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Abstract— In this paper the vibration analysis of rotating non-uniform tapered beams is performed. The structure is discretized by 

means of the so-called “Cell Discretization Method” (CDM), a numerical procedure already employed for the vibration analysis of 

arches and beams, [1-4]. Based on a dynamic variational approach, the equation of motion, for the multiple degree of freedom systems 

(MDOF), is derived from Lagrange formulation. The effect of rotational speed parameter, hub radius, taper ratio and slenderness ratio 

on natural frequencies are also investigated. Some numerical examples are presented and the results are validated by making 

comparisons with the results in literature and reported in bibliography. It is demonstrated that the proposed algorithm provides a 

simple and powerful tool in dealing with the parametric analysis of the free vibrations of rotating Rayleigh beams. 

Keywords- CDM method, Rayleigh beams, flapwise bending. 

I. INTRODUCTION  

In recent years, an upsurge of interest in the vibrational 
analysis of elastic rotating structures has been developed. There 
are many engineering examples which can be idealized as 
rotating non-uniform beams: helicopter rotor blades, wind mill 
turbines, satellites and aircraft propellers are some of structural 
configurations which fall into this category. Due to the effect of 
the rotational speed, the dynamic behaviour of these structures 
is strongly influenced by geometrical and inertial parameters. 
For example, in the helicopter rotor blades it is well-known that 
the deformability of the beam can be influenced by the 
centrifugal force due to rotational motion, which tends to vary 
the free vibrations values 

Several authors have been carried out a considerable 
research on the free vibrations of rotating non-uniform beams 
and different types of solution procedures may be found in the 
literature. A large number of papers based on numerical 
approaches have been published and standard approximate 
methods for the modal analysis of rotating beams were 
employed. In general, the governing equations can be solved 
analytically in closed form assuming Euler-Bernoulli 
hypotheses and considering non-rotating tapered beams, 
subjected to the geometrical conditions depending on specific 
tapering ratios. In this case, the frequencies are derived in 
terms of Bessel functions [5-6]. Many approximated solutions 
have been developed by numerous authors for Euler-Bernoulli 
and Timoshenko tapered beams rotating around to axis. The 
equations of motion are derived from Lagrange equation and 
the free vibration frequencies are given by a weak solution of 
the dynamic problem in integral terms [7-10]. Among different 
numerical techniques, Finite Element Method (FEM) has 
acquired a dominant position due to its simplicity and 
generality, mostly for the vibration analysis of uniform cross-
section beams: in this case, the beam is modelled as 
assemblage consisting of uniform elements [11]. There are, 
also, several numerical procedures, based on differential 

approaches, which lead to semi-analytical solutions of the 
rotating Euler-Bernoulli and Timoshenko beams. Amongst 
them is the Differential Transformation Method (DTM): a 
well-known semi-analytical method that depends on the Taylor 
Series Expansion. Zhou [19] has introduced this method in 
order to calculate the free frequencies of uniform longitudinal 
beams. By employing DTM, Mei [14] has developed a method 
for solving free vibrations problems of rotating beams taking 
into account the bending behaviour. In recent years, Banerjee et 
al. [13] has developed the Dynamic Stiffness Method (DSM) 
for a rotating Timoshenko beams based on the Frobenius Series 
Expansion [12]. 

Recently Jackson et al. [16] have applied the DTM method 
to study the dynamic problem of rotating Rayleigh beams. The 
theory takes into account both the tapering of the cross section, 
and the rotary inertia effect, and the accuracy of the Rayleigh 
beam theory with respect to Euler-Bernoulli hypotheses is 
clearly illustrated. The importance of the rotational inertia 
parameter in solving the dynamic problem of uniform beams 
has been emphasized in [10]. Finally, a couple of papers based 
on the well-known Rayleigh-Ritz approach [7-8] should be 
mentioned. A common peculiarity of these papers is that they 
give approximate solutions, which represent upper bounds to 
the true values. [17]. Instead, if the beam is discretized 
reducing it to a set of rigid bars linked together by elastic 
sections (elastic cells), the resulting approximate free 
frequencies values give a lower bound to the exact values. 
Consequently, it is possible to obtain a useful lower-upper 
approximation of free frequencies of vibration, [1-4]. 

In the present paper, the CDM method is extended to cover 
the dynamic analysis of rotating Rayleigh beams.  

II.   THEORY OF DISCRETE ELEMENT MODEL FOR BEAMS  

Consider a tapered beam of length L, rotating about the z1 axis, 
fixed at a distance r from the left side of the beam, as shown in 
Fig.1. 
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Figure 1. Rotating non-uniform beam element geometry. 

The beam, under consideration, is discretized reducing it to 
a set of rigid bars, linked together by elastic sections (elastic 
cells). In this way, as shown in detail in [1-5], the structure is 
reduced to a system with finite number of degrees of freedom 
(MDOF). The Lagrangian parameters can be assumed to be the  
t rotations of the rigid bars, i.e. the generalized coordinates of 
the rigid-elastic system. All the possible configurations are 
functions of the following vector: 

  (1) 

and the vertical components of the nodal displacements are 
given by the following expressions:  

 
  

In matrix form, being A the displacements matrix, it is 
possible to write:  

 . (2) 

Similarly, the relative rotations between the two faces of 
the elastic cells are given by: 

  

and in matrix form:  

  (3) 

 

The rectangular matrices A and B have t+1 rows and t 
columns, and each term can be calculated according to Fig.2. 

Quite often it is possible to neglect both the axial and the 
shear deformation effects, limiting oneself to the bending 
deformations. In such hypothesis, at each “cell”, the following 

relation between the relative rotation i  
and the moment Mi 

can be written, as follows:  

  (4) 

where the cells stiffness ki, according to the present 
discretization, can be written as: 
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III. EQUATION OF MOTION 

In the case of multiple degree of freedom system (MDOF), 
the equation of motion is derived from Lagrange equation: 
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where U is the total potential energy of the system. It is given 
by the sum of two terms: one due to bending deformation and 
the other due to centrifugal force deformation.  

Similarly, T is the kinetic energy of the system, and if the   
Rayleigh beam model is assumed, the effects of the rotary 
inertia must be taken into account. 

A. Elastic energy  

In the hypothesis of Rayleigh beam model, the potential 
energy U of the system is defined by:  

 

 (7)  

where the apex sign represents the derivative respect to 
abscissa x and Fx is the centrifugal force acting on the beam at 
a distance x from the axis of the rotation motion. 
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Figure 2. A discrete element beam.  
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In the rigid-elastic formulation, relations (3-4) must be 
expressed as functions of the rotations of the rigid bars, and the 
following relationship is easily obtained:  

 
 (8) 

where 

 , (9) 

is the centrifugal force acting on the beam at a distance from 

the origin and is due to the effect of the spin around the axis z1. 

The term 0F  is constant and related to the static inertia, in 

dynamic conditions its contribution is zero. 

Thus potential energy is made of two different terms: one 

due to bending deformation and the other due to centrifugal 

force deformation.  

B. Kinetic energy 

The kinetic energy of the beam is defined as: 

 

(10) 

the first term, Tm, is the classical kinetic energy, the second 
one, TR, is due to the rotary inertia, according to the Rayleigh 
hypothesis. 

In the aproximate form, the nodal rotations can be written 
as follows: 

 
 (11) 

or: 

 , (12) 

where R is the matrix of the rotations with dimension [t+1, t].  

With the proposed method, the mass of the beam is 
properly concentrated at the middle point of the rigid segments. 
Therefore, the mass distribution becomes: 

  (13) 

and the kinetic energy relative to the mass, taking into 
account the relations (2), has the following form: 

 , (14) 

where m is the mass matrix with dimension [t+1, t+1].   

In the Rayleigh hypothesis it is necessary to consider the 
inertia effect of the section respect to axis y. The inertia of 

generic element is applied at nodes. Being Iy, the moment of 
inertia with respect to the axis y, it can be conveniently written: 

 

 

 (15) 

where m  is the inertia matrix with dimension [t+1, t+1].  

The kinetic energy due to the rotary inertia [7-8] holds: 

  21

2

T T T T
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Finally, taking into account the relations (14) and (16), the 
kinetic energy of the system can be written as: 

    (17) 

where M, the so-called generalized matrix of the mass is a 
square matrix of dimension t, and it is given by: 

 T T M A mA R mR . (18) 

The term due to the angular velocity 
2
 appears both in the 

stiffness matrix and in the rotary inertia kinetic energy. 
Applying the relation (6), the equation of motion becomes: 

 . (19) 

The free frequencies have calculated by solving the 
eigenvalues problem given by the following algebraic system: 

 
 (20) 

where K is the square stiffness matrix of dimension t, and it 
is given by: 

 
. (21) 

IV. NUMERICAL EXAMPLE AND DISCUSSION 

In order to develop some numerical examples and to 
compare the relative results with those of the literature reported 
in bibliography, some non-dimensional parameters have been 
introduced, as follows: 

  (22) 

In order to study several typologies of tapered beams and 
define the sectional area and the moment of inertia of the beam, 
two functions, which define the geometric characteristics of the 
structure, can be conveniently introduced as follows: 
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. (23) 

 Uniform beam 

The first numerical example deals with the dynamic 

analysis of uniform beams. Putting;
 

, the 

free frequencies are calculated for various values of the radius 
of inertia (slenderness ratio rH). In literature the results for 
Rayleigh beams model are reader scarce and mainly obtained 
by employing the Finite Element Method (FEM). For example, 
in the paper [9], Rossi et al. calculate the first five non 
dimensional frequencies for different values of rH. In the 

absence of rotation - =0 - and employing a rigid-elastic model 
with t=100 rigid bars, the “CDM” method gives free 
frequencies values which numerically coincide with the results 
obtained in [9]. Assuming the Euler-Bernoulli hypothesis, in 
Table I the natural frequencies are also given. As mentioned 
before, the frequencies values are always lower bounds to the 
corresponding values obtained by using the finite element 
method (FEM). In this way, it is possible to obtain a lower-
upper bound for the frequencies exact values.     

TABLE I.   COMPARISON OF NATURAL FREQUENCIES; =0, UNIFORM 

BEAMS 

=0    C.D.M. 

 

  



rH=1/20 rH=1/13.33 rH=1/10 E-B 

 3.4954 3.4706 3.4365 3.5157 

 21.1821 20.2503 19.1298 22.0250 

 56.4416 51.5192 46.4658 61.6414 

 103.6940 90.1918 78.1436 120.7140 

 159.4150 132.8860 111.6750 199.3861 

     =0   Rossi, [9]   E-B [10] 



rH=1/20 rH=1/13.33 rH=1/10 rH--->0 

 3.4957 3.4709 3.4363 3.5160 

 21.1907 20.2579 19.1364 22.0345 

 56.4863 51.5548 46.4936 61.6972 

 103.8238 90.2861 78.2131 120.9020 

 159.6954 133.0771 111.6750 199.8600 

 

One can see that the natural frequencies decrease for 
increasing values of the slenderness radius rH .  

In Figure 3, the first three shape modes of Rayleigh beam 
(rH=1/10) are compared with the corresponding modes for the 
Euler-Bernoulli beam. As shown and taking into account the 
rotary inertia effect, the Rayleigh beam theory gives a model 
closer to the real structure behavior. Moreover, for the higher 
modes, the discrepancies between the Rayleigh theory and the 
simpler Euler-Bernoulli theory appear to be relevant. An 
accurate knowledge of the nodal point location can be useful 
for analysing and controlling the behaviour of rotating beam. 

The effect of the rotary parameter has a deep impact even 

on the free frequencies results. For values of 0, the 
centrifugal force influences the dynamic behavior of beam: the 
free frequencies increase to increase, for increasing values of 

the rotation, . From a practical point of view, greater values of 
the angular velocity lead to greater centrifugal forces, and in 

turn to stiffener beams. By increasing the extensional 
deformation, one gets increasing values of the natural 
frequencies of vibration. 

When the rotational speed increases, the fundamental 
frequency of the beam can assume the same value of the speed: 
this condition is known as resonance phenomenon and the 
corresponding angular speed is named tuned angular speed. For 

rH=1/10 and rH=1/30, varying the  and δ parameters, the 

values of I (i=1…5) have been calculated and the relative 
results are reported in Table II. 
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Figure 3. Bending mode shape for uniform beam; =0. 
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TABLE II.  NATURAL FREQUENCIES; =0, UNIFORM RAYLEIGH 

BEAMS,  

 
  rH=1/10     rH=1/30   

=0 =5 =10 =50 =5 =10 =50 

 6.2296 10.8148 49.4097 6.4244 11.1584 50.8854 

 22.8322 28.3933 95.8741 24.9572 32.9432 123.1830 

 48.7246 55.2136 136.3991 62.4456 71.3887 197.6440 

 80.0209 86.4222 188.0070 115.3910 124.8530 280.9950 

 113.1210 119.1211 231.6666 181.1661 190.7340 370.9030 

=0.5             

 7.5657 13.7589 64.8856 7.7713 14.1248 66.5609 

 23.5418 33.1757 118.3671 26.9432 38.5822 156.3140 

 50.4130 60.6491 166.5590 64.6587 78.6804 246.0710 

 81.6709 92.2256 228.3361 117.7315 133.105 344.2930 

 114.6591 124.803 279.0991 183.5310 199.436 449.0700 

 

In the proposed Rayleigh beam, with rH=1/10 and δ=0, the 

resonance phenomenon occurs in the range of [10,50]. In 
Figure 4, the phenomenon is sketched. The curve of the 

fundamental frequencies intersects the line of the speed (ω=), 

at the point =32.82, and this intersection gives the tuned 
angular speed. Increasing the δ parameter (named hub radium 
ratio) the free frequencies increase.  

By observing the Figure 5, one gets that for δ=0.5, the 
resonance phenomenon cannot occur. The curves of 

frequencies, for increasing values, are anywhere above the 

line of the speeds (ω=), so that a tuned angular speed do not 
exist. 

 Tapered  beam 

Let us consider that the variation of the cross section of the 
beam is given by the equations (23). In the case of tapered 
beams, the cross section area and moment of inertia are 
represented by the following expressions: 

 . (23) 

where the α and β parameters define the variation of height 
and base of the beam cross section along its span. As already 
said, in the literature few papers exist which deal with the 
tapered Rayleigh beam theory, so that the Authors – for the 
sake of comparisons - will refer to the natural frequencies 
calculated by Jackson et al., as reported in [16]. In the Table 
III, for α=0.5 and rH=1/30 data, the obtained values are 
reported. As shown and by applying the CDM method, the 
natural frequencies values are always lower bounds to the 
values determined by the DTM. 

 

Figure 5. Angular speed and flapwise bending natural frequencies; 
rH=1/30. 

where the α and β parameters define the variation of height 
and base of the beam cross section along its span. As already 
said, in the literature few papers exist which deal with the 
tapered Rayleigh beam theory, so that the Authors – for the 
sake of comparisons - will refer to the natural frequencies 
calculated by Jackson et al., as reported in [16]. In the Table 
III, for α=0.5 and rH=1/30 data, the values obtained are 
reported. As shown, the natural frequencies obtained by 
applying the CDM method are always lower bounds to the 
values determined by the DTM method.  

TABLE III.  NATURAL FREQUENCIES, TAPERED BEAMS; δ=0, rH=1/30. 

=0   
C.D.M. 

    

Jackson 

[16]   

=0,5 =0 =5 =10   

 3.8177 6.7332 11.4838 3.82109 6.7356 11.4856 

 18.1601 21.7123 29.8974 18.2245 21.7911 30.0232 

 46.2759 49.8385 59.1543 46.5757 50.1876 59.6737 

 86.9716 90.4926 100.1831 87.7974 91.4413 101.5422 

 139.0892 142.4541 151.9492 140.8192 144.4462 154.7865 

 

In Figure 6, setting rH=1/30, δ=β=0 and α=0,5, the free 
frequencies values of tapered beam are obtained by varying the 

angular speed . As shown, when the speed increases, the curve 
of fundamental frequencies tends, in asymptotic way, to the 
straight line of the angular speeds. 
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Figure 4. Tuned angular speed in flapwise bending vibration; rH=1/10 
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Figure 6. Natural frequencies for tapered Rayleigh beam α=0,5, and 
rH=1/30. 

In the Rayleigh beam case, for the higher modes of 
vibrations, the effect of taper has a relevant impact. For the 
higher modes, the shape of cross-section beam has a relevant 
influence on the free frequencies results.  

In Fig. 7, for the different values of taper parameter, the 
curve of the first five fundamental frequencies is reported. If 

the dimensional parameter, increases, the free frequencies 
of vibration decrease and their effect is relevant on the higher 
modes. 

In the case rH=1/10 (slenderness ratio) and considering the 
same Rayleigh beam, a different behaviour can be observed. 

The resonance phenomenon occurs for = 62.4 (tuned angular 
speed), which represents the intersection between the curve 
relative to the fundamental frequencies, and the line of the 

angular speeds =ω, see Figure 7. If the δ parameter (named 
hub radius) is allowed to increase, the centrifugal force leads to 
an increase of the extension deformation of the beam, so that  
the fundamental frequencies migrate away from the line of 
speeds and the resonance phenomenon does not occur.  

This conclusion has a practical usefulness in analyzing the 
rotors, where the control devices are of paramount importance.  

 

Figure 8. Natural frequencies for tapered Rayleigh beam α=0,5, and rH=1/10. 

 Beam with parabolic thickness variation 

This section is concerned with the transverse vibration of 

the non-uniform beam shown in Fig. 9, a beam of constant 

breadth and depth proportional to the square of the axial co-

ordinate. 

 

 
Figure 9. Non-uniform beam; parabolic thickness variation. 

In particular, the geometry of the structure is given: 
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the area and the inertia assume the form  

 

 

 

 

2
0

3
2

0

( ) 1 ( 1)

( ) 1 ( 1) .

A A

I I

  

  

  

  

 (26) 

 

In Tab IV, the first five natural frequencies for rotating 

parabolic non-uniform Euler beam (rH=1/1000), α=5, are 

presented for various angular speed, γ and hub ratios, δ.  
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Figure 7. Variation of the nondimensional frequencies with respect to the 

taper ratio, α, for the five lowest modes of the beam with =0, β=0 and 

δ=0. 
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TABLE IV.  COMPARISON OF FIRST FIVE NATURAL FREQUENCIES; 
PARABOLIC THICKESS VARIATION (EULER BEAM). 

 

=5  =0  =5

       

  2.2608    

   30.0559    

   110.7650    

   230.4959    

   395.3289    

       

  12.5806  33.4471 

   50.0796  106.4972 

   137.4859  234.4189 

   260.9709  397.4638 

   428.5189  605.8781 

       

  100.9850  276.5721 

   301.1600  769.3038 

   550.2041  1320.2100 

   854.6310  1968.2940 

   1223.8710  2735.9000 

 

If δ = 0 as γ increases the first natural frequency of the 

beam tends to the angular velocity (ω  γ), causing the 

phenomenon of resonance, which is usually referred to as 

“angular speed turner”. An increase of parameter δ results in 

an increase in the fundamental frequency of the beam for 

which the phenomenon of “turner angular speed” doesn’t 

occur. Assuming the previous hypothesis, in the simple Euler-

Bernoulli beam model the resonance phenomenon doesn’t 

occur, even for the higher values of parameter as shown in 

Fig. 10.   

 

From a practical point of view, greater values of the 

angular velocity lead to greater centrifugal forces, and in turn 

to stiffener beams. By increasing the extensional deformation, 

one gets increasing values of the natural frequencies of 

vibration. The effect of the parameter α, has a deep impact 

even on the free frequencies results. For values of 0, the 

centrifugal force influences the dynamic behavior of beam: the 

free frequencies increase to increase, for increasing values of 

the rotation, . 
If the non-dimensional parameter rH is allowed to increase, 

the phenomenon of resonance occurs. For =3 and rH=1/10 
(Rayleigh beam), the values of the first three frequencies are 
determined and reported in Fig. 11. 

V. CONCLUSIONS  

In the present paper, the equation of motion for a rotating 
Rayleigh beam has been derived using the Lagrange’s 
equation. The structure is reduced to a system with finite 
number of degrees of freedom (MDOF) by employing the 
CDM method. 

The effects of slenderness ratio rH, hub radius, δ, and  
dynamic parameters are discussed in detail and the following 
considerations can be made: 

- The natural frequencies increase for increasing angular 
speed. That is due to the increase of the beam stiffness, 
and it is due to the increase of centrifugal force. In 
particular, the effect is evident on higher mode shapes. 

- The rotary inertia effect, which must be taken into 
account in the Rayleigh beam theory, influences the beam 
deformation. When the parameter rH (slenderness ratio) 
increases, the natural frequencies decrease; for rH=0 the 
classical Euler-Bernoulli values are recovered. 

- For values of rH0 (Rayleigh beam model) a tuned 
angular speed exists, for which the resonance 
phenomenon is observed. 

The present paper represents a useful tool of investigation 
in order to study the dynamic behaviour of the rotating beam. 
Moreover, it can be used to control and optimize the  rotating 
beams. 
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Figure 11. Angular speed and flapwise bending; α=3, r=0, rH=1/1000 

(Euler Beam). 
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