 rr � I C �

.I /
1 r

2I

C �
.I /
2 .rI � I C Ir � I/C ı.eI/E: (35c)

According to the classical Coleman–Noll procedure [33, 53, 54] for the
exploitation of the second law, thermodynamic restrictions on the consti-
tutive functions may be obtained by replacing in inequality (34) the time
derivatives of q.p/, q.e/, and I through Eqs. (35). This yields a gener-
alized entropy inequality containing both the time derivatives of some of
the state variables (i.e., PT .p/, PT .e/, r PT .p/, r PT .e/, r Pq.p/, r Pq.e/, rPI) and
the second-order spatial derivatives of the unknown fields (i.e., rrT .p/,
rrT .e/, rrq.p/, rrq.e/, rrI). All these quantities may assume arbi-
trary values in each point of the system at any time [32,33]. Since the gen-
eralized entropy inequality is linear in those derivatives, their coefficients
must vanish, otherwise the inequality could be easily violated [32, 33]. By
nullifying the coefficient of each time derivative, the following first set of
thermodynamic restrictions ensues:

s D �
cv

c
.p/
v

@ 

@T .p/
; s D �

cv

c
.e/
v

@ 

@T .e/
; (36a)

@ 

@rT .p/
D 0;

@ 

@rT .e/
D 0; (36b)

@ 

@rq.p/
D 0;

@ 

@rq.e/
D 0;

@ 

@rI
D 0; (36c)

which yields useful information about the strict relation between the form
of s and  , as well as the independence of the latter on the gradients enter-
ing the state space. In particular, Eqs. (36b)–(36c) together with the theory
of the representation of isotropic scalar functions depending on scalars and
vectors [26], suggest that a possible form of the Helmholtz free energy is
Eq. (13). Since  has to be minimum at equilibrium [12, 13, 31], from
Eq. (13) it is easy to infer that  p,  e, and  I are suitable positive-defined
functions. Once the form of  given by Eq. (13) is taken into account, by
nullifying the coefficients of the above second-order spatial derivatives of
the unknown fields, we further find that the tensors

@k

@rT .p/
;

@k

@rT .e/
; (37a)
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T
@k

@rq.p/
�  .p/

�
�

.p/
0 q.p/U C �

.p/
1 Uq.p/

�
; (37b)

T
@k

@rq.e/
�  .e/

�
�

.e/
0 q.e/U C �

.e/
1 Uq.e/

�
; (37c)

T
@k

@rI
�  .I /

�
�

.I /
0 IU C �

.I /
1 UI

�
(37d)

are skew-symmetric as regards the indices with respect to which the cor-
responding second-order gradient in the generalized entropy inequality is
symmetric [19]. On the other hand, the relations

@k

@rT .p/
D 0;

@k

@rT .e/
D 0; (38a)

T
@k

@rq.p/
D  .p/

�
�

.p/
0 q.p/U C �

.p/
1 Uq.p/

�
; (38b)

T
@k

@rq.e/
D  .e/

�
�

.e/
0 q.e/U C �

.e/
1 Uq.e/

�
; (38c)

T
@k

@rI
D  .I /

�
�

.I /
0 IU C �

.I /
1 UI

�
(38d)

are sufficient to satisfy the restrictions above. Equations (38a) render k
independent both of rT .p/ and of rT .e/. Equations (38b)–(38d), instead,
may be integrated in order to obtain the form of k. Straightforward calcu-
lations allow us to obtain Eq. (14a).

Finally, once Eqs. (36) and (38) have been taken into account, the gen-
eralized entropy inequality reduces to (14b). Therein f .†/ summarizes all
the remaining terms of the reduced entropy inequality which do not vanish,
that is,

f .†/ D �
@ 

@q.p/
�
�
�

.p/
2

�
rq.p/

� q.p/
C q.p/

r � q.p/
�

C 

.p/
0 rT

.p/
C 


.p/
1 q.p/

�
�
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@q.e/
�
�
�

.e/
2

�
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� q.e/
C q.e/

r � q.e/
�
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.e/
0 rT

.e/
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.e/
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C ı.Ie/E
�

�
@ 

@I
�
�
�

.I /
2 .rI � I C Ir � I/
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.I /
0 rT

.e/
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.I /
1 I C ı.eI/E

�
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